|
|
R158Q and G212S, novel pathogenic compound heterozygous variants in SLC12A3 of Gitelman syndrome |
Zongyue Li1,2,3, Huixiao Wu1,2,3, Shuoshuo Wei1,2,3, Moke Liu1,2,3, Yingzhou Shi1,2,3, Mengzhu Li1,2,3, Ning Wang2,3,4, Li Fang2,3,4, Bo Xiang2,3,4, Ling Gao1,2,3,4, Chao Xu1,2,3,4( ), Jiajun Zhao1,2,3,4( ) |
1. Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China 2. Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan 250021, China 3. Shandong Institute of Endocrine and Metabolic Disease, Jinan 250021, China 4. Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China |
|
|
Abstract The dysfunction of Na+-Cl− cotransporter (NCC) caused by mutations in solute carrier family12, member 3 gene (SLC12A3) primarily causes Gitelman syndrome (GS). In identifying the pathogenicity of R158Q and G212S variants of SLC12A3, we evaluated the pathogenicity by bioinformatic, expression, and localization analysis of two variants from a patient in our cohort. The prediction of mutant protein showed that p.R158Q and p.G212S could alter protein’s three-dimensional structure. Western blot showed a decrease of mutant Ncc. Immunofluorescence of the two mutations revealed a diffuse positive staining below the plasma membrane. Meanwhile, we conducted a compound heterozygous model—Ncc R156Q/G210S mice corresponding to human NCC R158Q/G212S. NccR156Q/G210S mice clearly exhibited typical GS features, including hypokalemia, hypomagnesemia, and increased fractional excretion of K+ and Mg2+ with a normal blood pressure level, which made NccR156Q/G210S mice an optimal mouse model for further study of GS. A dramatic decrease and abnormal localization of the mutant Ncc in distal convoluted tubules contributed to the phenotype. The hydrochlorothiazide test showed a loss of function of mutant Ncc in NccR156Q/G210S mice. These findings indicated that R158Q and G212S variants of SLC12A3 were pathogenic variants of GS.
|
Keywords
Gitelman syndrome
mouse model
compound heterozygous
hypokalemia
Slc12a3
|
Corresponding Author(s):
Chao Xu,Jiajun Zhao
|
Just Accepted Date: 23 September 2022
Online First Date: 15 November 2022
Issue Date: 16 January 2023
|
|
1 |
O Melander, M Orho-Melander, K Bengtsson, U Lindblad, L Râstam, L Groop, UL Hulthén. Genetic variants of thiazide-sensitive NaCl-cotransporter in Gitelman’s syndrome and primary hypertension. Hypertension 2000; 36(3): 389–394
https://doi.org/10.1161/01.HYP.36.3.389
pmid: 10988270
|
2 |
HJ Gitelman, JB Graham, LG Welt. A new familial disorder characterized by hypokalemia and hypomagnesemia. Trans Assoc Am Physicians 1966; 79: 221–235
pmid: 5929460
|
3 |
N Tago, Y Kokubo, N Inamoto, H Naraba, H Tomoike, N Iwai. A high prevalence of Gitelman’s syndrome mutations in Japanese. Hypertens Res 2004; 27(5): 327–331
https://doi.org/10.1291/hypres.27.327
pmid: 15198479
|
4 |
V Ravarotto, J Loffing, D Loffing-Cueni, M Heidemeyer, E Pagnin, LA Calò, GP Rossi. Gitelman’s syndrome: characterization of a novel c.1181G>A point mutation and functional classification of the known mutations. Hypertens Res 2018; 41(8): 578–588
https://doi.org/10.1038/s41440-018-0061-1
pmid: 29925901
|
5 |
E Riveira-Munoz, Q Chang, N Godefroid, JG Hoenderop, RJ Bindels, K Dahan, O; Belgian Network for Study of Gitelman Syndrome Devuyst. Transcriptional and functional analyses of SLC12A3 mutations: new clues for the pathogenesis of Gitelman syndrome. J Am Soc Nephrol 2007; 18(4): 1271–1283
https://doi.org/10.1681/ASN.2006101095
pmid: 17329572
|
