|
|
Arginine methylation of ALKBH5 by PRMT6 promotes breast tumorigenesis via LDHA-mediated glycolysis |
Xue Han1, Chune Ren1, Aifang Jiang1, Yonghong Sun2, Jiayi Lu1, Xi Ling1, Chao Lu1, Zhenhai Yu1( ) |
1. Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang 261053, China 2. Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang 261053, China |
|
|
Abstract ALKBH5 is a master regulator of N6-methyladenosine (m6A) modification, which plays a crucial role in many biological processes. Here, we show that ALKBH5 is required for breast tumor growth. Interestingly, PRMT6 directly methylates ALKBH5 at R283, which subsequently promotes breast tumor growth. Furthermore, arginine methylation of ALKBH5 by PRMT6 increases LDHA RNA stability via m6A demethylation, leading to increased aerobic glycolysis. Moreover, PRMT6-mediated ALKBH5 arginine methylation is confirmed in PRMT6-knockout mice. Collectively, these findings identify a PRMT6-ALKBH5-LDHA signaling axis as a novel target for the treatment of breast cancer.
|
Keywords
PRMT6
ALKBH5
N6-methyladenosine
glycolysis
tumor growth
|
Corresponding Author(s):
Zhenhai Yu
|
Just Accepted Date: 12 January 2024
Online First Date: 12 March 2024
Issue Date: 27 May 2024
|
|
1 |
D Wiener, S Schwartz. The epitranscriptome beyond m6A. Nat Rev Genet 2021; 22(2): 119–131
https://doi.org/10.1038/s41576-020-00295-8
|
2 |
S Oerum, V Meynier, M Catala, C Tisne. A comprehensive review of m6A/m6Am RNA methyltransferase structures. Nucleic Acids Res 2021; 49(13): 7239–7255
https://doi.org/10.1093/nar/gkab378
|
3 |
H Huang, H Weng, J Chen. m6A modification in coding and non-coding RNAs: roles and therapeutic implications in cancer. Cancer Cell 2020; 37(3): 270–288
https://doi.org/10.1016/j.ccell.2020.02.004
|
4 |
J Qu, H Yan, Y Hou, W Cao, Y Liu, E Zhang, J He, Z Cai. RNA demethylase ALKBH5 in cancer: from mechanisms to therapeutic potential. J Hematol Oncol 2022; 15(1): 8
https://doi.org/10.1186/s13045-022-01224-4
|
5 |
L Wu, D Wu, J Ning, W Liu, D Zhang. Changes of N6-methyladenosine modulators promote breast cancer progression. BMC Cancer 2019; 19(1): 326
https://doi.org/10.1186/s12885-019-5538-z
|
6 |
C Zhang, D Samanta, H Lu, JW Bullen, H Zhang, I Chen, X He, GL Semenza. Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA. Proc Natl Acad Sci USA 2016; 113(14): E2047–E2056
https://doi.org/10.1073/pnas.1602883113
|
7 |
S Gupta, RV Kadumuri, AK Singh, S Chavali, A Dhayalan. Structure, activity and function of the protein arginine methyltransferase 6. Life (Basel) 2021; 11(9): 951
https://doi.org/10.3390/life11090951
|
8 |
RS Blanc, S Richard. Arginine methylation: the coming of age. Mol Cell 2017; 65(1): 8–24
https://doi.org/10.1016/j.molcel.2016.11.003
|
9 |
Z Chen, J Gan, Z Wei, M Zhang, Y Du, C Xu, H Zhao. The emerging role of PRMT6 in cancer. Front Oncol 2022; 12: 841381
https://doi.org/10.3389/fonc.2022.841381
|
10 |
X Han, C Ren, C Lu, P Qiao, T Yang, Z Yu. Deubiquitination of MYC by OTUB1 contributes to HK2 mediated glycolysis and breast tumorigenesis. Cell Death Differ 2022; 29(9): 1864–1873
https://doi.org/10.1038/s41418-022-00971-8
|
11 |
C Lu, C Ren, T Yang, Y Sun, P Qiao, X Han, Z Yu. Fructose-1, 6-bisphosphatase 1 interacts with NF-κB p65 to regulate breast tumorigenesis via PIM2 induced phosphorylation. Theranostics 2020; 10(19): 8606–8618
https://doi.org/10.7150/thno.46861
|
12 |
C Lu, P Qiao, Y Sun, C Ren, Z Yu. Positive regulation of PFKFB3 by PIM2 promotes glycolysis and paclitaxel resistance in breast cancer. Clin Transl Med 2021; 11(4): e400
https://doi.org/10.1002/ctm2.400
|
13 |
C Ren, X Han, C Lu, T Yang, P Qiao, Y Sun, Z Yu. Ubiquitination of NF-κB p65 by FBXW2 suppresses breast cancer stemness, tumorigenesis, and paclitaxel resistance. Cell Death Differ 2022; 29(2): 381–392
