Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2023, Vol. 17 Issue (5) : 823-854    https://doi.org/10.1007/s11684-023-1027-5
REVIEW
Discovery of small molecule degraders for modulating cell cycle
Liguo Wang1, Zhouli Yang1, Guangchen Li1, Yongbo Liu1, Chao Ai2(), Yu Rao1()
1. MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
2. Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
 Download: PDF(8154 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The cell cycle is a complex process that involves DNA replication, protein expression, and cell division. Dysregulation of the cell cycle is associated with various diseases. Cyclin-dependent kinases (CDKs) and their corresponding cyclins are major proteins that regulate the cell cycle. In contrast to inhibition, a new approach called proteolysis-targeting chimeras (PROTACs) and molecular glues can eliminate both enzymatic and scaffold functions of CDKs and cyclins, achieving targeted degradation. The field of PROTACs and molecular glues has developed rapidly in recent years. In this article, we aim to summarize the latest developments of CDKs and cyclin protein degraders. The selectivity, application, validation and the current state of each CDK degrader will be overviewed. Additionally, possible methods are discussed for the development of degraders for CDK members that still lack them. Overall, this article provides a comprehensive summary of the latest advancements in CDK and cyclin protein degraders, which will be helpful for researchers working on this topic.

Keywords PROTAC      molecular glue      degrader      cell cycle      CDK      cyclin     
Corresponding Author(s): Chao Ai,Yu Rao   
Just Accepted Date: 28 September 2023   Online First Date: 07 November 2023    Issue Date: 07 December 2023
 Cite this article:   
Liguo Wang,Zhouli Yang,Guangchen Li, et al. Discovery of small molecule degraders for modulating cell cycle[J]. Front. Med., 2023, 17(5): 823-854.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-023-1027-5
https://academic.hep.com.cn/fmd/EN/Y2023/V17/I5/823
Fig.1  Typical functions of CDKs. CDKs involved in cell cycle and transcription.
FunctionsCDKsCyclinsMain functionsAchieved degradation
Cell cycleCDK1A1, A2, B1, B2, D1, D3, E1, F, KTrigger S–G2 and G2–M transitions and G2 progressionY
CDK2A1, A2, B1, B2, B3, D1, D2, D3, E1, E2, G1, H, J, KTrigger G1–S transition; control G1–S and G2–M transitionsY
CDK4/6A2, D1, D2, D3, E1, T1, T2Mediate the monophosphorylation of Rb in G1; promotes G1–S transitionY
TranscriptionCDK7A2, B1, B2, E1, HMediate the activation of CDK1/2/4/6/11 by catalyzing the phosphorylation of a threonine residue within the T-loop or activation segmentY
CDK8/19C, HRegulation of RNA polymerase II transcription; phosphorylation of NOTCH leads to its degradationY
CDK9H, K, T1, T2A, T2BRegulation of RNA polymerase II transcription; genome integrity maintenanceY
CDK12/13KRegulation of RNA polymerase II and transcription elongationY
Special rolesCDK3A2, C, E1, E2Function is poorly defined: may trigger reentry from G0–G1 and through phosphorylation of Rb; may trigger G1–S transitions by catalyzing the phosphorylation of E2F1/2/3N
CDK5A2, B1, D2, G1, E1, I1, I2Function is poorly defined: may produce neuronal cell cycle arrest and differentiation and participates in many aspects of neuronal functionY
CDK10L2, MTraversing start point and phosphorylation of transcription factor ETS2 leading to its degradationY
CDK11L1, L2Regulation of apoptosis cytokinesisY
CDK14D3, YRegulate cell cycle and neuronal differentiationY
CDK15YAntiapoptoticN
CDK16YRegulation of neuron differentiation and exocytosisY
CDK17/18K, YPlay a role in terminally differentiated neuronsY
CDK20HRegulation of neural developmentN
Tab.1  Typical functions and corresponding cyclins of CDKs
Fig.2  The structure of PROTACs and molecule glue. The mechanism of PROTACs (A) and molecular glue (C). (B) Chemical structures of representative E3 ligands.
Compound No. Original name Validation Claimed application Claimed major target(s) Structure Reference
1 A9 In vitro RescueConcentration-dependentCell inhibition Tumor inhibition CDK2 [ 31]
2 F9 In vitro Concentration-dependentCell inhibition Tumor inhibition CDK9 [ 31]
3 F3 In vitro RescueConcentration-dependentCell inhibitionCell-cycle Tumor inhibition CDK2CDK9 [ 31]
4 TMX-1160 In vitro Concentration-dependent CDK2CDK4CDK5CDK6 [ 32]
5 TMX-2172 In vitro RescueConcentration-dependentCell inhibitionProteomics Tumor inhibition CDK2CDK5 [ 32]
6 Compound 3 In vitro and in vivo Concentration-dependentRescueCell inhibitionCell-cyclePKXenograftIHC Orally availableTumor inhibition CDK2CDK4CDK6 [ 33]
7 Compound 11 Prodrug of 6 [ 33]
8 CPS2 In vitro Time-courseConcentration-dependentRescueCell inhibitionProteomics AML differentiation CDK2 [ 34]
9 PROTAC-8 In vitro and in vivo Concentration-dependent Hearing loss CDK2 [ 35]
10 pal-pom In vitro Concentration-dependentRescueTime-course Tumor inhibition CDK4CDK6 [ 36]
11 rib-pom In vitro Concentration-dependent Tumor inhibition CDK4CDK6 [ 36]
12 BSJ-02-162 In vitro RescueConcentration-dependentCell-cycleCell inhibitionProteomics Tumor inhibition CDK4CDK6IKZF1IKZF3 [ 37]
13 BSJ-01-187 In vitro RescueConcentration-dependent CDK4IKZF1IKZF3 [ 37]
14 YKL-06-102 In vitro RescueConcentration-dependent CDK6IKZF1IKZF3 [ 37]