6 |
E Sabath, P Meade, J Berkman, los Heros P de, E Moreno, NA Bobadilla, N Vázquez, DH Ellison, G Gamba. Pathophysiology of functional mutations of the thiazide-sensitive Na-Cl cotransporter in Gitelman disease. Am J Physiol Renal Physiol 2004; 287(2): F195–F203
https://doi.org/10.1152/ajprenal.00044.2004
pmid: 15068971
|
7 |
Z Miao, Y Gao, RJ Bindels, W Yu, Y Lang, N Chen, H Ren, F Sun, Y Li, X Wang, L Shao. Coexistence of normotensive primary aldosteronism in two patients with Gitelman’s syndrome and novel thiazide-sensitive Na-Cl cotransporter mutations. Eur J Endocrinol 2009; 161(2): 275–283
https://doi.org/10.1530/EJE-09-0271
pmid: 19451210
|
8 |
B Glaudemans, HG Yntema, P San-Cristobal, J Schoots, R Pfundt, EJ Kamsteeg, RJ Bindels, NV Knoers, JG Hoenderop, LH Hoefsloot. Novel NCC mutants and functional analysis in a new cohort of patients with Gitelman syndrome. Eur J Hum Genet 2012; 20(3): 263–270
https://doi.org/10.1038/ejhg.2011.189
pmid: 22009145
|
9 |
MA Valdez-Flores, R Vargas-Poussou, S Verkaart, OA Tutakhel, A Valdez-Ortiz, A Blanchard, C Treard, JG Hoenderop, RJ Bindels, S Jeleń. Functionomics of NCC mutations in Gitelman syndrome using a novel mammalian cell-based activity assay. Am J Physiol Renal Physiol 2016; 311(6): F1159–F1167
https://doi.org/10.1152/ajprenal.00124.2016
pmid: 27582097
|
10 |
A Blanchard, D Bockenhauer, D Bolignano, LA Calò, E Cosyns, O Devuyst, DH Ellison, Frankl FE Karet, NV Knoers, M Konrad, SH Lin, R Vargas-Poussou. Gitelman syndrome: consensus and guidance from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int 2017; 91(1): 24–33
https://doi.org/10.1016/j.kint.2016.09.046
pmid: 28003083
|
11 |
PJ Schultheis, JN Lorenz, P Meneton, ML Nieman, TM Riddle, M Flagella, JJ Duffy, T Doetschman, ML Miller, GE Shull. Phenotype resembling Gitelman’s syndrome in mice lacking the apical Na+-Cl– cotransporter of the distal convoluted tubule. J Biol Chem 1998; 273(44): 29150–29155
https://doi.org/10.1074/jbc.273.44.29150
pmid: 9786924
|
12 |
J Loffing, V Vallon, D Loffing-Cueni, F Aregger, K Richter, L Pietri, M Bloch-Faure, JG Hoenderop, GE Shull, P Meneton, B Kaissling. Altered renal distal tubule structure and renal Na(+) and Ca(2+) handling in a mouse model for Gitelman’s syndrome. J Am Soc Nephrol 2004; 15(9): 2276–2288
https://doi.org/10.1097/01.ASN.0000138234.18569.63
pmid: 15339977
|
13 |
SS Yang, YF Lo, IS Yu, SW Lin, TH Chang, YJ Hsu, TK Chao, HK Sytwu, S Uchida, S Sasaki, SH Lin. Generation and analysis of the thiazide-sensitive Na+-Cl– cotransporter (Ncc/Slc12a3) Ser707X knockin mouse as a model of Gitelman syndrome. Hum Mutat 2010; 31(12): 1304–1315
https://doi.org/10.1002/humu.21364
pmid: 20848653
|
14 |
SS Yang, YW Fang, MH Tseng, PY Chu, IS Yu, HC Wu, SW Lin, T Chau, S Uchida, S Sasaki, YF Lin, HK Sytwu, SH Lin. Phosphorylation regulates NCC stability and transporter activity in vivo. J Am Soc Nephrol 2013; 24(10): 1587–1597
https://doi.org/10.1681/ASN.2012070742
pmid: 23833262
|
15 |
L Shao, Y Lang, Y Wang, Y Gao, W Zhang, H Niu, S Liu, N Chen. High-frequency variant p.T60M in NaCl cotransporter and blood pressure variability in Han Chinese. Am J Nephrol 2012; 35(6): 515–519
https://doi.org/10.1159/000339165
pmid: 22627394
|
16 |
Q Shen, J Chen, M Yu, Z Lin, X Nan, B Dong, X Fang, J Chen, G Ding, A Zhang, C Gao, L Miao, Y Xu, X Jiang, H Bai, J Zhuang, X Gao, H; for Chinese Children Genetic Kidney Disease Database (CCGKDD) Xu. Multi-centre study of the clinical features and gene variant spectrum of Gitelman syndrome in Chinese children. Clin Genet 2021; 99(4): 558–564
https://doi.org/10.1111/cge.13913
pmid: 33382082
|
17 |
CL Huang, SS Yang, SH Lin. Mechanism of regulation of renal ion transport by WNK kinases. Curr Opin Nephrol Hypertens 2008; 17(5): 519–525
https://doi.org/10.1097/MNH.0b013e32830dd580
pmid: 18695394
|
18 |
T Liu, C Wang, J Lu, X Zhao, Y Lang, L Shao. Genotype/phenotype analysis in 67 Chinese patients with Gitelman’s syndrome. Am J Nephrol 2016; 44(2): 159–168
https://doi.org/10.1159/000448694
pmid: 27529443
|
19 |
R Vargas-Poussou, K Dahan, D Kahila, A Venisse, E Riveira-Munoz, H Debaix, B Grisart, F Bridoux, R Unwin, B Moulin, JP Haymann, MC Vantyghem, C Rigothier, B Dussol, M Godin, H Nivet, L Dubourg, I Tack, AP Gimenez-Roqueplo, P Houillier, A Blanchard, O Devuyst, X Jeunemaitre. Spectrum of mutations in Gitelman syndrome. J Am Soc Nephrol 2011; 22(4): 693–703
https://doi.org/10.1681/ASN.2010090907
pmid: 21415153
|
20 |
F Zhong, H Ying, W Jia, X Zhou, H Zhang, Q Guan, J Xu, L Fang, J Zhao, C Xu. Characteristics and follow-up of 13 pedigrees with Gitelman syndrome. J Endocrinol Invest 2019; 42(6): 653–665
https://doi.org/10.1007/s40618-018-0966-1
pmid: 30413979
|
21 |
C Li, X Zhou, W Han, X Jiang, J Liu, L Fang, H Wang, Q Guan, L Gao, J Zhao, J Xu, C Xu. Identification of two novel mutations in SLC12A3 gene in two Chinese pedigrees with Gitelman syndrome and review of literature. Clin Endocrinol (Oxf) 2015; 83(6): 985–993
https://doi.org/10.1111/cen.12820
pmid: 25990047
|
22 |
K Jayasinghe, Z Stark, PG Kerr, C Gaff, M Martyn, J Whitlam, B Creighton, E Donaldson, M Hunter, A Jarmolowicz, L Johnstone, E Krzesinski, S Lunke, E Lynch, K Nicholls, C Patel, Y Prawer, J Ryan, EJ See, A Talbot, A Trainer, R Tytherleigh, G Valente, M Wallis, L Wardrop, KH West, SM White, E Wilkins, AJ Mallett, C Quinlan. Clinical impact of genomic testing in patients with suspected monogenic kidney disease. Genet Med 2021; 23(1): 183–191
https://doi.org/10.1038/s41436-020-00963-4
pmid: 32939031
|
23 |
ML Syrén, S Tedeschi, L Cesareo, R Bellantuono, G Colussi, M Procaccio, A Alì, R Domenici, F Malberti, M Sprocati, M Sacco, N Miglietti, A Edefonti, F Sereni, G Casari, DA Coviello, A Bettinelli. Identification of fifteen novel mutations in the SLC12A3 gene encoding the Na-Cl Co-transporter in Italian patients with Gitelman syndrome. Hum Mutat 2002; 20(1): 78
https://doi.org/10.1002/humu.9045
pmid: 12112667
|
24 |
F Wang, C Shi, Y Cui, C Li, A Tong. Mutation profile and treatment of Gitelman syndrome in Chinese patients. Clin Exp Nephrol 2017; 21(2): 293–299
https://doi.org/10.1007/s10157-016-1284-6
pmid: 27216017
|
25 |
M Budakoti, AS Panwar, D Molpa, RK Singh, D Büsselberg, AP Mishra, HDM Coutinho, M Nigam. Micro-RNA: the darkhorse of cancer. Cell Signal 2021; 83: 109995
https://doi.org/10.1016/j.cellsig.2021.109995
pmid: 33785398
|
26 |
AA Bicknell, EP Ricci. When mRNA translation meets decay. Biochem Soc Trans 2017; 45(2): 339–351
https://doi.org/10.1042/BST20160243
pmid: 28408474
|
27 |
J Fujimura, K Nozu, T Yamamura, S Minamikawa, K Nakanishi, T Horinouchi, C Nagano, N Sakakibara, K Nakanishi, Y Shima, K Miyako, Y Nozu, N Morisada, H Nagase, T Ninchoji, H Kaito, K Iijima. Clinical and genetic characteristics in patients with Gitelman syndrome. Kidney Int Rep 2019; 4(1): 119–125
https://doi.org/10.1016/j.ekir.2018.09.015
pmid: 30596175
|
28 |
N Godefroid, E Riveira-Munoz, C Saint-Martin, MC Nassogne, K Dahan, O Devuyst. A novel splicing mutation in SLC12A3 associated with Gitelman syndrome and idiopathic intracranial hypertension. Am J Kidney Dis 2006; 48(5): e73–e79
https://doi.org/10.1053/j.ajkd.2006.08.005
pmid: 17059986
|
29 |
Riveira-Munoz E, Chang Q, Bindels RJ, Devuyst O. Gitelman’s syndrome: towards genotype-phenotype correlations? Pediatr Nephrol 2007; 22(3): 326–332 doi:10.1007/s00467-006-0321-1
pmid: 17061123
|
30 |
MH Tseng, SS Yang, YJ Hsu, YW Fang, CJ Wu, JD Tsai, DY Hwang, SH Lin. Genotype, phenotype, and follow-up in Taiwanese patients with salt-losing tubulopathy associated with SLC12A3 mutation. J Clin Endocrinol Metab 2012; 97(8): E1478–E1482
https://doi.org/10.1210/jc.2012-1707
pmid: 22679066
|
31 |
JW Verlander, TM Tran, L Zhang, MR Kaplan, SC Hebert. Estradiol enhances thiazide-sensitive NaCl cotransporter density in the apical plasma membrane of the distal convoluted tubule in ovariectomized rats. J Clin Invest 1998; 101(8): 1661–1669
https://doi.org/10.1172/JCI601
pmid: 9541496
|
32 |
JW Nieves, L Komar, F Cosman, R Lindsay. Calcium potentiates the effect of estrogen and calcitonin on bone mass: review and analysis. Am J Clin Nutr 1998; 67(1): 18–24
https://doi.org/10.1093/ajcn/67.1.18
pmid: 9440370
|
33 |
S Park, S Kang, DS Kim. Severe calcium deficiency increased visceral fat accumulation, down-regulating genes associated with fat oxidation, and increased insulin resistance while elevating serum parathyroid hormone in estrogen-deficient rats. Nutr Res 2020; 73: 48–57
https://doi.org/10.1016/j.nutres.2019.09.008
pmid: 31841747
|
34 |
WR McKane, S Khosla, MF Burritt, PC Kao, DM Wilson, SJ Ory, BL Riggs. Mechanism of renal calcium conservation with estrogen replacement therapy in women in early postmenopause—a clinical research center study. J Clin Endocrinol Metab 1995; 80(12): 3458–3464
pmid: 8530583
|
35 |
IM Dick, A Devine, J Beilby, RL Prince. Effects of endogenous estrogen on renal calcium and phosphate handling in elderly women. Am J Physiol Endocrinol Metab 2005; 288(2): E430–E435
https://doi.org/10.1152/ajpendo.00140.2004
pmid: 15466921
|
36 |
T Nijenhuis, V Vallon, AW van der Kemp, J Loffing, JG Hoenderop, RJ Bindels. Enhanced passive Ca2+ reabsorption and reduced Mg2+ channel abundance explains thiazide-induced hypocalciuria and hypomagnesemia. J Clin Invest 2005; 115(6): 1651–1658
https://doi.org/10.1172/JCI24134
pmid: 15902302
|
37 |
V Chubanov, T Gudermann. Trpm6. Handb Exp Pharmacol 2014; 222: 503–520
https://doi.org/10.1007/978-3-642-54215-2_20
pmid: 24756719
|
38 |
L Flores-Aldama, MW Vandewege, K Zavala, CK Colenso, W Gonzalez, SE Brauchi, JC Opazo. Evolutionary analyses reveal independent origins of gene repertoires and structural motifs associated to fast inactivation in calcium-selective TRPV channels. Sci Rep 2020; 10(1): 8684
https://doi.org/10.1038/s41598-020-65679-6
pmid: 32457384
|
39 |
RA Pumroy, EC 3rd Fluck, T Ahmed, VY Moiseenkova-Bell. Structural insights into the gating mechanisms of TRPV channels. Cell Calcium 2020; 87: 102168
https://doi.org/10.1016/j.ceca.2020.102168
pmid: 32004816
|
40 |
SS Yang, T Morimoto, T Rai, M Chiga, E Sohara, M Ohno, K Uchida, SH Lin, T Moriguchi, H Shibuya, Y Kondo, S Sasaki, S Uchida. Molecular pathogenesis of pseudohypoaldosteronism type II: generation and analysis of a Wnk4(D561A/+) knockin mouse model. Cell Metab 2007; 5(5): 331–344
https://doi.org/10.1016/j.cmet.2007.03.009
pmid: 17488636
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|