https://doi.org/10.1038/s41418-021-00862-4
|
14 |
X Cai, X Wang, C Cao, Y Gao, S Zhang, Z Yang, Y Liu, X Zhang, W Zhang, L Ye. HBXIP-elevated methyltransferase METTL3 promotes the progression of breast cancer via inhibiting tumor suppressor let-7g. Cancer Lett 2018; 415: 11–19
https://doi.org/10.1016/j.canlet.2017.11.018
|
15 |
X Han, C Ren, T Yang, P Qiao, L Wang, A Jiang, Y Meng, Z Liu, Y Du, Z Yu. Negative regulation of AMPKα1 by PIM2 promotes aerobic glycolysis and tumorigenesis in endometrial cancer. Oncogene 2019; 38(38): 6537–6549
https://doi.org/10.1038/s41388-019-0898-z
|
16 |
Y Feng, Y Xiong, T Qiao, X Li, L Jia, Y Han. Lactate dehydrogenase A: a key player in carcinogenesis and potential target in cancer therapy. Cancer Med 2018; 7(12): 6124–6136
https://doi.org/10.1002/cam4.1820
|
17 |
E Sendinc, Y Shi. RNA m6A methylation across the transcriptome. Mol Cell 2023; 83(3): 428–441
https://doi.org/10.1016/j.molcel.2023.01.006
|
18 |
Z Liu, Y Chen, L Wang, S Ji. ALKBH5 promotes the proliferation of glioma cells via enhancing the mRNA stability of G6PD. Neurochem Res 2021; 46(11): 3003–3011
https://doi.org/10.1007/s11064-021-03408-9
|
19 |
Z Zhu, Q Qian, X Zhao, L Ma, P Chen. N6-methyladenosine ALKBH5 promotes non-small cell lung cancer progress by regulating TIMP3 stability. Gene 2020; 731: 144348
https://doi.org/10.1016/j.gene.2020.144348
|
20 |
H Zhu, X Gan, X Jiang, S Diao, H Wu, J Hu. ALKBH5 inhibited autophagy of epithelial ovarian cancer through miR-7 and BCL-2. J Exp Clin Cancer Res 2019; 38(1): 163
https://doi.org/10.1186/s13046-019-1159-2
|
21 |
T Guo, DF Liu, SH Peng, AM Xu. ALKBH5 promotes colon cancer progression by decreasing methylation of the lncRNA NEAT1. Am J Transl Res 2020; 12(8): 4542–4549
|
22 |
J Zhang, S Guo, HY Piao, Y Wang, Y Wu, XY Meng, D Yang, ZC Zheng, Y Zhao. ALKBH5 promotes invasion and metastasis of gastric cancer by decreasing methylation of the lncRNA NEAT1. J Physiol Biochem 2019; 75(3): 379–389
https://doi.org/10.1007/s13105-019-00690-8
|
23 |
N Jiang, QL Li, W Pan, J Li, MF Zhang, T Cao, SG Su, H Shen. PRMT6 promotes endometrial cancer via AKT/mTOR signaling and indicates poor prognosis. Int J Biochem Cell Biol 2020; 120: 105681
https://doi.org/10.1016/j.biocel.2019.105681
|
24 |
R Pan, H Yu, J Dai, C Zhou, X Ying, J Zhong, J Zhao, Y Zhang, B Wu, Y Mao, D Wu, J Ying, S Duan. Significant association of PRMT6 hypomethylation with colorectal cancer. J Clin Lab Anal 2018; 32(9): e22590
https://doi.org/10.1002/jcla.22590
|
25 |
K Okuno, Y Akiyama, S Shimada, M Nakagawa, T Tanioka, M Inokuchi, S Yamaoka, K Kojima, S Tanaka. Asymmetric dimethylation at histone H3 arginine 2 by PRMT6 in gastric cancer progression. Carcinogenesis 2019; 40(1): 15–26
https://doi.org/10.1093/carcin/bgy147
|
26 |
D Almeida-Rios, I Graca, FQ Vieira, J Ramalho-Carvalho, E Pereira-Silva, AT Martins, J Oliveira, CS Goncalves, BM Costa, R Henrique, C Jerónimo. Histone methyltransferase PRMT6 plays an oncogenic role of in prostate cancer. Oncotarget 2016; 7(33): 53018–53028
https://doi.org/10.18632/oncotarget.10061
|
27 |
DH Dowhan, MJ Harrison, NA Eriksson, P Bailey, MA Pearen, PJ Fuller, JW Funder, ER Simpson, PJ Leedman, WD Tilley, MA Brown, CL Clarke, GEO Muscat. Protein arginine methyltransferase 6-dependent gene expression and splicing: association with breast cancer outcomes. Endocr Relat Cancer 2012; 19(4): 509–526
https://doi.org/10.1530/ERC-12-0100
|
28 |
M Yoshimatsu, G Toyokawa, S Hayami, M Unoki, T Tsunoda, HI Field, JD Kelly, DE Neal, Y Maehara, BA Ponder, Y Nakamura, R Hamamoto. Dysregulation of PRMT1 and PRMT6, Type I arginine methyltransferases, is involved in various types of human cancers. Int J Cancer 2011; 128(3): 562–573
https://doi.org/10.1002/ijc.25366
|
29 |
S Avasarala, PY Wu, SQ Khan, S Yanlin, M Van Scoyk, J Bao, A Di Lorenzo, O David, MT Bedford, V Gupta, RA Winn, RK Bikkavilli. PRMT6 promotes lung tumor progression via the alternate activation of tumor-associated macrophages. Mol Cancer Res 2020; 18(1): 166–178
https://doi.org/10.1158/1541-7786.MCR-19-0204
|
30 |
D Hyllus, C Stein, K Schnabel, E Schiltz, A Imhof, Y Dou, J Hsieh, UM Bauer. PRMT6-mediated methylation of R2 in histone H3 antagonizes H3 K4 trimethylation. Genes Dev 2007; 21(24): 3369–3380
https://doi.org/10.1101/gad.447007
|
31 |
E Guccione, C Bassi, F Casadio, F Martinato, M Cesaroni, H Schuchlautz, B Luscher, B Amati. Methylation of histone H3R2 by PRMT6 and H3K4 by an MLL complex are mutually exclusive. Nature 2007; 449(7164): 933–937
https://doi.org/10.1038/nature06166
|
32 |
S Kim, NH Kim, JE Park, JW Hwang, N Myung, KT Hwang, YA Kim, CY Jang, YK Kim. PRMT6-mediated H3R2me2a guides Aurora B to chromosome arms for proper chromosome segregation. Nat Commun 2020; 11(1): 612
https://doi.org/10.1038/s41467-020-14511-w
|
33 |
L Liu, X Zhang, H Ding, X Liu, D Cao, Y Liu, J Liu, C Lin, N Zhang, G Wang, J Hou, B Huang, Y Zhang, J Lu. Arginine and lysine methylation of MRPS23 promotes breast cancer metastasis through regulating OXPHOS. Oncogene 2021; 40(20): 3548–3563
https://doi.org/10.1038/s41388-021-01785-7
|
34 |
WW Yan, YL Liang, QX Zhang, D Wang, MZ Lei, J Qu, XH He, QY Lei, YP Wang. Arginine methylation of SIRT7 couples glucose sensing with mitochondria biogenesis. EMBO Rep 2018; 19(12): e46377
https://doi.org/10.15252/embr.201846377
|
35 |
TL Wong, KY Ng, KV Tan, LH Chan, L Zhou, N Che, RLC Hoo, TK Lee, S Richard, CM Lo, K Man, PL Khong, S Ma. CRAF methylation by PRMT6 regulates aerobic glycolysis-driven hepatocarcinogenesis via ERK-dependent PKM2 nuclear relocalization and activation. Hepatology 2020; 71(4): 1279–1296
https://doi.org/10.1002/hep.30923
|
36 |
H Wang, B Xu, J Shi. N6-methyladenosine METTL3 promotes the breast cancer progression via targeting Bcl-2. Gene 2020; 722: 144076
https://doi.org/10.1016/j.gene.2019.144076
|
37 |
PY Bhattarai, G Kim, SC Lim, R Mariappan, T Ohn, HS Choi. METTL3 stabilization by PIN1 promotes breast tumorigenesis via enhanced m6A-dependent translation. Oncogene 2023; 42(13): 1010–1023
https://doi.org/10.1038/s41388-023-02617-6
|
38 |
D Ouyang, T Hong, M Fu, Y Li, L Zeng, Q Chen, H He, Y Wen, Y Cheng, M Zhou, Q Zou, W Yi. METTL3 depletion contributes to tumour progression and drug resistance via N6 methyladenosine-dependent mechanism in HR+HER2-breast cancer. Breast Cancer Res 2023; 25(1): 19
https://doi.org/10.1186/s13058-022-01598-w
|
39 |
C Zhang, WI Zhi, H Lu, D Samanta, I Chen, E Gabrielson, GL Semenza. Hypoxia-inducible factors regulate pluripotency factor expression by ZNF217- and ALKBH5-mediated modulation of RNA methylation in breast cancer cells. Oncotarget 2016; 7(40): 64527–64542
https://doi.org/10.18632/oncotarget.11743
|
40 |
H Liu, H Lyu, G Jiang, D Chen, S Ruan, S Liu, L Zhou, M Yang, S Zeng, Z He, H Wang, H Li, G Zheng, B Liu. ALKBH5-mediated m6A demethylation of GLUT4 mRNA promotes glycolysis and resistance to HER2-targeted therapy in breast cancer. Cancer Res 2022; 82(21): 3974–3986
https://doi.org/10.1158/0008-5472.CAN-22-0800
|
41 |
PJ Gong, YC Shao, Y Yang, WJ Song, X He, YF Zeng, SR Huang, L Wei, JW Zhang. Analysis of N6-Methyladenosine methyltransferase reveals METTL14 and ZC3H13 as tumor suppressor genes in breast cancer. Front Oncol 2020; 10: 578963
https://doi.org/10.3389/fonc.2020.578963
|
42 |
XF Dong, Y Wang, BF Huang, GN Hu, JK Shao, Q Wang, CH Tang, CQ Wang. Downregulated METTL14 expression correlates with breast cancer tumor grade and molecular classification. BioMed Res Int 2020; 2020: 8823270
https://doi.org/10.1155/2020/8823270
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|