15 BSJ-03-204 In vitro RescueConcentration-dependentCell-cycleCell inhibitionProteomics Tumor inhibition CDK4CDK6 [ 37]
16 BSJ-03-123 In vitro RescueConcentration-dependentProteomics CDK6 [ 37]
17 BSJ-04-132 In vitro RescueConcentration-dependentProteomics CDK4 [ 37]
18 CP-10 In vitro RescueConcentration-dependentProteomics Tumor inhibition CDK6 [ 38]
19 Degrader 6 In vitro Concentration-dependentRescueTime-course CDK6 [ 39]
20 PROTAC-10-CRBN In vitro Concentration-dependentRescue CDK4CDK6 [ 40]
21 PROTAC-4-VHL In vitro Concentration-dependentRescue CDK4CDK6 [ 40]
22 PROTAC-7-IAP In vitro Concentration-dependentRescue CDK4CDK6 [ 40]
23 CST651 In vitro Concentration-dependentTime-courseCell inhibitionRescueWashoutPK Tumor inhibition CDK4CDK6 [ 41]
24 35 In vitro Concentration-dependentCell inhibition Tumor inhibition CDK4CDK6 [ 41]
25 YX-2-107 In vitro and in vivo Concentration-dependentXenograftProteomicsCell cyclePK Tumor inhibition CDK6 [ 42]
26 A4 In vitro RescueTime-courseConcentration-dependentCell inhibitionCell cycle Tumor inhibition CDK4CDK6 [ 43]
27 C6 In vitro Cell inhibition Tumor inhibition CDK4CDK6 [ 43]
28 C7 In vitro Cell inhibition Tumor inhibition CDK4CDK6 [ 43]
29 MS28 In vitro Concentration-dependentTime-courseRescueKinomeClonogenicity inhibitionProteomics Tumor inhibition Cyclin D1CDK6 [ 44]
30 MS140 In vitro Concentration-dependent CDK6 [ 44]
31 ALV-07-082-03 In vitro RescueConcentration-dependentProteomicsCell cycle IL-2 derepression CDK4/6, Helios [ 45]
32 JH-XI-10-02 In vitro Time-courseConcentration-dependent CDK8 [ 46]
33 PROTAC-3-CDK9 In vitro Concentration-dependent CDK9 [ 47]
34 PROTAC-2-CDK9 In vitro Concentration-dependentProteomicsCell inhibitionRescue Tumor inhibition CDK9 [ 48]
35 THAL-SNS-032 In vitro Time-courseConcentration-dependentRescueCell inhibitionProteomicsRNA-seqChIP-seqKinome Tumor inhibition CDK9 [ 49]
36 11c In vitro Concentration-dependentRescueCell inhibition Tumor inhibition CDK9 [ 50]
37 B03 In vitro and in vivo Time-courseKinomeRescueConcentration-dependentProteomicsPK Tumor inhibition CDK9 [ 51]
38 Degrader 45 In vitro and in vivo Time-courseConcentration-dependentRescueCell inhibitionRNA-seqPKIHCXenograft Tumor inhibition CDK9 [ 52]
39 CD-5 In vitro ProteomicsConcentration-dependentTime-courseRescue CDK9 [ 53]
40 LL-K9-3 In vitro Concentration-dependentProteomicsTime-courseRescueCell inhibitionRNA-seq Tumor inhibition CDK9Cyclin T1 [ 54]
41 15e In vitro Concentration-dependentTime-courseCell inhibitionProteomics CDK9 [ 55]
42 955 In vitro RescueProteomicsConcentration-dependentRNAseq Tumor inhibition CDK9CDK10And others [ 56]
43 BSJ-4-116 In vitro Time-courseProteomicsRescue Tumor inhibition CDK12 [ 57]
44 PP-C8 In vitro RescueConcentration-dependentProteomicsCell inhibitionRNA-seq Tumor inhibition CDK12Cyclin K [ 58]
45 7f In vitro and in vivo Concentration-dependentProteomicsPK Tumor inhibition CDK12CDK13 [ 59]
46 TL12-186 In vitro Proteomics Multi-target [ 60]
47 (R)-CR8 In vitro RescueTime-courseConcentration-dependentProteomicsCrystal structureCell inhibition Cyclin K [ 61]
48 HQ461 In vitro ProteomicsTime-courseConcentration-dependentRescue Tumor inhibition CDK12Cyclin K [ 62]
49 dCeMM1 In vitro ProteomicsRescueCell inhibitionTime-courseRNA-seq RPM39 [ 63]
50 dCeMM2 In vitro ProteomicsTime-courseRescueCell inhibitionCell-cycleRNA-seq Cyclin K [ 63]
51 dCeMM3 In vitro ProteomicsTime-courseCell inhibitionCell-cycleRNA-seq Cyclin K [ 63]
52 dCeMM4 In vitro ProteomicsTime-courseCell inhibitionCell-cycleRNA-seq Cyclin K [ 63]
Tab.2  Information of representative degraders
Fig.3  Structure of CDK2 degraders.
Fig.4  Structure of CDK4/6 degraders.
Fig.5  Structure of CDK8 degraders.
Fig.6  Structure of CDK9 degraders.
Fig.7  Structure of CDK12/13 degraders.
Fig.8  Structure of special degraders.
Fig.9  Structure of cyclin K degraders.
Fig.10  Structure of DDB1-CR8-CDK12-cyclin K complex. Cyclin K (green, left), CDK12 (orange, middle) and DDB1 (red, right). PDB code: 6TD3.
Target(s)Proteomics?TypeCompound No. and references
CDK2YesPROTACs8 [34]
NoPROTACs1 [31], 9 [35]
CDK4YesPROTACs17 [37]
NoPROTACs13 [37]
CDK6YesPROTACs16 [37], 18 [38], 25 [42]
NoPROTACs14 [37], 19 [39], 30 [44]
CDK8NoPROTACs32 [46]
CDK9YesPROTACs34 [48], 35 [49], 37 [51], 39 [53], 41 [55]
NoPROTACs2 [31], 33 [47], 36 [50], 38 [52]
CDK12YesPROTACs43 [57]
Cyclin KYesMolecular glue47 [61], 50 [63], 51 [63], 52 [63]
CDK2/9NoPROTACs3 [31]
CDK2/4/5/6NoPROTACs4 [32]
CDK2/5YesPROTACs5 [32]
CDK2/4/6NoPROTACs6 [32]
CDK4/6YesPROTACs12 [37], 15 [37]
NoPROTACs10 [36], 11 [36], 20 [40], 21 [40], 22 [40], 23 [41], 24 [41], 26 [43], 27 [43], 28 [43]
CDK4/6, HeliosYesPROTACs (Helios for MGs)31 [45]
CDK6, cyclin D1YesPROTACs29 [44]
CDK9, cyclin T1YesPROTACs40 [54]
CDK12/13YesPROTACs45 [59]
CDK12, cyclin KYesPROTACs44 [58]
Molecular glue48 [62]
CDK1/7/10/11/14/15/16/17/18/19YesPROTACs46 [60]
CDK9/10YesPROTACs42 [56]
Tab.3  Features of the PROTACs or molecular glue targeting CDKs/cyclins
CharactersCDKs
Exist degraderaCDK2/4/5/6/8/9/10/12/13
Suggested to be degradablebCDK1/7/11/14/15/16/17/18/19
No dataCDK3/20
Tab.4  The development of corresponding CDK degraders
Fig.11  The workflow of the method of AI-aided molecular glue design by Kishan Gurram and colleagues.
Fig.12  The workflow of the method of AI-aided molecular glue design by Yang group.
1 M Malumbres. Cyclin-dependent kinases. Genome Biol 2014; 15(6): 122
https://doi.org/10.1186/gb4184
2 M Malumbres, M Barbacid. Mammalian cyclin-dependent kinases. Trends Biochem Sci 2005; 30(11): 630–641
https://doi.org/10.1016/j.tibs.2005.09.005
3 HK Matthews, C Bertoli, RAM de Bruin. Cell cycle control in cancer. Nat Rev Mol Cell Biol 2022; 23(1): 74–88
https://doi.org/10.1038/s41580-021-00404-3
4 MG Lee, P Nurse. Cell cycle genes of the fission yeast. Sci Prog 1987; 71: 1–14
5 P Russell, P Nurse. Schizosaccharomyces pombe and Saccharomyces cerevisiae: a look at yeasts divided. Cell 1986; 45(6): 781–782
https://doi.org/10.1016/0092-8674(86)90550-7
6 SJ Elledge, MR Spottswood. A new human p34 protein kinase, CDK2, identified by complementation of a cdc28 mutation in Saccharomyces cerevisiae, is a homolog of Xenopus Eg1. EMBO J 1991; 10(9): 2653–2659
https://doi.org/10.1002/j.1460-2075.1991.tb07808.x
7 H Matsushime, ME Ewen, DK Strom, JY Kato, SK Hanks, MF Roussel, CJ Sherr. Identification and properties of an atypical catalytic subunit (p34PSK-J3/cdk4) for mammalian D type G1 cyclins. Cell 1992; 71(2): 323–334
https://doi.org/10.1016/0092-8674(92)90360-O
8 Y Xiong, H Zhang, D Beach. D type cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA. Cell 1992; 71(3): 505–514
https://doi.org/10.1016/0092-8674(92)90518-H
9 C Tarricone, R Dhavan, J Peng, LB Areces, LH Tsai, A Musacchio. Structure and regulation of the CDK5-p25(nck5a) complex. Mol Cell 2001; 8(3): 657–669
https://doi.org/10.1016/S1097-2765(01)00343-4
10 P Łukasik, M Zaluski, I Gutowska. Cyclin-dependent kinases (CDK) and their role in diseases development–review. Int J Mol Sci 2021; 22(6): 2935
https://doi.org/10.3390/ijms22062935
11 SR Whittaker, A Mallinger, P Workman, PA Clarke. Inhibitors of cyclin-dependent kinases as cancer therapeutics. Pharmacol Ther 2017; 173: 83–105
https://doi.org/10.1016/j.pharmthera.2017.02.008
12 S Lim, P Kaldis. Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development 2013; 140(15): 3079–3093
https://doi.org/10.1242/dev.091744
13 MG Filippone, D Gaglio, R Bonfanti, FA Tucci, E Ceccacci, R Pennisi, M Bonanomi, G Jodice, M Tillhon, F Montani, G Bertalot, S Freddi, M Vecchi, A Taglialatela, M Romanenghi, F Romeo, N Bianco, E Munzone, F Sanguedolce, G Vago, G Viale, PP Di Fiore, S Minucci, L Alberghina, M Colleoni, P Veronesi, D Tosoni, S Pece. CDK12 promotes tumorigenesis but induces vulnerability to therapies inhibiting folate one-carbon metabolism in breast cancer. Nat Commun 2022; 13(1): 2642
https://doi.org/10.1038/s41467-022-30375-8
14 MJ Hamilton, M Suri. CDK13-related disorder. Adv Genet 2019; 103: 163–182
https://doi.org/10.1016/bs.adgen.2018.11.001
15 W Liu, Y Zhou, R Liang, Y Zhang. Inhibition of cyclin-dependent kinase 5 activity alleviates diabetes-related cognitive deficits. FASEB J 2019; 33(12): 14506–14515
https://doi.org/10.1096/fj.201901292R
16 SB Shelton, GV Johnson. Cyclin-dependent kinase-5 in neurodegeneration. J Neurochem 2004; 88(6): 1313–1326
https://doi.org/10.1111/j.1471-4159.2003.02328.x
17 Z Xie, S Hou, X Yang, Y Duan, J Han, Q Wang, C Liao. Lessons learned from past cyclin-dependent kinase drug discovery efforts. J Med Chem 2022; 65(9): 6356–6389
https://doi.org/10.1021/acs.jmedchem.1c02190
18 RS Finn, JP Crown, I Lang, K Boer, IM Bondarenko, SO Kulyk, J Ettl, R Patel, T Pinter, M Schmidt, Y Shparyk, AR Thummala, NL Voytko, C Fowst, X Huang, ST Kim, S Randolph, DJ Slamon. The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. Lancet Oncol 2015; 16(1): 25–35
https://doi.org/10.1016/S1470-2045(14)71159-3
19 GN Hortobagyi, SM Stemmer, HA Burris, YS Yap, GS Sonke, S Paluch-Shimon, M Campone, KL Blackwell, F Andre, EP Winer, W Janni, S Verma, P Conte, CL Arteaga, DA Cameron, K Petrakova, LL Hart, C Villanueva, A Chan, E Jakobsen, A Nusch, O Burdaeva, EM Grischke, E Alba, E Wist, N Marschner, AM Favret, D Yardley, T Bachelot, LM Tseng, S Blau, F Xuan, F Souami, M Miller, C Germa, S Hirawat, J O’Shaughnessy. Ribociclib as first-line therapy for HR-positive, advanced breast cancer. N Engl J Med 2016; 375(18): 1738–1748
https://doi.org/10.1056/NEJMoa1609709
20 U Asghar, AK Witkiewicz, NC Turner, ES Knudsen. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat Rev Drug Discov 2015; 14(2): 130–146
https://doi.org/10.1038/nrd4504
21 M Peyressatre, C Prevel, M Pellerano, MC Morris. Targeting cyclin-dependent kinases in human cancers: from small molecules to peptide inhibitors. Cancers (Basel) 2015; 7(1): 179–237
https://doi.org/10.3390/cancers7010179
22 S Tadesse, EC Caldon, W Tilley, S Wang. Cyclin-dependent kinase 2 inhibitors in cancer therapy: an update. J Med Chem 2019; 62(9): 4233–4251
https://doi.org/10.1021/acs.jmedchem.8b01469
23 C Cao, M He, L Wang, Y He, Y Rao. Chemistries of bifunctional PROTAC degraders. Chem Soc Rev 2022; 51(16): 7066–7114
https://doi.org/10.1039/D2CS00220E
24 G Dong, Y Ding, S He, C Sheng. Molecular glues for targeted protein degradation: from serendipity to rational discovery. J Med Chem 2021; 64(15): 10606–10620
https://doi.org/10.1021/acs.jmedchem.1c00895
25 M Békés, DR Langley, CM Crews. PROTAC targeted protein degraders: the past is prologue. Nat Rev Drug Discov 2022; 21(3): 181–200
https://doi.org/10.1038/s41573-021-00371-6
26 X Sun, H Gao, Y Yang, M He, Y Wu, Y Song, Y Tong, Y Rao. PROTACs: great opportunities for academia and industry. Signal Transduct Target Ther 2019; 4(1): 64
https://doi.org/10.1038/s41392-019-0101-6
27 G Weng, X Cai, D Cao, H Du, C Shen, Y Deng, Q He, B Yang, D Li, T Hou. PROTAC-DB 2.0: an updated database of PROTACs. Nucleic Acids Res 2023; 51(D1): D1367–D1372
https://doi.org/10.1093/nar/gkac946
28 X Zhou, R Dong, JY Zhang, X Zheng, LP Sun. PROTAC: a promising technology for cancer treatment. Eur J Med Chem 2020; 203: 112539
https://doi.org/10.1016/j.ejmech.2020.112539
29 Y Wang, X Jiang, F Feng, W Liu, H Sun. Degradation of proteins by PROTACs and other strategies. Acta Pharm Sin B 2020; 10(2): 207–238
https://doi.org/10.1016/j.apsb.2019.08.001
30 S Rana, JR Mallareddy, S Singh, L Boghean, A Natarajan. Inhibitors, PROTACs and molecular glues as diverse therapeutic modalities to target cyclin-dependent kinase. Cancers (Basel) 2021; 13(21): 5506
https://doi.org/10.3390/cancers13215506
31 F Zhou, L Chen, C Cao, J Yu, X Luo, P Zhou, L Zhao, W Du, J Cheng, Y Xie, Y Chen. Development of selective mono or dual PROTAC degrader probe of CDK isoforms. Eur J Med Chem 2020; 187: 111952
https://doi.org/10.1016/j.ejmech.2019.111952
32 M Teng, J Jiang, Z He, NP Kwiatkowski, KA Donovan, CE Mills, C Victor, JM Hatcher, ES Fischer, PK Sorger, T Zhang, NS Gray. Development of CDK2 and CDK5 dual degrader TMX-2172. Angew Chem Int Ed 2020; 59(33): 13865–13870
https://doi.org/10.1002/anie.202004087
33 M Wei, R Zhao, Y Cao, Y Wei, M Li, Z Dong, Y Liu, H Ruan, Y Li, S Cao, Z Tang, Y Zhou, W Song, Y Wang, J Wang, G Yang, C Yang. First orally bioavailable prodrug of proteolysis targeting chimera (PROTAC) degrades cyclin-dependent kinases 2/4/6 in vivo. Eur J Med Chem 2021; 209: 112903
https://doi.org/10.1016/j.ejmech.2020.112903
34 L Wang, X Shao, T Zhong, Y Wu, A Xu, X Sun, H Gao, Y Liu, T Lan, Y Tong, X Tao, W Du, W Wang, Y Chen, T Li, X Meng, H Deng, B Yang, Q He, M Ying, Y Rao. Discovery of a first-in-class CDK2 selective degrader for AML differentiation therapy. Nat Chem Biol 2021; 17(5): 567–575
https://doi.org/10.1038/s41589-021-00742-5
35 S Hati, M Zallocchi, R Hazlitt, Y Li, S Vijayakumar, J Min, Z Rankovic, S Lovas, J Zuo. AZD5438-PROTAC: a selective CDK2 degrader that protects against cisplatin- and noise-induced hearing loss. Eur J Med Chem 2021; 226: 113849
https://doi.org/10.1016/j.ejmech.2021.113849
36 B Zhao, K Burgess. PROTACs suppression of CDK4/6, crucial kinases for cell cycle regulation in cancer. Chem Commun (Camb) 2019; 55(18): 2704–2707
https://doi.org/10.1039/C9CC00163H
37 B Jiang, ES Wang, KA Donovan, Y Liang, ES Fischer, T Zhang, NS Gray. Development of dual and selective degraders of cyclin-dependent kinases 4 and 6. Angew Chem 2019; 131(19): 6387–6392
https://doi.org/10.1002/ange.201901336
38 S Su, Z Yang, H Gao, H Yang, S Zhu, Z An, J Wang, Q Li, S Chandarlapaty, H Deng, W Wu, Y Rao. Potent and preferential degradation of CDK6 via proteolysis targeting chimera degraders. J Med Chem 2019; 62(16): 7575–7582
https://doi.org/10.1021/acs.jmedchem.9b00871
39 S Rana, M Bendjennat, S Kour, HM King, S Kizhake, M Zahid, A Natarajan. Selective degradation of CDK6 by a palbociclib based PROTAC. Bioorg Med Chem Lett 2019; 29(11): 1375–1379
https://doi.org/10.1016/j.bmcl.2019.03.035
40 NA Anderson, J Cryan, A Ahmed, H Dai, GA McGonagle, C Rozier, AB Benowitz. Selective CDK6 degradation mediated by cereblon, VHL, and novel IAP-recruiting PROTACs. Bioorg Med Chem Lett 2020; 30(9): 127106
https://doi.org/10.1016/j.bmcl.2020.127106
41 C Steinebach, YLD Ng, I Sosic, CS Lee, S Chen, S Lindner, LP Vu, A Bricelj, R Haschemi, M Monschke, E Steinwarz, KG Wagner, G Bendas, J Luo, M Gutschow, J Kronke. Systematic exploration of different E3 ubiquitin ligases: an approach towards potent and selective CDK6 degraders. Chem Sci (Camb) 2020; 11(13): 3474–3486
https://doi.org/10.1039/D0SC00167H
42 M De Dominici, P Porazzi, Y Xiao, A Chao, HY Tang, G Kumar, P Fortina, O Spinelli, A Rambaldi, LF Peterson, S Petruk, C Barletta, A Mazo, G Cingolani, JM Salvino, B Calabretta. Selective inhibition of Ph-positive ALL cell growth through kinase-dependent and -independent effects by CDK6-specific PROTACs. Blood 2020; 135(18): 1560–1573
https://doi.org/10.1182/blood.2019003604
43 C Pu, Y Liu, R Deng, Q Xu, S Wang, H Zhang, D Luo, X Ma, Y Tong, R Li. Development of PROTAC degrader probe of CDK4/6 based on DCAF16. Bioorg Chem 2023; 138: 106637
https://doi.org/10.1016/j.bioorg.2023.106637
44 Y Xiong, Y Zhong, H Yim, X Yang, KS Park, L Xie, PI Poulikakos, X Han, Y Xiong, X Chen, J Liu, J Jin. Bridged proteolysis targeting chimera (PROTAC) enables degradation of undruggable targets. J Am Chem Soc 2022; 144(49): 22622–22632
https://doi.org/10.1021/jacs.2c09255
45 AL Verano, I You, KA Donovan, N Mageed, H Yue, RP Nowak, ES Fischer, ES Wang, NS Gray. Redirecting the neo-substrate specificity of cereblon-targeting PROTACs to Helios. ACS Chem Biol 2022; 17(9): 2404–2410
https://doi.org/10.1021/acschembio.2c00439
46 JM Hatcher, ES Wang, L Johannessen, N Kwiatkowski, T Sim, NS Gray. Development of highly potent and selective steroidal inhibitors and degraders of CDK8. ACS Med Chem Lett 2018; 9(6): 540–545
https://doi.org/10.1021/acsmedchemlett.8b00011
47 CM Robb, JI Contreras, S Kour, MA Taylor, M Abid, YA Sonawane, M Zahid, DJ Murry, A Natarajan, S Rana. Chemically induced degradation of CDK9 by a proteolysis targeting chimera (PROTAC). Chem Commun (Camb) 2017; 53(54): 7577–7580
https://doi.org/10.1039/C7CC03879H
48 HM King, S Rana, SP Kubica, JR Mallareddy, S Kizhake, EL Ezell, M Zahid, MJ Naldrett, S Alvarez, HC Law, NT Woods, A Natarajan. Aminopyrazole based CDK9 PROTAC sensitizes pancreatic cancer cells to venetoclax. Bioorg Med Chem Lett 2021; 43: 128061
https://doi.org/10.1016/j.bmcl.2021.128061
49 CM Olson, B Jiang, MA Erb, Y Liang, ZM Doctor, Z Zhang, T Zhang, N Kwiatkowski, M Boukhali, JL Green, W Haas, T Nomanbhoy, ES Fischer, RA Young, JE Bradner, GE Winter, NS Gray. Pharmacological perturbation of CDK9 using selective CDK9 inhibition or degradation. Nat Chem Biol 2018; 14(2): 163–170
https://doi.org/10.1038/nchembio.2538
50 J Bian, J Ren, Y Li, J Wang, X Xu, Y Feng, H Tang, Y Wang, Z Li. Discovery of wogonin-based PROTACs against CDK9 and capable of achieving antitumor activity. Bioorg Chem 2018; 81: 373–381
https://doi.org/10.1016/j.bioorg.2018.08.028
51 X Qiu, Y Li, B Yu, J Ren, H Huang, M Wang, H Ding, Z Li, J Wang, J Bian. Discovery of selective CDK9 degraders with enhancing antiproliferative activity through PROTAC conversion. Eur J Med Chem 2021; 211: 113091
https://doi.org/10.1016/j.ejmech.2020.113091
52 D Wei, H Wang, Q Zeng, W Wang, B Hao, X Feng, P Wang, N Song, W Kan, G Huang, X Zhou, M Tan, Y Zhou, R Huang, J Li, XH Chen. Discovery of potent and selective CDK9 degraders for targeting transcription regulation in triple-negative breast cancer. J Med Chem 2021; 64(19): 14822–14847
https://doi.org/10.1021/acs.jmedchem.1c01350
53 M Ao, J Wu, Y Cao, Y He, Y Zhang, X Gao, Y Xue, M Fang, Z Wu. The synthesis of PROTAC molecule and new target KAT6A identification of CDK9 inhibitor iCDK9. Chin Chem Lett 2023; 34(4): 107741
https://doi.org/10.1016/j.cclet.2022.107741
54 J Li, T Liu, Y Song, M Wang, L Liu, H Zhu, Q Li, J Lin, H Jiang, K Chen, K Zhao, M Wang, H Zhou, H Lin, C Luo. Discovery of small-molecule degraders of the CDK9-cyclin T1 complex for targeting transcriptional addiction in prostate cancer. J Med Chem 2022; 65(16): 11034–11057
https://doi.org/10.1021/acs.jmedchem.2c00257
55 RJ 2nd Tokarski, CM Sharpe, AC Huntsman, BK Mize, OR Ayinde, EH Stahl, JR Lerma, A Reed, B Carmichael, N Muthusamy, JC Byrd, JR Fuchs. Bifunctional degraders of cyclin dependent kinase 9 (CDK9): probing the relationship between linker length, properties, and selective protein degradation. Eur J Med Chem 2023; 254: 115342
https://doi.org/10.1016/j.ejmech.2023.115342
56 J Pei, Y Xiao, X Liu, W Hu, A Sobh, Y Yuan, S Zhou, N Hua, SG Mackintosh, X Zhang, KB Basso, M Kamat, Q Yang, JD Licht, G Zheng, D Zhou, D Lv. Piperlongumine conjugates induce targeted protein degradation. Cell Chem Biol 2023; 30(2): 203–213.e17
https://doi.org/10.1016/j.chembiol.2023.01.004
57 B Jiang, Y Gao, J Che, W Lu, IH Kaltheuner, R Dries, M Kalocsay, MJ Berberich, J Jiang, I You, N Kwiatkowski, KM Riching, DL Daniels, PK Sorger, M Geyer, T Zhang, NS Gray. Discovery and resistance mechanism of a selective CDK12 degrader. Nat Chem Biol 2021; 17(6): 675–683
https://doi.org/10.1038/s41589-021-00765-y
58 T Niu, K Li, L Jiang, Z Zhou, J Hong, X Chen, X Dong, Q He, J Cao, B Yang, CL Zhu. Noncovalent CDK12/13 dual inhibitors-based PROTACs degrade CDK12-cyclin K complex and induce synthetic lethality with PARP inhibitor. Eur J Med Chem 2022; 228: 114012
https://doi.org/10.1016/j.ejmech.2021.114012
59 J Yang, Y Chang, JC Tien, Z Wang, Y Zhou, P Zhang, W Huang, J Vo, IJ Apel, C Wang, VZ Zeng, Y Cheng, S Li, GX Wang, AM Chinnaiyan, K Ding. Discovery of a highly potent and selective dual PROTAC degrader of CDK12 and CDK13. J Med Chem 2022; 65(16): 11066–11083
https://doi.org/10.1021/acs.jmedchem.2c00384
60 HT Huang, D Dobrovolsky, J Paulk, G Yang, EL Weisberg, ZM Doctor, DL Buckley, JH Cho, E Ko, J Jang, K Shi, HG Choi, JD Griffin, Y Li, SP Treon, ES Fischer, JE Bradner, L Tan, NS Gray. A chemoproteomic approach to query the degradable kinome using a multi-kinase degrader. Cell Chem Biol 2018; 25(1): 88–99.e6
https://doi.org/10.1016/j.chembiol.2017.10.005
61 M Słabicki, Z Kozicka, G Petzold, YD Li, M Manojkumar, RD Bunker, KA Donovan, QL Sievers, J Koeppel, D Suchyta, AS Sperling, EC Fink, JA Gasser, LR Wang, SM Corsello, RS Sellar, M Jan, D Gillingham, C Scholl, S Frohling, TR Golub, ES Fischer, NH Thoma, BL Ebert. The CDK inhibitor CR8 acts as a molecular glue degrader that depletes cyclin K. Nature 2020; 585(7824): 293–297
https://doi.org/10.1038/s41586-020-2374-x
62 L Lv, P Chen, L Cao, Y Li, Z Zeng, Y Cui, Q Wu, J Li, JH Wang, MQ Dong, X Qi, T Han. Discovery of a molecular glue promoting CDK12–DDB1 interaction to trigger cyclin K degradation. eLife 2020; 9: e59994
https://doi.org/10.7554/eLife.59994
63 C Mayor-Ruiz, S Bauer, M Brand, Z Kozicka, M Siklos, H Imrichova, IH Kaltheuner, E Hahn, K Seiler, A Koren, G Petzold, M Fellner, C Bock, AC Muller, J Zuber, M Geyer, NH Thoma, S Kubicek, GE Winter. Rational discovery of molecular glue degraders via scalable chemical profiling. Nat Chem Biol 2020; 16(11): 1199–1207
https://doi.org/10.1038/s41589-020-0594-x
64 SR McCurdy, M Pacal, M Ahmad, RA Bremner. CDK2 activity signature predicts outcome in CDK2-low cancers. Oncogene 2017; 36(18): 2491–2502
https://doi.org/10.1038/onc.2016.409
65 AM Narasimha, M Kaulich, GS Shapiro, YJ Choi, P Sicinski, SF Dowdy. Cyclin D activates the Rb tumor suppressor by mono-phosphorylation. eLife 2014; 3: e02872
https://doi.org/10.7554/eLife.02872
66 A Martín, J Odajima, SL Hunt, P Dubus, S Ortega, M Malumbres, M Barbacid. Cdk2 is dispensable for cell cycle inhibition and tumor suppression mediated by p27(Kip1) and p21(Cip1). Cancer Cell 2005; 7(6): 591–598
https://doi.org/10.1016/j.ccr.2005.05.006
67 T Bashir, M Pagano. Cdk1: the dominant sibling of Cdk2. Nat Cell Biol 2005; 7(8): 779–781
https://doi.org/10.1038/ncb0805-779
68 C Berthet, E Aleem, V Coppola, L Tessarollo, P Kaldis. Cdk2 knockout mice are viable. Curr Biol 2003; 13(20): 1775–1785
https://doi.org/10.1016/j.cub.2003.09.024
69 S Tadesse, AT Anshabo, N Portman, E Lim, W Tilley, CE Caldon, S Wang. Targeting CDK2 in cancer: challenges and opportunities for therapy. Drug Discov Today 2020; 25(2): 406–413
https://doi.org/10.1016/j.drudis.2019.12.001
70 M Ying, X Shao, H Jing, Y Liu, X Qi, J Cao, Y Chen, S Xiang, H Song, R Hu, G Wei, B Yang, Q He. Ubiquitin-dependent degradation of CDK2 drives the therapeutic differentiation of AML by targeting PRDX2. Blood 2018; 131(24): 2698–2711
https://doi.org/10.1182/blood-2017-10-813139
71 R Scheicher, A Hoelbl-Kovacic, F Bellutti, AS Tigan, M Prchal-Murphy, G Heller, C Schneckenleithner, M Salazar-Roa, S Zöchbauer-Müller, J Zuber, M Malumbres, K Kollmann, V Sexl. CDK6 as a key regulator of hematopoietic and leukemic stem cell activation. Blood 2015; 125(1): 90–101
https://doi.org/10.1182/blood-2014-06-584417
72 B Maurer, T Brandstoetter, S Kollmann, V Sexl, M Prchal-Murphy. Inducible deletion of CDK4 and CDK6—deciphering CDK4/6 inhibitor effects in the hematopoietic system. Haematologica 2021; 106(10): 2624–2632
https://doi.org/10.3324/haematol.2020.256313
73 S Qie, JA Diehl. Cyclin D1, cancer progression, and opportunities in cancer treatment. J Mol Med (Berl) 2016; 94(12): 1313–1326
https://doi.org/10.1007/s00109-016-1475-3
74 X Bisteau, S Paternot, B Colleoni, K Ecker, K Coulonval, P De Groote, W Declercq, L Hengst, PP Roger. CDK4 T172 phosphorylation is central in a CDK7-dependent bidirectional CDK4/CDK2 interplay mediated by p21 phosphorylation at the restriction point. PLoS Genet 2013; 9(5): e1003546
https://doi.org/10.1371/journal.pgen.1003546
75 S Goel, JS Bergholz, JJ Zhao. Targeting CDK4 and CDK6 in cancer. Nat Rev Cancer 2022; 22(6): 356–372
https://doi.org/10.1038/s41568-022-00456-3
76 V Wagner, J Gil. Senescence as a therapeutically relevant response to CDK4/6 inhibitors. Oncogene 2020; 39(29): 5165–5176
https://doi.org/10.1038/s41388-020-1354-9
77 B O’Leary, RS Finn, NC Turner. Treating cancer with selective CDK4/6 inhibitors. Nat Rev Clin Oncol 2016; 13(7): 417–430
https://doi.org/10.1038/nrclinonc.2016.26
78 L Bockstaele, X Bisteau, S Paternot, PP Roger. Differential regulation of cyclin-dependent kinase 4 (CDK4) and CDK6, evidence that CDK4 might not be activated by CDK7, and design of a CDK6 activating mutation. Mol Cell Biol 2009; 29(15): 4188–4200
https://doi.org/10.1128/MCB.01823-08
79 M Dai, J Boudreault, N Wang, S Poulet, G Daliah, G Yan, A Moamer, SA Burgos, S Sabri, S Ali, JJ Lebrun. Differential regulation of cancer progression by CDK4/6 plays a central role in DNA replication and repair pathways. Cancer Res 2021; 81(5): 1332–1346
https://doi.org/10.1158/0008-5472.CAN-20-2121
80 M Puyol, A Martín, P Dubus, F Mulero, P Pizcueta, G Khan, C Guerra, D Santamaría, M Barbacid. A Synthetic lethal interaction between K-Ras oncogenes and Cdk4 unveils a therapeutic strategy for non-small cell lung carcinoma. Cancer Cell 2010; 18(1): 63–73
https://doi.org/10.1016/j.ccr.2010.05.025
81 T Honma, T Yoshizumi, N Hashimoto, K Hayashi, N Kawanishi, K Fukasawa, T Takaki, C Ikeura, M Ikuta, I Suzuki-Takahashi, T Hayama, S Nishimura, H Morishima. A novel approach for the development of selective Cdk4 inhibitors: library design based on locations of Cdk4 specific amino acid residues. J Med Chem 2001; 44(26): 4628–4640
https://doi.org/10.1021/jm010326y
82 YLD Ng, E Ramberger, SR Bohl, A Dolnik, C Steinebach, T Conrad, S Muller, O Popp, M Kull, M Haji, M Gutschow, H Dohner, W Walther, U Keller, L Bullinger, P Mertins, J Kronke. Proteomic profiling reveals CDK6 upregulation as a targetable resistance mechanism for lenalidomide in multiple myeloma. Nat Commun 2022; 13(1): 1009
https://doi.org/10.1038/s41467-022-28515-1
83 G Du, J Jiang, NJ Henning, N Safaee, E Koide, RP Nowak, KA Donovan, H Yoon, I You, H Yue, NA Eleuteri, Z He, Z Li, HT Huang, J Che, B Nabet, T Zhang, ES Fischer, NS Gray. Exploring the target scope of KEAP1 E3 ligase-based PROTACs. Cell Chem Biol 2022; 29(10): 1470–1481.e31
https://doi.org/10.1016/j.chembiol.2022.08.003
84 R Dhavan, LH Tsai. A decade of CDK5. Nat Rev Mol Cell Biol 2001; 2(10): 749–759
https://doi.org/10.1038/35096019
85 PC Pao, LH Tsai. Three decades of Cdk5. J Biomed Sci 2021; 28(1): 79
https://doi.org/10.1186/s12929-021-00774-y
86 J Zhang, K Herrup. Cdk5 and the non-catalytic arrest of the neuronal cell cycle. Cell Cycle 2008; 7(22): 3487–3490
https://doi.org/10.4161/cc.7.22.7045
87 N Mangold, J Pippin, D Unnersjoe-Jess, S Koehler, S Shankland, S Brahler, B Schermer, T Benzing, PT Brinkkoetter, H Hagmann. The atypical cyclin-dependent kinase 5 (Cdk5) guards podocytes from apoptosis in glomerular disease while being dispensable for podocyte development. Cells 2021; 10(9): 2464
https://doi.org/10.3390/cells10092464
88 C Ao, C Li, J Chen, J Tan, L Zeng. The role of Cdk5 in neurological disorders. Front Cell Neurosci 2022; 16: 951202
https://doi.org/10.3389/fncel.2022.951202
89 JL Lenjisa, S Tadesse, NZ Khair, M Kumarasiri, M Yu, H Albrecht, R Milne, S Wang. CDK5 in oncology: recent advances and future prospects. Future Med Chem 2017; 9(16): 1939–1962
https://doi.org/10.4155/fmc-2017-0097
90 S Takahashi, T Ohshima, M Hirasawa, TK Pareek, TH Bugge, A Morozov, K Fujieda, RO Brady, AB Kulkarni. Conditional deletion of neuronal cyclin-dependent kinase 5 in developing forebrain results in microglial activation and neurodegeneration. Am J Pathol 2010; 176(1): 320–329
https://doi.org/10.2353/ajpath.2010.081158
91 MH Daniels, G Malojcic, SL Clugston, B Williams, M Coeffet-Le Gal, XR Pan-Zhou, S Venkatachalan, JC Harmange, M Ledeboer. Discovery and optimization of highly selective inhibitors of CDK5. J Med Chem 2022; 65(4): 3575–3596
https://doi.org/10.1021/acs.jmedchem.1c02069
92 MD Galbraith, AJ Donner, JM Espinosa. CDK8: a positive regulator of transcription. Transcription 2010; 1(1): 4–12
https://doi.org/10.4161/trns.1.1.12373
93 M Belakavadi, JD Fondell. Cyclin-dependent kinase 8 positively cooperates with Mediator to promote thyroid hormone receptor-dependent transcriptional activation. Mol Cell Biol 2010; 30(10): 2437–2448
https://doi.org/10.1128/MCB.01541-09
94 AJ Donner, CC Ebmeier, DJ Taatjes, JM Espinosa. CDK8 is a positive regulator of transcriptional elongation within the serum response network. Nat Struct Mol Biol 2010; 17(2): 194–201
https://doi.org/10.1038/nsmb.1752
95 Z Szilagyi, CM Gustafsson. Emerging roles of Cdk8 in cell cycle control. Biochim Biophys Acta Gene Regul Mech 2013; 1829(9): 916–920
https://doi.org/10.1016/j.bbagrm.2013.04.010
96 J Bancerek, ZC Poss, I Steinparzer, V Sedlyarov, T Pfaffenwimmer, I Mikulic, L Dolken, B Strobl, M Muller, DJ Taatjes, P Kovarik. CDK8 kinase phosphorylates transcription factor STAT1 to selectively regulate the interferon response. Immunity 2013; 38(2): 250–262
https://doi.org/10.1016/j.immuni.2012.10.017
97 A Serrao, LM Jenkins, AA Chumanevich, B Horst, J Liang, ML Gatza, NY Lee, IB Roninson, EV Broude, K Mythreye. Mediator kinase CDK8/CDK19 drives YAP1-dependent BMP4-induced EMT in cancer. Oncogene 2018; 37(35): 4792–4808
https://doi.org/10.1038/s41388-018-0316-y
98 CJ Fryer, JB White, KA Jones. Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol Cell 2004; 16(4): 509–520
https://doi.org/10.1016/j.molcel.2004.10.014
99 R Firestein, AJ Bass, SY Kim, IF Dunn, SJ Silver, I Guney, E Freed, AH Ligon, N Vena, S Ogino, MG Chheda, P Tamayo, S Finn, Y Shrestha, JS Boehm, S Jain, E Bojarski, C Mermel, J Barretina, JA Chan, J Baselga, J Tabernero, DE Root, CS Fuchs, M Loda, RA Shivdasani, M Meyerson, WC Hahn. CDK8 is a colorectal cancer oncogene that regulates beta-catenin activity. Nature 2008; 455(7212): 547–551
https://doi.org/10.1038/nature07179
100 J Liang, M Chen, D Hughes, AA Chumanevich, S Altilia, V Kaza, CU Lim, H Kiaris, K Mythreye, MM Pena, EV Broude, IB Roninson. CDK8 selectively promotes the growth of colon cancer metastases in the liver by regulating gene expression of TIMP3 and matrix metalloproteinases. Cancer Res 2018; 78(23): 6594–6606
https://doi.org/10.1158/0008-5472.CAN-18-1583
101 T Westerling, E Kuuluvainen, TP Maäkelaä. Cdk8 is essential for preimplantation mouse development. Mol Cell Biol 2007; 27(17): 6177–6182
https://doi.org/10.1128/MCB.01302-06
102 HL Chung, X Mao, H Wang, YJ Park, PC Marcogliese, JA Rosenfeld, LC Burrage, P Liu, DR Murdock, S Yamamoto, MF Wangler, Diseases Network Undiagnosed, HT Chao, H Long, L Feng, CA Bacino, HJ Bellen, B Xiao. De novo variants in CDK19 are associated with a syndrome involving intellectual disability and epileptic encephalopathy. Am J Hum Genet 2020; 106(5): 717–725
https://doi.org/10.1016/j.ajhg.2020.04.001
103 RP Fisher. Taking aim at glycolysis with CDK8 inhibitors. Trends Endocrinol Metab 2018; 29(5): 281–282
https://doi.org/10.1016/j.tem.2018.02.005
104 MF Koehler, P Bergeron, EM Blackwood, K Bowman, KR Clark, R Firestein, JR Kiefer, K Maskos, ML McCleland, L Orren, L Salphati, S Schmidt, EV Schneider, J Wu, MH Beresini. Development of a potent, specific CDK8 kinase inhibitor which phenocopies CDK8/19 knockout cells. ACS Med Chem Lett 2016; 7(3): 223–228
https://doi.org/10.1021/acsmedchemlett.5b00278
105 DS Yu, D Cortez. A role for CDK9-cyclin K in maintaining genome integrity. Cell Cycle 2011; 10(1): 28–32
https://doi.org/10.4161/cc.10.1.14364
106 Falco G De, C Bellan, A D’Amuri, G Angeloni, E Leucci, A Giordano, L Leoncini. Cdk9 regulates neural differentiation and its expression correlates with the differentiation grade of neuroblastoma and PNET tumors. Cancer Biol Ther 2005; 4(3): 277–281
https://doi.org/10.4161/cbt.4.3.1497
107 S Egloff. CDK9 keeps RNA polymerase II on track. Cell Mol Life Sci 2021; 78(14): 5543–5567
https://doi.org/10.1007/s00018-021-03878-8
108 S Boffo, A Damato, L Alfano, A Giordano. CDK9 inhibitors in acute myeloid leukemia. J Exp Clin Cancer Res 2018; 37(1): 36
https://doi.org/10.1186/s13046-018-0704-8
109 GYL Lui, C Grandori, CJ Kemp. CDK12: an emerging therapeutic target for cancer. J Clin Pathol 2018; 71(11): 957–962
https://doi.org/10.1136/jclinpath-2018-205356
110 HC Juan, Y Lin, HR Chen, MJ Fann. Cdk12 is essential for embryonic development and the maintenance of genomic stability. Cell Death Differ 2016; 23(6): 1038–1048
https://doi.org/10.1038/cdd.2015.157
111 CA Bösken, L Farnung, C Hintermair, Schachter M Merzel, K Vogel-Bachmayr, D Blazek, K Anand, RP Fisher, D Eick, M Geyer. The structure and substrate specificity of human Cdk12/Cyclin K. Nat Commun 2014; 5(1): 3505
https://doi.org/10.1038/ncomms4505
112 J PaculováH. The emerging roles of CDK12 in tumorigenesis. Cell Div 2017; 12(1): 7
https://doi.org/10.1186/s13008-017-0033-x
113 V Quereda, S Bayle, F Vena, SM Frydman, A Monastyrskyi, WR Roush, DR Duckett. Therapeutic Targeting of CDK12/CDK13 in Triple-Negative Breast Cancer. Cancer Cell 2019; 36(5): 545–558.e7
https://doi.org/10.1016/j.ccell.2019.09.004
114 JJ Marineau, KB Hamman, S Hu, S Alnemy, J Mihalich, A Kabro, KM Whitmore, DK Winter, S Roy, S Ciblat, N Ke, A Savinainen, A Wilsily, G Malojcic, R Zahler, D Schmidt, MJ Bradley, NJ Waters, C Chuaqui. Discovery of SY-5609: a selective, noncovalent inhibitor of CDK7. J Med Chem 2022; 65(2): 1458–1480
https://doi.org/10.1021/acs.jmedchem.1c01171
115 AK Greifenberg, D Honig, K Pilarova, R Duster, K Bartholomeeusen, CA Bosken, K Anand, D Blazek, M Geyer. Structural and functional analysis of the Cdk13/cyclin K complex. Cell Rep 2016; 14(2): 320–331
https://doi.org/10.1016/j.celrep.2015.12.025
116 Z Fan, JR Devlin, SJ Hogg, MA Doyle, PF Harrison, I Todorovski, LA Cluse, DA Knight, JJ Sandow, G Gregory, A Fox, TH Beilharz, N Kwiatkowski, NE Scott, AT Vidakovic, GP Kelly, JQ Svejstrup, M Geyer, NS Gray, SJ Vervoort, RW Johnstone. CDK13 cooperates with CDK12 to control global RNA polymerase II processivity. Sci Adv 2020; 6(18): eaaz5041
https://doi.org/10.1126/sciadv.aaz5041
117 M Ito, T Tanaka, A Toita, N Uchiyama, H Kokubo, N Morishita, MG Klein, H Zou, M Murakami, M Kondo, T Sameshima, S Araki, S Endo, T Kawamoto, GB Morin, SA Aparicio, A Nakanishi, H Maezaki, Y Imaeda. Discovery of 3-benzyl-1-(trans-4-((5-cyanopyridin-2-yl)amino)cyclohexyl)-1-arylurea derivatives as novel and selective cyclin-dependent kinase 12 (CDK12) inhibitors. J Med Chem 2018; 61(17): 7710–7728
https://doi.org/10.1021/acs.jmedchem.8b00683
118 KM Riching, S Mahan, CR Corona, M McDougall, JD Vasta, MB Robers, M Urh, DL Daniels. Quantitative live-cell kinetic degradation and mechanistic profiling of PROTAC mode of action. ACS Chem Biol 2018; 13(9): 2758–2770
https://doi.org/10.1021/acschembio.8b00692
119 KM Riching, MK Schwinn, JD Vasta, MB Robers, T Machleidt, M Urh, DL Daniels. CDK family PROTAC profiling reveals distinct kinetic responses and cell cycle-dependent degradation of CDK2. SLAS Discov 2021; 26(4): 560–569
https://doi.org/10.1177/2472555220973602
120 AC Dar, KM Shokat. The evolution of protein kinase inhibitors from antagonists to agonists of cellular signaling. Annu Rev Biochem 2011; 80(1): 769–795
https://doi.org/10.1146/annurev-biochem-090308-173656
121 P Wu, TE Nielsen, MH Clausen. FDA-approved small-molecule kinase inhibitors. Trends Pharmacol Sci 2015; 36(7): 422–439
https://doi.org/10.1016/j.tips.2015.04.005
122 P Wu, TE Nielsen, MH Clausen. Small-molecule kinase inhibitors: an analysis of FDA-approved drugs. Drug Discov Today 2016; 21(1): 5–10
https://doi.org/10.1016/j.drudis.2015.07.008
123 Z Fang, C Grutter, D Rauh. Strategies for the selective regulation of kinases with allosteric modulators: exploiting exclusive structural features. ACS Chem Biol 2013; 8(1): 58–70
https://doi.org/10.1021/cb300663j
124 R Jr Roskoski. Classification of small molecule protein kinase inhibitors based upon the structures of their drug-enzyme complexes. Pharmacol Res 2016; 103: 26–48
https://doi.org/10.1016/j.phrs.2015.10.021
125 JR Simard, D Rauh. FLiK: a direct-binding assay for the identification and kinetic characterization of stabilizers of inactive kinase conformations. Methods Enzymol 2014; 548: 147–171
https://doi.org/10.1016/B978-0-12-397918-6.00006-9
126 M Pellerano, S Tcherniuk, C Perals, TN Ngoc Van, E Garcin, F Mahuteau-Betzer, MP Teulade-Fichou, MC Morris. Targeting conformational activation of CDK2 kinase. Biotechnol J 2017; 12(8): 1600531
https://doi.org/10.1002/biot.201600531
127 C Prével, M Pellerano, TN Van, MC Morris. Fluorescent biosensors for high throughput screening of protein kinase inhibitors. Biotechnol J 2014; 9(2): 253–265
https://doi.org/10.1002/biot.201300196
128 C Prével, L Kurzawa, TN Van, MC Morris. Fluorescent biosensors for drug discovery new tools for old targets—screening for inhibitors of cyclin-dependent kinases. Eur J Med Chem 2014; 88: 74–88
https://doi.org/10.1016/j.ejmech.2014.10.003
129 M Zheng, Y Liu, C Wu, K Yang, Q Wang, Y Zhou, L Chen, H Li. Novel PROTACs for degradation of SHP2 protein. Bioorg Chem 2021; 110: 104788
https://doi.org/10.1016/j.bioorg.2021.104788
130 AS Ben GeoffreyNM KulkarniD AgrawalR VetrivelK Gurram. A new in-silico approach for PROTAC design and quantitative rationalization of PROTAC mediated ternary complex formation. bioRxiv 2022: 2022.2022.2022.499663 doi:10.1101/2022.07.11.499663
131 S Zheng, Y Tan, Z Wang, C Li, Z Zhang, X Sang, H Chen, Y Yang. Accelerated rational PROTAC design via deep learning and molecular simulations. Nat Mach Intell 2022; 4(9): 739–748
https://doi.org/10.1038/s42256-022-00527-y
132 F Li, Q Hu, X Zhang, R Sun, Z Liu, S Wu, S Tian, X Ma, Z Dai, X Yang, S Gao, F Bai. DeepPROTACs is a deep learning-based targeted degradation predictor for PROTACs. Nat Commun 2022; 13(1): 7133
https://doi.org/10.1038/s41467-022-34807-3
133 JH Hsu, T Rasmusson, J Robinson, F Pachl, J Read, S Kawatkar, Donovan DH O', S Bagal, E Code, P Rawlins, A Argyrou, R Tomlinson, N Gao, X Zhu, E Chiarparin, K Jacques, M Shen, H Woods, E Bednarski, DM Wilson, L Drew, MP Castaldi, S Fawell, A Bloecher. EED-targeted PROTACs degrade EED, EZH2, and SUZ12 in the PRC2 complex. Cell Chem Biol 2020; 27(1): 41–46.e17
https://doi.org/10.1016/j.chembiol.2019.11.004
134 SL Schreiber. Target-oriented and diversity-oriented organic synthesis in drug discovery. Science 2000; 287(5460): 1964–1969
https://doi.org/10.1126/science.287.5460.1964
135 CJ Gerry, SL Schreiber. Recent achievements and current trajectories of diversity-oriented synthesis. Curr Opin Chem Biol 2020; 56: 1–9
https://doi.org/10.1016/j.cbpa.2019.08.008
136 T Guney, TA Wenderski, MW Boudreau, DS Tan. Synthesis of benzannulated medium-ring lactams via a tandem oxidative dearomatization-ring expansion reaction. Chemistry (Easton) 2018; 24(50): 13150–13157
137 MV Westphal, L Hudson, JW Mason, JA Pradeilles, FJ Zecri, K Briner, SL Schreiber. Water-compatible cycloadditions of oligonucleotide-conjugated strained allenes for DNA-encoded library synthesis. J Am Chem Soc 2020; 142(17): 7776–7782
https://doi.org/10.1021/jacs.9b13186
138 J Cheng, X Li. Development and application of activity-based fluorescent probes for high-throughput screening. Curr Med Chem 2022; 29(10): 1739–1756
https://doi.org/10.2174/0929867328666210525141728
139 A Oke, D Sahin, X Chen, Y Shang. High throughput screening for drug discovery and virus detection. Comb Chem High Throughput Screen 2022; 25(9): 1518–1533
https://doi.org/10.2174/1386207324666210811124856
[1] Yubing Zhou, Xinyu He, Yanan Jiang, Zitong Wang, Yin Yu, Wenjie Wu, Chenyang Zhang, Jincheng Li, Yaping Guo, Xinhuan Chen, Zhicai Liu, Jimin Zhao, Kangdong Liu, Zigang Dong. Repurposed benzydamine targeting CDK2 suppresses the growth of esophageal squamous cell carcinoma[J]. Front. Med., 2023, 17(2): 290-303.
[2] Xiaoling Wang,Yun Tan,Yizhen Li,Jingming Li,Wen Jin,Kankan Wang. Repression of CDKN2C caused by PML/RARα binding promotes the proliferation and differentiation block in acute promyelocytic leukemia[J]. Front. Med., 2016, 10(4): 420-429.
[3] Xiaowei GONG MD, PhD, Xiaoyan MING MD, Xu WANG MM, Daan WANG MD, Peng DENG MM, Yong JIANG MD, PhD, Aihua LIU MD, PhD, . Effect of PRAK gene knockout on the proliferation of mouse embryonic fibroblasts[J]. Front. Med., 2009, 3(4): 379-383.
[4] Hui XIAO PhD, Ming TIAN MM, Junna GE MM, Xin Wei MD, Zhaoming LI MM, Xiaolan LI MS, Deding TAO PhD, Junbo HU MD, Jianping GONG MD, . The role of CDK1 siRNA interference in cell cycle and cell apoptosis[J]. Front. Med., 2009, 3(4): 384-389.
[5] Feng JIANG PhD , Xuezhen WANG PhD , Zheng XUE MD , Suming ZHANG PhD , Siyu FANG BM , Min ZHANG MD, PhD , . Lentivector-mediated RNAi efficiently downregulates expression of murine cdk4 gene [J]. Front. Med., 2009, 3(3): 287-291.
[6] Ke SONG, Nianjing RAO, Meiling CHEN, Yingguang CAO. Regulation of exogenous bFGF gene mediated by recombinant adeno-associated virus in vitro[J]. Front Med Chin, 2009, 3(2): 158-163.
[7] SU Yuan, JIN Yang, ZHANG Xiaoju, ZHOU Qiong, BAI Ming, ZHU Liping. Impact of siRNA targeting pirh2 on proliferation and cell cycle control of the lung adenocarcinoma cell line A549[J]. Front. Med., 2007, 1(4): 359-363.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed