Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2023, Vol. 17 Issue (5) : 855-866    https://doi.org/10.1007/s11684-023-1026-6
REVIEW
Phase separation in cGAS-STING signaling
Quanjin Li(), Pu Gao()
CAS Key Laboratory of Infection and Immunity, National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
 Download: PDF(1968 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Biomolecular condensates formed by phase separation are widespread and play critical roles in many physiological and pathological processes. cGAS-STING signaling functions to detect aberrant DNA signals to initiate anti-infection defense and antitumor immunity. At the same time, cGAS-STING signaling must be carefully regulated to maintain immune homeostasis. Interestingly, exciting recent studies have reported that biomolecular phase separation exists and plays important roles in different steps of cGAS-STING signaling, including cGAS condensates, STING condensates, and IRF3 condensates. In addition, several intracellular and extracellular factors have been proposed to modulate the condensates in cGAS-STING signaling. These studies reveal novel activation and regulation mechanisms of cGAS-STING signaling and provide new opportunities for drug discovery. Here, we summarize recent advances in the phase separation of cGAS-STING signaling and the development of potential drugs targeting these innate immune condensates.

Keywords biomolecular condensates      phase separation      cGAS-STING pathway      cGAS      STING      cGAMP      interferon     
Corresponding Author(s): Quanjin Li,Pu Gao   
Just Accepted Date: 28 September 2023   Online First Date: 31 October 2023    Issue Date: 07 December 2023
 Cite this article:   
Quanjin Li,Pu Gao. Phase separation in cGAS-STING signaling[J]. Front. Med., 2023, 17(5): 855-866.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-023-1026-6
https://academic.hep.com.cn/fmd/EN/Y2023/V17/I5/855
Fig.1  Brief research history of the discovery of key components and related condensates in cGAS-STING signaling. (Note: this is an oversimplified research history with a focused perspective, and many other important contributions to this pathway are not listed here.)
Fig.2  Model of phase separation in cGAS-STING signaling. (a) Aberrant DNA from pathogens or the host induces cGAS to form cGAS-DNA condensates, which contribute to promote cGAS activation and suppress negative regulation mediated by TREX1 and BAF. Positive regulators such as Ku proteins, PCBP1, ZYG11B, zinc ions and streptavidin promote cGAS-DNA phase separation. Negative regulators such as PCBP2 and oleic acid suppress cGAS-DNA phase separation. (b) USP15 forms condensates with cGAS to promote cGAS-DNA phase separation. (c) G3BP1 forms condensates with cGAS to promote cGAS-DNA phase separation. (d) RNA forms condensates with cGAS to promote cGAS-DNA phase separation. (e) Spermine forms condensates with DNA to promote cGAS-DNA phase separation. (f) ORF52/VP22-type tegument proteins form condensates with DNA to disrupt cGAS-DNA phase separation. (g) SARS2-NP forms N-DNA-G3BP1 condensates to restrict the formation of cGAS-G3BP1 condensates. (h) Excessive cGAMP induces the formation of STING-cGAMP condensates that separate STING and TBK1 from IRF3 to suppress innate immune signaling. (i) IRF3 forms condensates with ISREs to recruit transcription factors and co-activators, thereby promoting IFN-I expression. (j) Activated IRF3 interacts with NF2m to form NF2m condensates where TBK1 and RACK1-PP2A complex are recruited and RACK1-PP2A complex dephosphorylates TBK1 to suppress innate immune signaling. (k) STING forms liquid-like condensates with PC7A to activate innate immune signaling.
RegulatorMechanismReferences
Positive regulationcGAS condensatesKu proteins (Ku70 and Ku80)Directly interacts with cGAS and enhances the DNA binding ability of cGAS[41]
ZYG11BEnhances the DNA binding ability of cGAS[42]
PCBP1Enhances the DNA binding ability of cGAS[44]
USP15Mediates the deubiquitylation of cGAS and forms condensates with cGAS[48]
G3BP1Engages cGAS in the primary condensation state to recruit DNA rapidly[52]
Zinc ionsStabilizes the 2:2 cGAS-DNA complex[37]
RNAInduces cGAS to form pre-condensates[37,60]
SpermineCondenses DNA to a similar inter-DNA distance in the cGAS-DNA complex[70]
StreptavidinDirectly binds to cGAS and enhances DNA binding ability[79]
STING condensatesMn ionsEnhances the cGAMP binding ability of STING[86,87]
IRF3 condensatesSIRT1Mediates the deacetylation of IRF3[91]
Negative regulationcGAS condensatesPCBP2Reduces the size of cGAS condensates[45]
Oleic acidDissolves cGAS-DNA phase separation[71]
ORF52/VP22-type tegument proteinsDisrupt cGAS-DNA phase separation to form their own condensates with DNA[75,76]
SARS2-NPUndergoes DNA-induced LLPS to restrict the formation of cGAS-G3BP1 condensates[78]
Tab.1  Regulators of phase separation in cGAS-STING signaling
1 L Sun, J Wu, F Du, X Chen, ZJ Chen. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 2013; 339(6121): 786–791
https://doi.org/10.1126/science.1232458
2 J Wu, L Sun, X Chen, F Du, H Shi, C Chen, ZJ Chen. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 2013; 339(6121): 826–830
https://doi.org/10.1126/science.1229963
3 A Ablasser, M Goldeck, T Cavlar, T Deimling, G Witte, I Rohl, KP Hopfner, J Ludwig, V Hornung. cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature 2013; 498(7454): 380–384
https://doi.org/10.1038/nature12306
4 P Gao, M Ascano, Y Wu, W Barchet, BL Gaffney, T Zillinger, AA Serganov, Y Liu, RA Jones, G Hartmann, T Tuschl, DJ Patel. Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell 2013; 153(5): 1094–1107
https://doi.org/10.1016/j.cell.2013.04.046
5 P Gao, M Ascano, T Zillinger, W Wang, P Dai, AA Serganov, BL Gaffney, S Shuman, RA Jones, L Deng, G Hartmann, W Barchet, T Tuschl, DJ Patel. Structure-function analysis of STING activation by c[G(2′,5′)pA(3′,5′)p] and targeting by antiviral DMXAA. Cell 2013; 154(4): 748–762
https://doi.org/10.1016/j.cell.2013.07.023
6 X Li, C Shu, G Yi, CT Chaton, CL Shelton, J Diao, X Zuo, CC Kao, AB Herr, P Li. Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization. Immunity 2013; 39(6): 1019–1031
https://doi.org/10.1016/j.immuni.2013.10.019
7 H Ishikawa, GN Barber. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 2008; 455(7213): 674–678
https://doi.org/10.1038/nature07317
8 B Zhong, Y Yang, S Li, YY Wang, Y Li, F Diao, C Lei, X He, L Zhang, P Tien, HB Shu. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 2008; 29(4): 538–550
https://doi.org/10.1016/j.immuni.2008.09.003
9 W Sun, Y Li, L Chen, H Chen, F You, X Zhou, Y Zhou, Z Zhai, D Chen, Z Jiang. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proc Natl Acad Sci USA 2009; 106(21): 8653–8658
https://doi.org/10.1073/pnas.0900850106
10 T Saitoh, N Fujita, T Hayashi, K Takahara, T Satoh, H Lee, K Matsunaga, S Kageyama, H Omori, T Noda, N Yamamoto, T Kawai, K Ishii, O Takeuchi, T Yoshimori, S Akira. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc Natl Acad Sci USA 2009; 106(49): 20842–20846
https://doi.org/10.1073/pnas.0911267106
11 H Ishikawa, Z Ma, GN Barber. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 2009; 461(7265): 788–792
https://doi.org/10.1038/nature08476
12 N Dobbs, N Burnaevskiy, D Chen, VK Gonugunta, NM Alto, N Yan. STING activation by translocation from the ER is associated with infection and autoinflammatory disease. Cell Host Microbe 2015; 18(2): 157–168
https://doi.org/10.1016/j.chom.2015.07.001
13 R Fang, Q Jiang, Y Guan, P Gao, R Zhang, Z Zhao, Z Jiang. Golgi apparatus-synthesized sulfated glycosaminoglycans mediate polymerization and activation of the cGAMP sensor STING. Immunity 2021; 54(5): 962–975 e8
https://doi.org/10.1016/j.immuni.2021.03.011
14 Y Tanaka, ZJ Chen. STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Sci Signal 2012; 5(214): ra20
https://doi.org/10.1126/scisignal.2002521
15 R Lin, C Heylbroeck, PM Pitha, J Hiscott. Virus-dependent phosphorylation of the IRF-3 transcription factor regulates nuclear translocation, transactivation potential, and proteasome-mediated degradation. Mol Cell Biol 1998; 18(5): 2986–2996
https://doi.org/10.1128/MCB.18.5.2986
16 KA Fitzgerald, SM McWhirter, KL Faia, DC Rowe, E Latz, DT Golenbock, AJ Coyle, SM Liao, T Maniatis. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 2003; 4(5): 491–496
https://doi.org/10.1038/ni921
17 KJ Ishii, C Coban, H Kato, K Takahashi, Y Torii, F Takeshita, H Ludwig, G Sutter, K Suzuki, H Hemmi, S Sato, M Yamamoto, S Uematsu, T Kawai, O Takeuchi, S Akira. A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. Nat Immunol 2006; 7(1): 40–48
https://doi.org/10.1038/ni1282
18 DB Stetson, R Medzhitov. Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 2006; 24(1): 93–103
https://doi.org/10.1016/j.immuni.2005.12.003
19 C Chen, P Xu. Cellular functions of cGAS-STING signaling. Trends Cell Biol 2023; 33(8): 630–648
https://doi.org/10.1016/j.tcb.2022.11.001
20 D Gao, T Li, XD Li, X Chen, QZ Li, M Wight-Carter, ZJ Chen. Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. Proc Natl Acad Sci USA 2015; 112(42): E5699–E5705
https://doi.org/10.1073/pnas.1516465112
21 H Konno, S Yamauchi, A Berglund, RM Putney, JJ Mulé, GN Barber. Suppression of STING signaling through epigenetic silencing and missense mutation impedes DNA damage mediated cytokine production. Oncogene 2018; 37(15): 2037–2051
https://doi.org/10.1038/s41388-017-0120-0
22 M Motwani, S Pesiridis, KA Fitzgerald. DNA sensing by the cGAS-STING pathway in health and disease. Nat Rev Genet 2019; 20(11): 657–674
https://doi.org/10.1038/s41576-019-0151-1
23 X Cui, R Zhang, S Cen, J Zhou. STING modulators: predictive significance in drug discovery. Eur J Med Chem 2019; 182: 111591
https://doi.org/10.1016/j.ejmech.2019.111591
24 Y Wang, J Luo, A Alu, X Han, Y Wei, X Wei. cGAS-STING pathway in cancer biotherapy. Mol Cancer 2020; 19(1): 136
https://doi.org/10.1186/s12943-020-01247-w
25 KP Hopfner, V Hornung. Molecular mechanisms and cellular functions of cGAS-STING signalling. Nat Rev Mol Cell Biol 2020; 21(9): 501–521
https://doi.org/10.1038/s41580-020-0244-x
26 P Li, S Banjade, HC Cheng, S Kim, B Chen, L Guo, M Llaguno, JV Hollingsworth, DS King, SF Banani, PS Russo, QX Jiang, BT Nixon, MK Rosen. Phase transitions in the assembly of multivalent signalling proteins. Nature 2012; 483(7389): 336–340
https://doi.org/10.1038/nature10879
27 M Kato, TW Han, S Xie, K Shi, X Du, LC Wu, H Mirzaei, EJ Goldsmith, J Longgood, J Pei, NV Grishin, DE Frantz, JW Schneider, S Chen, L Li, MR Sawaya, D Eisenberg, R Tycko, SL McKnight. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 2012; 149(4): 753–767
https://doi.org/10.1016/j.cell.2012.04.017
28 TW Han, M Kato, S Xie, LC Wu, H Mirzaei, J Pei, M Chen, Y Xie, J Allen, G Xiao, SL McKnight. Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies. Cell 2012; 149(4): 768–779
https://doi.org/10.1016/j.cell.2012.04.016
29 SF Banani, HO Lee, AA Hyman, MK Rosen. Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol 2017; 18(5): 285–298
https://doi.org/10.1038/nrm.2017.7
30 S Alberti, A Gladfelter, T Mittag. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell 2019; 176(3): 419–434
https://doi.org/10.1016/j.cell.2018.12.035
31 S Alberti, D Dormann. Liquid–liquid phase separation in disease. Annu Rev Genet 2019; 53(1): 171–194
https://doi.org/10.1146/annurev-genet-112618-043527
32 DM Mitrea, M Mittasch, BF Gomes, IA Klein, MA Murcko. Modulating biomolecular condensates: a novel approach to drug discovery. Nat Rev Drug Discov 2022; 21(11): 841–862
https://doi.org/10.1038/s41573-022-00505-4
33 Q Xiao, CK McAtee, X Su. Phase separation in immune signalling. Nat Rev Immunol 2022; 22(3): 188–199
https://doi.org/10.1038/s41577-021-00572-5
34 W Xie, L Lama, C Adura, D Tomita, JF Glickman, T Tuschl, DJ Patel. Human cGAS catalytic domain has an additional DNA-binding interface that enhances enzymatic activity and liquid-phase condensation. Proc Natl Acad Sci USA 2019; 116(24): 11946–11955
https://doi.org/10.1073/pnas.1905013116
35 F Civril, T Deimling, CC de Oliveira Mann, A Ablasser, M Moldt, G Witte, V Hornung, KP Hopfner. Structural mechanism of cytosolic DNA sensing by cGAS. Nature 2013; 498(7454): 332–337
https://doi.org/10.1038/nature12305
36 J Tao, XW Zhang, J Jin, XX Du, T Lian, J Yang, X Zhou, Z Jiang, XD Su. Nonspecific DNA binding of cGAS N terminus promotes cGAS activation. J Immunol 2017; 198(9): 3627–3636
https://doi.org/10.4049/jimmunol.1601909
37 M Du, ZJ Chen. DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science 2018; 361(6403): 704–709
https://doi.org/10.1126/science.aat1022
38 Y Yao, W Wang, C Chen. Mechanisms of phase-separation-mediated cGAS activation revealed by dcFCCS. PNAS Nexus 2022; 1(3): pgac109
https://doi.org/10.1093/pnasnexus/pgac109
39 W Zhou, L Mohr, J Maciejowski, PJ Kranzusch. cGAS phase separation inhibits TREX1-mediated DNA degradation and enhances cytosolic DNA sensing. Mol Cell 2021; 81(4): 739–755 e7
https://doi.org/10.1016/j.molcel.2021.01.024
40 EE Gray, PM Treuting, JJ Woodward, DB Stetson. Cutting Edge: cGAS is required for lethal autoimmune disease in the Trex1-deficient mouse model of Aicardi–Goutières syndrome. J Immunol 2015; 195(5): 1939–1943
https://doi.org/10.4049/jimmunol.1500969
41 X Tao, J Song, Y Song, Y Zhang, J Yang, P Zhang, D Zhang, D Chen, Q Sun. Ku proteins promote DNA binding and condensation of cyclic GMP-AMP synthase. Cell Rep 2022; 40(10): 111310
https://doi.org/10.1016/j.celrep.2022.111310
42 J Zhang, EC Zhou, Y He, ZL Chai, BZ Ji, Y Tu, HL Wang, WQ Wu, Y Liu, XH Zhang, Y Liu. ZYG11B potentiates the antiviral innate immune response by enhancing cGAS-DNA binding and condensation. Cell Rep 2023; 42(3): 112278
https://doi.org/10.1016/j.celrep.2023.112278
43 SS Kim, KK Pandey, HS Choi, SY Kim, PY Law, LN Wei, HH Loh. Poly(C) binding protein family is a transcription factor in mu-opioid receptor gene expression. Mol Pharmacol 2005; 68(3): 729–736
https://doi.org/10.1124/mol.105.012245
44 CY Liao, CQ Lei, HB Shu. PCBP1 modulates the innate immune response by facilitating the binding of cGAS to DNA. Cell Mol Immunol 2021; 18(10): 2334–2343
https://doi.org/10.1038/s41423-020-0462-3
45 H Gu, J Yang, J Zhang, Y Song, Y Zhang, P Xu, Y Zhu, L Wang, P Zhang, L Li, D Chen, Q Sun. PCBP2 maintains antiviral signaling homeostasis by regulating cGAS enzymatic activity via antagonizing its condensation. Nat Commun 2022; 13(1): 1564
https://doi.org/10.1038/s41467-022-29266-9
46 Y Wang, X Ning, P Gao, S Wu, M Sha, M Lv, X Zhou, J Gao, R Fang, G Meng, X Su, Z Jiang. Inflammasome activation triggers caspase-1-mediated cleavage of cGAS to regulate responses to DNA virus. Infect Immun 2017; 46(3): 393–404
47 Y Zheng, Q Liu, Y Wu, L Ma, Z Zhang, T Liu, S Jin, Y She, YP Li, J Cui. Zika virus elicits inflammation to evade antiviral response by cleaving cGAS via NS1-caspase-1 axis. EMBO J 2018; 37(18): e99347
https://doi.org/10.15252/embj.201899347
48 C Shi, X Yang, Y Hou, X Jin, L Guo, Y Zhou, C Zhang, H Yin. USP15 promotes cGAS activation through deubiquitylation and liquid condensation. Nucleic Acids Res 2022; 50(19): 11093–11108
https://doi.org/10.1093/nar/gkac823
49 P Yang, C Mathieu, RM Kolaitis, P Zhang, J Messing, U Yurtsever, Z Yang, J Wu, Y Li, Q Pan, J Yu, EW Martin, T Mittag, HJ Kim, JP Taylor. G3BP1 is a tunable switch that triggers phase separation to assemble stress granules. Cell 2020; 181(2): 325–345 e28
https://doi.org/10.1016/j.cell.2020.03.046
50 -Boixet J Guillén, A Kopach, AS Holehouse, S Wittmann, M Jahnel, R Schlussler, K Kim, I Trussina, J Wang, D Mateju, I Poser, S Maharana, M Ruer-Gruss, D Richter, X Zhang, YT Chang, J Guck, A Honigmann, J Mahamid, AA Hyman, RV Pappu, S Alberti, TM Franzmann. RNA-induced conformational switching and clustering of G3BP drive stress granule assembly by condensation. Cell 2020; 181(2): 346–361 e17
https://doi.org/10.1016/j.cell.2020.03.049
51 ZS Liu, H Cai, W Xue, M Wang, T Xia, WJ Li, JQ Xing, M Zhao, YJ Huang, S Chen, SM Wu, X Wang, X Liu, X Pang, ZY Zhang, T Li, J Dai, F Dong, Q Xia, AL Li, T Zhou, ZG Liu, XM Zhang, T Li. G3BP1 promotes DNA binding and activation of cGAS. Nat Immunol 2019; 20(1): 18–28
https://doi.org/10.1038/s41590-018-0262-4
52 M Zhao, T Xia, JQ Xing, LH Yin, XW Li, J Pan, JY Liu, LM Sun, M Wang, T Li, J Mao, QY Han, W Xue, H Cai, K Wang, X Xu, T Li, K He, N Wang, AL Li, T Zhou, XM Zhang, WH Li, T Li. The stress granule protein G3BP1 promotes pre-condensation of cGAS to allow rapid responses to DNA. EMBO Rep 2022; 23(1): e53166
https://doi.org/10.15252/embr.202153166
53 S Hu, H Sun, L Yin, J Li, S Mei, F Xu, C Wu, X Liu, F Zhao, D Zhang, Y Huang, L Ren, S Cen, J Wang, C Liang, F Guo. PKR-dependent cytosolic cGAS foci are necessary for intracellular DNA sensing. Sci Signal 2019; 12(609): eaav7934
https://doi.org/10.1126/scisignal.aav7934
54 X Lahaye, M Gentili, A Silvin, C Conrad, L Picard, M Jouve, E Zueva, M Maurin, F Nadalin, GJ Knott, B Zhao, F Du, M Rio, J Amiel, AH Fox, P Li, L Etienne, CS Bond, L Colleaux, N Manel. NONO detects the nuclear HIV capsid to promote cGAS-mediated innate immune activation. Cell 2018; 175(2): 488–501 e22
https://doi.org/10.1016/j.cell.2018.08.062
55 SM Yoh, M Schneider, J Seifried, S Soonthornvacharin, RE Akleh, KC Olivieri, PD De Jesus, C Ruan, E de Castro, PA Ruiz, D Germanaud, V des Portes, A Garcia-Sastre, R Konig, SK Chanda. PQBP1 is a proximal sensor of the cGAS-dependent innate response to HIV-1. Cell 2015; 161(6): 1293–1305
https://doi.org/10.1016/j.cell.2015.04.050
56 MH Orzalli, NM Broekema, BA Diner, DC Hancks, NC Elde, IM Cristea, DM Knipe. cGAS-mediated stabilization of IFI16 promotes innate signaling during herpes simplex virus infection. Proc Natl Acad Sci USA 2015; 112(14): E1773–E1781
https://doi.org/10.1073/pnas.1424637112
57 JF Almine, CA O’Hare, G Dunphy, IR Haga, RJ Naik, A Atrih, DJ Connolly, J Taylor, IR Kelsall, AG Bowie, PM Beard, L Unterholzner. IFI16 and cGAS cooperate in the activation of STING during DNA sensing in human keratinocytes. Nat Commun 2017; 8(1): 14392
https://doi.org/10.1038/ncomms14392
58 KL Jønsson, A Laustsen, C Krapp, KA Skipper, K Thavachelvam, D Hotter, JH Egedal, M Kjolby, P Mohammadi, T Prabakaran, LK Sørensen, C Sun, SB Jensen, CK Holm, RJ Lebbink, M Johannsen, M Nyegaard, JG Mikkelsen, F Kirchhoff, SR Paludan, MR Jakobsen. IFI16 is required for DNA sensing in human macrophages by promoting production and function of cGAMP. Nat Commun 2017; 8(1): 14391
https://doi.org/10.1038/ncomms14391
59 H Lian, J Wei, R Zang, W Ye, Q Yang, XN Zhang, YD Chen, YZ Fu, MM Hu, CQ Lei, WW Luo, S Li, HB Shu. ZCCHC3 is a co-sensor of cGAS for dsDNA recognition in innate immune response. Nat Commun 2018; 9(1): 3349
https://doi.org/10.1038/s41467-018-05559-w
60 S Chen, M Rong, Y Lv, D Zhu, Y Xiang. Regulation of cGAS activity by RNA-modulated phase separation. EMBO Rep 2023; 24(2): e51800
https://doi.org/10.15252/embr.202051800
61 MR Firpo, BC Mounce. Diverse functions of polyamines in virus infection. Biomolecules 2020; 10(4): 628
https://doi.org/10.3390/biom10040628
62 BN Ames, DT Dubin. The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid. J Biol Chem 1960; 235(3): 769–775
https://doi.org/10.1016/S0021-9258(19)67936-6
63 W Gibson, B Roizman. Compartmentalization of spermine and spermidine in the herpes simplex virion. Proc Natl Acad Sci USA 1971; 68(11): 2818–2821
https://doi.org/10.1073/pnas.68.11.2818
64 SL Huang, G Felsenfeld. Solubility of complexes of polynucleotides with spermine. Nature 1960; 188(4747): 301–302
https://doi.org/10.1038/188301a0
65 I Flink, DE Pettijohn. Polyamines stabilise DNA folds. Nature 1975; 253(5486): 62–63
https://doi.org/10.1038/253062a0
66 J Pelta, F Livolant, JL Sikorav. DNA aggregation induced by polyamines and cobalthexamine. J Biol Chem 1996; 271(10): 5656–5662
https://doi.org/10.1074/jbc.271.10.5656
67 O Lambert, L Letellier, WM Gelbart, JL Rigaud. DNA delivery by phage as a strategy for encapsulating toroidal condensates of arbitrary size into liposomes. Proc Natl Acad Sci USA 2000; 97(13): 7248–7253
https://doi.org/10.1073/pnas.130187297
68 GC Lander, JE Johnson, DC Rau, CS Potter, B Carragher, A Evilevitch. DNA bending-induced phase transition of encapsidated genome in phage λ. Nucleic Acids Res 2013; 41(8): 4518–4524
https://doi.org/10.1093/nar/gkt137
69 WH Roos, IL Ivanovska, A Evilevitch, GJ Wuite. Viral capsids: mechanical characteristics, genome packaging and delivery mechanisms. Cell Mol Life Sci 2007; 64(12): 1484–1497
https://doi.org/10.1007/s00018-007-6451-1
70 L Wang, S Li, K Wang, N Wang, Q Liu, Z Sun, L Wang, L Wang, Q Liu, C Song, Q Yang. Spermine enhances antiviral and anticancer responses by stabilizing DNA binding with the DNA sensor cGAS. Immunity 2023; 56(2): 272–288 e7
https://doi.org/10.1016/j.immuni.2023.01.001
71 L Wang, Q Liu, N Wang, S Li, W Bian, Z Sun, L Wang, L Wang, C Liu, C Song, Q Liu, Q Yang. Oleic acid dissolves cGAS-DNA phase separation to inhibit immune surveillance. Adv Sci (Weinh) 2023; 10(14): 2206820
https://doi.org/10.1002/advs.202206820
72 JJ Wu, W Li, Y Shao, D Avey, B Fu, J Gillen, T Hand, S Ma, X Liu, W Miley, A Konrad, F Neipel, M Stürzl, D Whitby, H Li, F Zhu. Inhibition of cGAS DNA sensing by a herpesvirus virion protein. Cell Host Microbe 2015; 18(3): 333–344
https://doi.org/10.1016/j.chom.2015.07.015
73 J Huang, H You, C Su, Y Li, S Chen, C Zheng. Herpes simplex virus 1 tegument protein VP22 abrogates cGAS/STING-mediated antiviral innate immunity. J Virol 2018; 92(15): e00841–18
https://doi.org/10.1128/JVI.00841-18
74 J Hertzog, W Zhou, G Fowler, RE Rigby, A Bridgeman, HT Blest, C Cursi, L Chauveau, T Davenne, BE Warner, PR Kinchington, PJ Kranzusch, J Rehwinkel. Varicella-Zoster virus ORF9 is an antagonist of the DNA sensor cGAS. EMBO J 2022; 41(14): e109217
https://doi.org/10.15252/embj.2021109217
75 G Xu, C Liu, S Zhou, Q Li, Y Feng, P Sun, H Feng, Y Gao, J Zhu, X Luo, Q Zhan, S Liu, S Zhu, H Deng, D Li, P Gao. Viral tegument proteins restrict cGAS-DNA phase separation to mediate immune evasion. Mol Cell 2021; 81(13): 2823–2837 e9
https://doi.org/10.1016/j.molcel.2021.05.002
76 D Bhowmik, M Du, Y Tian, S Ma, J Wu, Z Chen, Q Yin, F Zhu. Cooperative DNA binding mediated by KicGAS/ORF52 oligomerization allows inhibition of DNA-induced phase separation and activation of cGAS. Nucleic Acids Res 2021; 49(16): 9389–9403
https://doi.org/10.1093/nar/gkab689
77 JD Domizio, MF Gulen, F Saidoune, VV Thacker, A Yatim, K Sharma, T Nass, E Guenova, M Schaller, C Conrad, C Goepfert, L de Leval, CV Garnier, S Berezowska, A Dubois, M Gilliet, A Ablasser. The cGAS-STING pathway drives type I IFN immunopathology in COVID-19. Nature 2022; 603(7899): 145–151
https://doi.org/10.1038/s41586-022-04421-w
78 S Cai, C Zhang, Z Zhuang, S Zhang, L Ma, S Yang, T Zhou, Z Wang, W Xie, S Jin, J Zhao, X Guan, J Wu, J Cui, Y Wu. Phase-separated nucleocapsid protein of SARS-CoV-2 suppresses cGAS-DNA recognition by disrupting cGAS-G3BP1 complex. Signal Transduct Target Ther 2023; 8(1): 170
https://doi.org/10.1038/s41392-023-01420-9
79 Y Zhang, Z Ma, Y Wang, J Boyer, G Ni, L Cheng, S Su, Z Zhang, Z Zhu, J Qian, L Su, Q Zhang, B Damania, P Liu. Streptavidin promotes DNA binding and activation of cGAS to enhance innate immunity. iScience 2020; 23(9): 101463
https://doi.org/10.1016/j.isci.2020.101463
80 S Liu, B Yang, Y Hou, K Cui, X Yang, X Li, L Chen, S Liu, Z Zhang, Y Jia, Y Xie, Y Xue, X Li, B Yan, C Wu, W Deng, J Qi, D Lu, GF Gao, P Wang, G Shang. The mechanism of STING autoinhibition and activation. Mol Cell 2023; 83(9): 1502–1518. e10
https://doi.org/10.1016/j.molcel.2023.03.029
81 G Shang, C Zhang, ZJ Chen, XC Bai, X Zhang. Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP-AMP. Nature 2019; 567(7748): 389–393
https://doi.org/10.1038/s41586-019-0998-5
82 C Barlowe, A Helenius. Cargo capture and bulk flow in the early secretory pathway. Annu Rev Cell Dev Biol 2016; 32(1): 197–222
https://doi.org/10.1146/annurev-cellbio-111315-125016
83 C Zhang, G Shang, X Gui, X Zhang, XC Bai, ZJ Chen. Structural basis of STING binding with and phosphorylation by TBK1. Nature 2019; 567(7748): 394–398
https://doi.org/10.1038/s41586-019-1000-2
84 S Liu, X Cai, J Wu, Q Cong, X Chen, T Li, F Du, J Ren, YT Wu, NV Grishin, ZJ Chen. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 2015; 347(6227): aaa2630
https://doi.org/10.1126/science.aaa2630
85 B Zhao, C Shu, X Gao, B Sankaran, F Du, CL Shelton, AB Herr, JY Ji, P Li. Structural basis for concerted recruitment and activation of IRF-3 by innate immune adaptor proteins. Proc Natl Acad Sci USA 2016; 113(24): E3403–E3412
https://doi.org/10.1073/pnas.1603269113
86 X Yu, L Zhang, J Shen, Y Zhai, Q Jiang, M Yi, X Deng, Z Ruan, R Fang, Z Chen, X Ning, Z Jiang. The STING phase-separator suppresses innate immune signalling. Nat Cell Biol 2021; 23(4): 330–340
https://doi.org/10.1038/s41556-021-00659-0
87 C Wang, Y Guan, M Lv, R Zhang, Z Guo, X Wei, X Du, J Yang, T Li, Y Wan, X Su, X Huang, Z Jiang. Manganese increases the sensitivity of the cGAS-STING pathway for double-stranded DNA and is required for the host defense against DNA viruses. Immunity 2018; 48(4): 675–687.e7
https://doi.org/10.1016/j.immuni.2018.03.017
88 R Lin, Y Mamane, J Hiscott. Structural and functional analysis of interferon regulatory factor 3: localization of the transactivation and autoinhibitory domains. Mol Cell Biol 1999; 19(4): 2465–2474
https://doi.org/10.1128/MCB.19.4.2465
89 BY Qin, C Liu, SS Lam, H Srinath, R Delston, JJ Correia, R Derynck, K Lin. Crystal structure of IRF-3 reveals mechanism of autoinhibition and virus-induced phosphoactivation. Nat Struct Mol Biol 2003; 10(11): 913–921
https://doi.org/10.1038/nsb1002
90 K Takahasi, NN Suzuki, M Horiuchi, M Mori, W Suhara, Y Okabe, Y Fukuhara, H Terasawa, S Akira, T Fujita, F Inagaki. X-ray crystal structure of IRF-3 and its functional implications. Nat Struct Mol Biol 2003; 10(11): 922–927
https://doi.org/10.1038/nsb1001
91 Z Qin, X Fang, W Sun, Z Ma, T Dai, S Wang, Z Zong, H Huang, H Ru, H Lu, B Yang, S Lin, F Zhou, L Zhang. Deactylation by SIRT1 enables liquid-liquid phase separation of IRF3/IRF7 in innate antiviral immunity. Nat Immunol 2022; 23(8): 1193–1207
https://doi.org/10.1038/s41590-022-01269-0
92 C Xu, L Wang, P Fozouni, G Evjen, V Chandra, J Jiang, C Lu, M Nicastri, C Bretz, JD Winkler, R Amaravadi, BA Garcia, PD Adams, M Ott, W Tong, T Johansen, Z Dou, SL Berger. SIRT1 is downregulated by autophagy in senescence and ageing. Nat Cell Biol 2020; 22(10): 1170–1179
https://doi.org/10.1038/s41556-020-00579-5
93 PS Pardo, AM Boriek. SIRT1 regulation in ageing and obesity. Mech Ageing Dev 2020; 188: 111249
https://doi.org/10.1016/j.mad.2020.111249
94 L Piroth, J Cottenet, AS Mariet, P Bonniaud, M Blot, P Tubert-Bitter, C Quantin. Comparison of the characteristics, morbidity, and mortality of COVID-19 and seasonal influenza: a nationwide, population-based retrospective cohort study. Lancet Respir Med 2021; 9(3): 251–259
https://doi.org/10.1016/S2213-2600(20)30527-0
95 JM Bartleson, D Radenkovic, AJ Covarrubias, D Furman, DA Winer, E Verdin. SARS-CoV-2, COVID-19 and the ageing immune system. Nat Aging 2021; 1(9): 769–782
https://doi.org/10.1038/s43587-021-00114-7
96 Y Liu, AA Jesus, B Marrero, D Yang, SE Ramsey, G A M Sanchez, K Tenbrock, H Wittkowski, OY Jones, HS Kuehn, CR Lee, MA DiMattia, EW Cowen, B Gonzalez, I Palmer, JJ DiGiovanna, A Biancotto, H Kim, WL Tsai, AM Trier, Y Huang, DL Stone, S Hill, HJ Kim, C St Hilaire, S Gurprasad, N Plass, D Chapelle, I Horkayne-Szakaly, D Foell, A Barysenka, F Candotti, SM Holland, JD Hughes, H Mehmet, AC Issekutz, M Raffeld, J McElwee, JR Fontana, CP Minniti, S Moir, DL Kastner, M Gadina, AC Steven, PT Wingfield, SR Brooks, SD Rosenzweig, TA Fleisher, Z Deng, M Boehm, AS Paller, R Goldbach-Mansky. Activated STING in a vascular and pulmonary syndrome. N Engl J Med 2014; 371(6): 507–518
https://doi.org/10.1056/NEJMoa1312625
97 N König, C Fiehn, C Wolf, M Schuster, Costa E Cura, V Tüngler, HA Alvarez, O Chara, K Engel, R Goldbach-Mansky, C Günther, MA Lee-Kirsch. Familial chilblain lupus due to a gain-of-function mutation in STING. Ann Rheum Dis 2017; 76(2): 468–472
https://doi.org/10.1136/annrheumdis-2016-209841
98 N Jeremiah, B Neven, M Gentili, I Callebaut, S Maschalidi, MC Stolzenberg, N Goudin, ML Frémond, P Nitschke, TJ Molina, S Blanche, C Picard, GI Rice, YJ Crow, N Manel, A Fischer, B Bader-Meunier, F Rieux-Laucat. Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations. J Clin Invest 2014; 124(12): 5516–5520
https://doi.org/10.1172/JCI79100
99 F Meng, Z Yu, D Zhang, S Chen, H Guan, R Zhou, Q Wu, Q Zhang, S Liu, MK Venkat Ramani, B Yang, XQ Ba, J Zhang, J Huang, X Bai, J Qin, XH Feng, S Ouyang, YJ Zhang, T Liang, P Xu. Induced phase separation of mutant NF2 imprisons the cGAS-STING machinery to abrogate antitumor immunity. Mol Cell 2021; 81(20): 4147–4164 e7
https://doi.org/10.1016/j.molcel.2021.07.040
100 AM Petrilli, C Fernández-Valle. Role of Merlin/NF2 inactivation in tumor biology. Oncogene 2016; 35(5): 537–548
https://doi.org/10.1038/onc.2015.125
101 J Cooper, FG Giancotti. Molecular insights into NF2/Merlin tumor suppressor function. FEBS Lett 2014; 588(16): 2743–2752
https://doi.org/10.1016/j.febslet.2014.04.001
102 T Wileman. Aggresomes and pericentriolar sites of virus assembly: cellular defense or viral design?. Annu Rev Microbiol 2007; 61(1): 149–167
https://doi.org/10.1146/annurev.micro.57.030502.090836
103 V Rincheval, M Lelek, E Gault, C Bouillier, D Sitterlin, S Blouquit-Laye, M Galloux, C Zimmer, JF Eleouet, MA Rameix-Welti. Functional organization of cytoplasmic inclusion bodies in cells infected by respiratory syncytial virus. Nat Commun 2017; 8(1): 563
https://doi.org/10.1038/s41467-017-00655-9
104 J Nikolic, Bars R Le, Z Lama, N Scrima, C Lagaudrière-Gesbert, Y Gaudin, D Blondel. Negri bodies are viral factories with properties of liquid organelles. Nat Commun 2017; 8(1): 58
https://doi.org/10.1038/s41467-017-00102-9
105 S Guseva, S Milles, MR Jensen, N Salvi, JP Kleman, D Maurin, RWH Ruigrok, M Blackledge. Measles virus nucleo- and phosphoproteins form liquid-like phase-separated compartments that promote nucleocapsid assembly. Sci Adv 2020; 6(14): eaaz7095
https://doi.org/10.1126/sciadv.aaz7095
106 B Bailly, CA Richard, G Sharma, L Wang, L Johansen, J Cao, V Pendharkar, DC Sharma, M Galloux, Y Wang, R Cui, G Zou, P Guillon, Itzstein M von, JF Eléouët, R Altmeyer. Targeting human respiratory syncytial virus transcription anti-termination factor M2–1 to inhibit in vivo viral replication. Sci Rep 2016; 6(1): 25806
https://doi.org/10.1038/srep25806
107 J Risso-Ballester, M Galloux, J Cao, R Le Goffic, F Hontonnou, A Jobart-Malfait, A Desquesnes, SM Sake, S Haid, M Du, X Zhang, H Zhang, Z Wang, V Rincheval, Y Zhang, T Pietschmann, JF Eleouet, MA Rameix-Welti, R Altmeyer. A condensate-hardening drug blocks RSV replication in vivo. Nature 2021; 595(7868): 596–599
https://doi.org/10.1038/s41586-021-03703-z
108 S Wang, T Dai, Z Qin, T Pan, F Chu, L Lou, L Zhang, B Yang, H Huang, H Lu, F Zhou. Targeting liquid-liquid phase separation of SARS-CoV-2 nucleocapsid protein promotes innate antiviral immunity by elevating MAVS activity. Nat Cell Biol 2021; 23(7): 718–732
https://doi.org/10.1038/s41556-021-00710-0
109 JH Shim, ZY Su, JI Chae, DJ Kim, F Zhu, WY Ma, AM Bode, CS Yang, Z Dong. Epigallocatechin gallate suppresses lung cancer cell growth through Ras-GTPase-activating protein SH3 domain-binding protein 1. Cancer Prev Res (Phila) 2010; 3(5): 670–679
https://doi.org/10.1158/1940-6207.CAPR-09-0185
110 M Jang, L Cai, GO Udeani, KV Slowing, CF Thomas, CW Beecher, HH Fong, NR Farnsworth, AD Kinghorn, RG Mehta, RC Moon, JM Pezzuto. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 1997; 275(5297): 218–220
https://doi.org/10.1126/science.275.5297.218
111 JC Milne, PD Lambert, S Schenk, DP Carney, JJ Smith, DJ Gagne, L Jin, O Boss, RB Perni, CB Vu, JE Bemis, R Xie, JS Disch, PY Ng, JJ Nunes, AV Lynch, H Yang, H Galonek, K Israelian, W Choy, A Iffland, S Lavu, O Medvedik, DA Sinclair, JM Olefsky, MR Jirousek, PJ Elliott, CH Westphal. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 2007; 450(7170): 712–716
https://doi.org/10.1038/nature06261
112 M Luo, H Wang, Z Wang, H Cai, Z Lu, Y Li, M Du, G Huang, C Wang, X Chen, MR Porembka, J Lea, AE Frankel, YX Fu, ZJ Chen, J Gao. A STING-activating nanovaccine for cancer immunotherapy. Nat Nanotechnol 2017; 12(7): 648–654
https://doi.org/10.1038/nnano.2017.52
113 S Li, M Luo, Z Wang, Q Feng, J Wilhelm, X Wang, W Li, J Wang, A Cholka, YX Fu, BD Sumer, H Yu, J Gao. Prolonged activation of innate immune pathways by a polyvalent STING agonist. Nat Biomed Eng 2021; 5(5): 455–466
https://doi.org/10.1038/s41551-020-00675-9
114 M Hofweber, D Dormann. Friend or foe—post-translational modifications as regulators of phase separation and RNP granule dynamics. J Biol Chem 2019; 294(18): 7137–7150
https://doi.org/10.1074/jbc.TM118.001189
115 J Li, M Zhang, W Ma, B Yang, H Lu, F Zhou, L Zhang. Post-translational modifications in liquid-liquid phase separation: a comprehensive review. Mol Biomed 2022; 3(1): 13
https://doi.org/10.1186/s43556-022-00075-2
[1] You Wang, Sihan Lin, Jiayue Wu, Meng Jiang, Jianhua Lin, Yu Zhang, Huihua Ding, Haibo Zhou, Nan Shen, Wen Di. Control of lupus activity during pregnancy via the engagement of IgG sialylation: novel crosstalk between IgG sialylation and pDC functions[J]. Front. Med., 2023, 17(3): 549-561.
[2] Hui Wang, Yang Zhang, Zhujun Shen, Ligang Fang, Zhenyu Liu, Shuyang Zhang. Prognostic value of fasting glucose on the risk of heart failure and left ventricular systolic dysfunction in non-diabetic patients with ST-segment elevation myocardial infarction[J]. Front. Med., 2021, 15(1): 70-78.
[3] Siyi Li, Peilin Lv, Min He, Wenjing Zhang, Jieke Liu, Yao Gong, Ting Wang, Qiyong Gong, Yulin Ji, Su Lui. Cerebral regional and network characteristics in asthma patients: a resting-state fMRI study[J]. Front. Med., 2020, 14(6): 792-801.
[4] Jie Pan, Zhengchao Shi, Dingsai Lin, Ningmin Yang, Fei Meng, Lang Lin, Zhencheng Jin, Qingjie Zhou, Jiansheng Wu, Jianzhong Zhang, Youming Li. Is tailored therapy based on antibiotic susceptibility effective ? A multicenter, open-label, randomized trial[J]. Front. Med., 2020, 14(1): 43-50.
[5] Xiaodong Mo, Xiaohui Zhang, Lanping Xu, Yu Wang, Chenhua Yan, Huan Chen, Yuhong Chen, Wei Han, Fengrong Wang, Jingzhi Wang, Kaiyan Liu, Xiaojun Huang. Minimal residual disease-directed immunotherapy for high-risk myelodysplastic syndrome after allogeneic hematopoietic stem cell transplantation[J]. Front. Med., 2019, 13(3): 354-364.
[6] Xiaodong Mo, Xiaohui Zhang, Lanping Xu, Yu Wang, Chenhua Yan, Huan Chen, Yuhong Chen, Wei Han, Fengrong Wang, Jingzhi Wang, Kaiyan Liu, Xiaojun Huang. Interferon-α salvage treatment is effective for patients with acute leukemia/myelodysplastic syndrome with unsatisfactory response to minimal residual disease-directed donor lymphocyte infusion after allogeneic hematopoietic stem cell transplantation[J]. Front. Med., 2019, 13(2): 238-249.
[7] Hengjing Li, Henan Xin, Shukun Qian, Xiangwei Li, Haoran Zhang, Mufei Li, Boxuan Feng, Qi Jin, Lei Gao. Testing of tuberculosis infection among Chinese adolescents born after terminating the Bacillus Calmette--Guérin booster vaccination: subgroup analysis of a population-based cross-sectional study[J]. Front. Med., 2017, 11(4): 528-535.
[8] Jie Zheng,Yuzhen Gao,Yuejuan Jing,Xiaoshuang Zhou,Yuanyuan Shi,Yanhong Li,Lihua Wang,Ruiying Wang,Maolian Li,Chuanshi Xiao,Yafeng Li,Rongshan Li. Gender differences in the relationship between plasma lipids and fasting plasma glucose in non-diabetic urban Chinese population: a cross-section study[J]. Front. Med., 2014, 8(4): 477-483.
[9] FAN Xiaodong, HAN Ruifa. Study of recombinant human IFN-α-2b bacilli Calmette–Guerin activated killer cells and against bladder cancer cell in vitro[J]. Front. Med., 2007, 1(4): 377-380.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed