|
|
Potential of electron transfer and its application in dictating routes of biochemical processes associated with metabolic reprogramming |
Ronghui Yang1,3, Guoguang Ying4,5,6( ), Binghui Li1,2,3( ) |
1. Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing 100069, China 2. Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China 3. Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing 100069, China 4. Department of Cancer Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China 5. Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China 6. National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China |
|
|
Abstract Metabolic reprogramming, such as abnormal utilization of glucose, addiction to glutamine, and increased de-novo lipid synthesis, extensively occurs in proliferating cancer cells, but the underneath rationale has remained to be elucidated. Based on the concept of the degree of reduction of a compound, we have recently proposed a calculation termed as potential of electron transfer (PET), which is used to characterize the degree of electron redistribution coupled with metabolic transformations. When this calculation is combined with the assumed model of electron balance in a cellular context, the enforced selective reprogramming could be predicted by examining the net changes of the PET values associated with the biochemical pathways in anaerobic metabolism. Some interesting properties of PET in cancer cells were also discussed, and the model was extended to uncover the chemical nature underlying aerobic glycolysis that essentially results from energy requirement and electron balance. Enabling electron transfer could drive metabolic reprogramming in cancer metabolism. Therefore, the concept and model established on electron transfer could guide the treatment strategies of tumors and future studies on cellular metabolism.
|
Keywords
metabolic reprogramming
potential of electron transfer
cell proliferation
aerobic glycolysis
cancer metabolism
|
Corresponding Author(s):
Guoguang Ying,Binghui Li
|
Just Accepted Date: 21 June 2021
Online First Date: 26 July 2021
Issue Date: 01 November 2021
|
|
1 |
JS Flier, MM Mueckler, P Usher, HF Lodish. Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes. Science 1987; 235(4795): 1492–1495
https://doi.org/10.1126/science.3103217
pmid: 3103217
|
2 |
DR Wise, RJ DeBerardinis, A Mancuso, N Sayed, XY Zhang, HK Pfeiffer, I Nissim, E Daikhin, M Yudkoff, SB McMahon, CB Thompson. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA 2008; 105(48): 18782–18787
https://doi.org/10.1073/pnas.0810199105
pmid: 19033189
|
3 |
DR Wise, CB Thompson. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci 2010; 35(8): 427–433
https://doi.org/10.1016/j.tibs.2010.05.003
pmid: 20570523
|
4 |
C Sun, T Li, X Song, L Huang, Q Zang, J Xu, N Bi, G Jiao, Y Hao, Y Chen, R Zhang, Z Luo, X Li, L Wang, Z Wang, Y Song, J He, Z Abliz. Spatially resolved metabolomics to discover tumor-associated metabolic alterations. Proc Natl Acad Sci USA 2019; 116(1): 52–57
https://doi.org/10.1073/pnas.1808950116
pmid: 30559182
|
5 |
M Jain, R Nilsson, S Sharma, N Madhusudhan, T Kitami, AL Souza, R Kafri, MW Kirschner, CB Clish, VK Mootha. Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 2012; 336(6084): 1040–1044
https://doi.org/10.1126/science.1218595
pmid: 22628656
|
6 |
J Zhu, CB Thompson. Metabolic regulation of cell growth and proliferation. Nat Rev Mol Cell Biol 2019; 20(7): 436–450
https://doi.org/10.1038/s41580-019-0123-5
pmid: 30976106
|
7 |
D Huang, C Li, H Zhang. Hypoxia and cancer cell metabolism. Acta Biochim Biophys Sin (Shanghai) 2014; 46(3): 214–219
https://doi.org/10.1093/abbs/gmt148
pmid: 24389642
|
8 |
O Warburg. On the origin of cancer cells. Science 1956; 123(3191): 309–314
https://doi.org/10.1126/science.123.3191.309
pmid: 13298683
|
9 |
CM Sousa, DE Biancur, X Wang, CJ Halbrook, MH Sherman, L Zhang, D Kremer, RF Hwang, AK Witkiewicz, H Ying, JM Asara, RM Evans, LC Cantley, CA Lyssiotis, AC Kimmelman. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 2016; 536(7617): 479–483
https://doi.org/10.1038/nature19084
pmid: 27509858
|
10 |
JR Mayers, C Wu, CB Clish, P Kraft, ME Torrence, BP Fiske, C Yuan, Y Bao, MK Townsend, SS Tworoger, SM Davidson, T Papagiannakopoulos, A Yang, TL Dayton, S Ogino, MJ Stampfer, EL Giovannucci, ZR Qian, DA Rubinson, J Ma, HD Sesso, JM Gaziano, BB Cochrane, S Liu, J Wactawski-Wende, JE Manson, MN Pollak, AC Kimmelman, A Souza, K Pierce, TJ Wang, RE Gerszten, CS Fuchs, MG Vander Heiden, BM Wolpin. Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development. Nat Med 2014; 20(10): 1193–1198
https://doi.org/10.1038/nm.3686
pmid: 25261994
|
11 |
M Tönjes, S Barbus, YJ Park, W Wang, M Schlotter, AM Lindroth, SV Pleier, AHC Bai, D Karra, RM Piro, J Felsberg, A Addington, D Lemke, I Weibrecht, V Hovestadt, CG Rolli, B Campos, S Turcan, D Sturm, H Witt, TA Chan, C Herold-Mende, R Kemkemer, R König, K Schmidt, WE Hull, SM Pfister, M Jugold, SM Hutson, C Plass, JG Okun, G Reifenberger, P Lichter, B Radlwimmer. BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1. Nat Med 2013; 19(7): 901–908
https://doi.org/10.1038/nm.3217
pmid: 23793099
|
12 |
F Loayza-Puch, K Rooijers, LC Buil, J Zijlstra, JF Oude Vrielink, R Lopes, AP Ugalde, P van Breugel, I Hofland, J Wesseling, O van Tellingen, A Bex, R Agami. Tumour-specific proline vulnerability uncovered by differential ribosome codon reading. Nature 2016; 530(7591): 490–494
https://doi.org/10.1038/nature16982
pmid: 26878238
|
13 |
W Liu, A Le, C Hancock, AN Lane, CV Dang, TW Fan, JM Phang. Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proc Natl Acad Sci USA 2012; 109(23): 8983–8988
https://doi.org/10.1073/pnas.1203244109
pmid: 22615405
|
14 |
KER Hollinshead, H Munford, KL Eales, C Bardella, C Li, C Escribano-Gonzalez, A Thakker, Y Nonnenmacher, K Kluckova, M Jeeves, R Murren, F Cuozzo, D Ye, G Laurenti, W Zhu, K Hiller, DJ Hodson, W Hua, IP Tomlinson, C Ludwig, Y Mao, DA Tennant. Oncogenic IDH1 mutations promote enhanced proline synthesis through PYCR1 to support the maintenance of mitochondrial redox homeostasis. Cell Rep 2018; 22(12): 3107–3114
https://doi.org/10.1016/j.celrep.2018.02.084
pmid: 29562167
|
15 |
AR Mullen, WW Wheaton, ES Jin, PH Chen, LB Sullivan, T Cheng, Y Yang, WM Linehan, NS Chandel, RJ DeBerardinis. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 2012; 481(7381): 385–388
https://doi.org/10.1038/nature10642
pmid: 22101431
|
16 |
CM Metallo, PA Gameiro, EL Bell, KR Mattaini, J Yang, K Hiller, CM Jewell, ZR Johnson, DJ Irvine, L Guarente, JK Kelleher, MG Vander Heiden, O Iliopoulos, G Stephanopoulos. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 2012; 481(7381): 380–384
https://doi.org/10.1038/nature10602
pmid: 22101433
|
17 |
DR Wise, PS Ward, JE Shay, JR Cross, JJ Gruber, UM Sachdeva, JM Platt, RG DeMatteo, MC Simon, CB Thompson. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci USA 2011; 108(49): 19611–19616
https://doi.org/10.1073/pnas.1117773108
pmid: 22106302
|
18 |
Y Wang, C Bai, Y Ruan, M Liu, Q Chu, L Qiu, C Yang, B Li. Coordinative metabolism of glutamine carbon and nitrogen in proliferating cancer cells under hypoxia. Nat Commun 2019; 10(1): 201
https://doi.org/10.1038/s41467-018-08033-9
pmid: 30643150
|
19 |
X Gao, SH Lin, F Ren, JT Li, JJ Chen, CB Yao, HB Yang, SX Jiang, GQ Yan, D Wang, Y Wang, Y Liu, Z Cai, YY Xu, J Chen, W Yu, PY Yang, QY Lei. Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia. Nat Commun 2016; 7(1): 11960
https://doi.org/10.1038/ncomms11960
pmid: 27357947
|
20 |
ZT Schug, J Vande Voorde, E Gottlieb. The metabolic fate of acetate in cancer. Nat Rev Cancer 2016; 16(11): 708–717
https://doi.org/10.1038/nrc.2016.87
pmid: 27562461
|
21 |
ZT Schug, B Peck, DT Jones, Q Zhang, S Grosskurth, IS Alam, LM Goodwin, E Smethurst, S Mason, K Blyth, L McGarry, D James, E Shanks, G Kalna, RE Saunders, M Jiang, M Howell, F Lassailly, MZ Thin, B Spencer-Dene, G Stamp, NJ van den Broek, G Mackay, V Bulusu, JJ Kamphorst, S Tardito, D Strachan, AL Harris, EO Aboagye, SE Critchlow, MJ Wakelam, A Schulze, E Gottlieb. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell 2015; 27(1): 57–71
https://doi.org/10.1016/j.ccell.2014.12.002
pmid: 25584894
|
22 |
JJ Kamphorst, MK Chung, J Fan, JD Rabinowitz. Quantitative analysis of acetyl-CoA production in hypoxic cancer cells reveals substantial contribution from acetate. Cancer Metab 2014; 2(1): 23
https://doi.org/10.1186/2049-3002-2-23
pmid: 25671109
|
23 |
SA Comerford, Z Huang, X Du, Y Wang, L Cai, AK Witkiewicz, H Walters, MN Tantawy, A Fu, HC Manning, JD Horton, RE Hammer, SL McKnight, BP Tu. Acetate dependence of tumors. Cell 2014; 159(7): 1591–1602
https://doi.org/10.1016/j.cell.2014.11.020
pmid: 25525877
|
24 |
LK Boroughs, RJ DeBerardinis. Metabolic pathways promoting cancer cell survival and growth. Nat Cell Biol 2015; 17(4): 351–359
https://doi.org/10.1038/ncb3124
pmid: 25774832
|
25 |
NN Pavlova, CB Thompson. The emerging hallmarks of cancer metabolism. Cell Metab 2016; 23(1): 27–47
https://doi.org/10.1016/j.cmet.2015.12.006
pmid: 26771115
|
26 |
A Vazquez, JJ Kamphorst, EK Markert, ZT Schug, S Tardito, E Gottlieb. Cancer metabolism at a glance. J Cell Sci 2016; 129(18): 3367–3373
https://doi.org/10.1242/jcs.181016
pmid: 27635066
|
27 |
M Liu, Y Wang, C Yang, Y Ruan, C Bai, Q Chu, Y Cui, C Chen, G Ying, B Li. Inhibiting both proline biosynthesis and lipogenesis synergistically suppresses tumor growth. J Exp Med 2020; 217(3): e20191226
https://doi.org/10.1084/jem.20191226
pmid: 31961917
|
28 |
B Alberts, A Johnson, J Lewis, M Raff, K Roberts, P Walter. Molecular Biology of the Cell. 5th edition. New York: Garland Science, 2008
|
29 |
DV Titov, V Cracan, RP Goodman, J Peng, Z Grabarek, VK Mootha. Complementation of mitochondrial electron transport chain by manipulation of the NAD+/NADH ratio. Science 2016; 352(6282): 231–235
https://doi.org/10.1126/science.aad4017
pmid: 27124460
|
30 |
LB Sullivan, DY Gui, AM Hosios, LN Bush, E Freinkman, MG Vander Heiden. Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells. Cell 2015; 162(3): 552–563
https://doi.org/10.1016/j.cell.2015.07.017
pmid: 26232225
|
31 |
K Birsoy, T Wang, WW Chen, E Freinkman, M Abu-Remaileh, DM Sabatini. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell 2015; 162(3): 540–551
https://doi.org/10.1016/j.cell.2015.07.016
pmid: 26232224
|
32 |
AR Mullen, Z Hu, X Shi, L Jiang, LK Boroughs, Z Kovacs, R Boriack, D Rakheja, LB Sullivan, WM Linehan, NS Chandel, RJ DeBerardinis. Oxidation of α-ketoglutarate is required for reductive carboxylation in cancer cells with mitochondrial defects. Cell Rep 2014; 7(5): 1679–1690
https://doi.org/10.1016/j.celrep.2014.04.037
pmid: 24857658
|
33 |
M Li, Y Lu, Y Li, L Tong, XC Gu, J Meng, Y Zhu, L Wu, M Feng, N Tian, P Zhang, T Xu, SH Lin, X Tong. Transketolase deficiency protects the liver from DNA damage by increasing levels of ribose 5-phosphate and nucleotides. Cancer Res 2019; 79(14): 3689–3701
https://doi.org/10.1158/0008-5472.CAN-18-3776
pmid: 31101762
|
34 |
Q Li, T Qin, Z Bi, H Hong, L Ding, J Chen, W Wu, X Lin, W Fu, F Zheng, Y Yao, ML Luo, PE Saw, GM Wulf, X Xu, E Song, H Yao, H Hu. Rac1 activates non-oxidative pentose phosphate pathway to induce chemoresistance of breast cancer. Nat Commun 2020; 11(1): 1456
https://doi.org/10.1038/s41467-020-15308-7
pmid: 32193458
|
35 |
CF Labuschagne, NJ van den Broek, GM Mackay, KH Vousden, OD Maddocks. Serine, but not glycine, supports one-carbon metabolism and proliferation of cancer cells. Cell Rep 2014; 7(4): 1248–1258
https://doi.org/10.1016/j.celrep.2014.04.045
pmid: 24813884
|
36 |
OD Maddocks, CR Berkers, SM Mason, L Zheng, K Blyth, E Gottlieb, KH Vousden. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature 2013; 493(7433): 542–546
https://doi.org/10.1038/nature11743
pmid: 23242140
|
37 |
SP Gravel, L Hulea, N Toban, E Birman, MJ Blouin, M Zakikhani, Y Zhao, I Topisirovic, J St-Pierre, M Pollak. Serine deprivation enhances antineoplastic activity of biguanides. Cancer Res 2014; 74(24): 7521–7533
https://doi.org/10.1158/0008-5472.CAN-14-2643-T
pmid: 25377470
|
38 |
ODK Maddocks, D Athineos, EC Cheung, P Lee, T Zhang, NJF van den Broek, GM Mackay, CF Labuschagne, D Gay, F Kruiswijk, J Blagih, DF Vincent, KJ Campbell, F Ceteci, OJ Sansom, K Blyth, KH Vousden. Modulating the therapeutic response of tumours to dietary serine and glycine starvation. Nature 2017; 544(7650): 372–376
https://doi.org/10.1038/nature22056
pmid: 28425994
|
39 |
L Yang, JC Garcia Canaveras, Z Chen, L Wang, L Liang, C Jang, JA Mayr, Z Zhang, JM Ghergurovich, L Zhan, S Joshi, Z Hu, MR McReynolds, X Su, E White, RJ Morscher, JD Rabinowitz. Serine catabolism feeds NADH when respiration is impaired. Cell Metab 2020; 31(4): 809–821.e6
https://doi.org/10.1016/j.cmet.2020.02.017
pmid: 32187526
|
40 |
MV Liberti, JW Locasale. The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci 2016; 41(3): 211–218
https://doi.org/10.1016/j.tibs.2015.12.001
pmid: 26778478
|
41 |
DG Kilburn, MD Lilly, FC Webb. The energetics of mammalian cell growth. J Cell Sci 1969; 4(3): 645–654
https://doi.org/10.1242/jcs.4.3.645
pmid: 5817088
|
42 |
N Slavov, BA Budnik, D Schwab, EM Airoldi, A van Oudenaarden. Constant growth rate can be supported by decreasing energy flux and increasing aerobic glycolysis. Cell Rep 2014; 7(3): 705–714
https://doi.org/10.1016/j.celrep.2014.03.057
pmid: 24767987
|
43 |
A Luengo, Z Li, DY Gui, LB Sullivan, M Zagorulya, BT Do, R Ferreira, A Naamati, A Ali, CA Lewis, CJ Thomas, S Spranger, NJ Matheson, MG Vander Heiden. Increased demand for NAD+ relative to ATP drives aerobic glycolysis. Mol Cell 2021; 81(4): 691–707.e6
https://doi.org/10.1016/j.molcel.2020.12.012
pmid: 33382985
|
44 |
T Epstein, L Xu, RJ Gillies, RA Gatenby. Separation of metabolic supply and demand: aerobic glycolysis as a normal physiological response to fluctuating energetic demands in the membrane. Cancer Metab 2014; 2(1): 7
https://doi.org/10.1186/2049-3002-2-7
pmid: 24982758
|
45 |
Z Dai, AA Shestov, L Lai, JW Locasale. A flux balance of glucose metabolism clarifies the requirements of the Warburg effect. Biophys J 2016; 111(5): 1088–1100
https://doi.org/10.1016/j.bpj.2016.07.028
pmid: 27602736
|
46 |
M Shuler, F Kargi, M DeLisa. Bioprocess Engineering: Basic Concepts. 3rd edition. Upper Saddle River, NJ: Prentice Hall, 2017
|
47 |
JM Phang, W Liu, C Hancock, KJ Christian. The proline regulatory axis and cancer. Front Oncol 2012; 2: 60
https://doi.org/10.3389/fonc.2012.00060
pmid: 22737668
|
48 |
JM Berg, JL Tymoczko, L Stryer. Biochemistry. 7th edition. New York: W.H. Freeman, 2012
|
49 |
K Glenn, KS Smith. Allosteric regulation of Lactobacillus plantarum xylulose 5-phosphate/fructose 6-phosphate phosphoketolase (Xfp). J Bacteriol 2015; 197(7): 1157–1163
https://doi.org/10.1128/JB.02380-14
pmid: 25605308
|
50 |
L Tirinato, F Pagliari, T Limongi, M Marini, A Falqui, J Seco, P Candeloro, C Liberale, E Di Fabrizio. An overview of lipid droplets in cancer and cancer stem cells. Stem Cells Int 2017; 2017: 1656053
https://doi.org/10.1155/2017/1656053
pmid: 28883835
|
51 |
Q Liu, Q Luo, A Halim, G Song. Targeting lipid metabolism of cancer cells: a promising therapeutic strategy for cancer. Cancer Lett 2017; 401: 39–45
https://doi.org/10.1016/j.canlet.2017.05.002
pmid: 28527945
|
52 |
G Medes, A Thomas, S Weinhouse. Metabolism of neoplastic tissue. IV. A study of lipid synthesis in neoplastic tissue slices in vitro. Cancer Res 1953; 13(1): 27–29
pmid: 13032945
|
53 |
M Ookhtens, R Kannan, I Lyon, N Baker. Liver and adipose tissue contributions to newly formed fatty acids in an ascites tumor. Am J Physiol 1984; 247(1 Pt 2): R146–R153
pmid: 6742224
|
54 |
S Balaban, ZD Nassar, AY Zhang, E Hosseini-Beheshti, MM Centenera, M Schreuder, HM Lin, A Aishah, B Varney, F Liu-Fu, LS Lee, SR Nagarajan, RF Shearer, RA Hardie, NL Raftopulos, MS Kakani, DN Saunders, J Holst, LG Horvath, LM Butler, AJ Hoy. Extracellular fatty acids are the major contributor to lipid synthesis in prostate cancer. Mol Cancer Res 2019; 17(4): 949–962
https://doi.org/10.1158/1541-7786.MCR-18-0347
pmid: 30647103
|
55 |
J Garcia-Bermudez, L Baudrier, EC Bayraktar, Y Shen, K La, R Guarecuco, B Yucel, D Fiore, B Tavora, E Freinkman, SH Chan, C Lewis, W Min, G Inghirami, DM Sabatini, K Birsoy. Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death. Nature 2019; 567(7746): 118–122
https://doi.org/10.1038/s41586-019-0945-5
pmid: 30760928
|
56 |
W Palm, CB Thompson. Nutrient acquisition strategies of mammalian cells. Nature 2017; 546(7657): 234–242
https://doi.org/10.1038/nature22379
pmid: 28593971
|
57 |
ZT Schafer, AR Grassian, L Song, Z Jiang, Z Gerhart-Hines, HY Irie, S Gao, P Puigserver, JS Brugge. Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature 2009; 461(7260): 109–113
https://doi.org/10.1038/nature08268
pmid: 19693011
|
58 |
CL Buchheit, KJ Weigel, ZT Schafer. Cancer cell survival during detachment from the ECM: multiple barriers to tumour progression. Nat Rev Cancer 2014; 14(9): 632–641
https://doi.org/10.1038/nrc3789
pmid: 25098270
|
59 |
CK Lee, SH Jeong, C Jang, H Bae, YH Kim, I Park, SK Kim, GY Koh. Tumor metastasis to lymph nodes requires YAP-dependent metabolic adaptation. Science 2019; 363(6427): 644–649
https://doi.org/10.1126/science.aav0173
pmid: 30733421
|
60 |
S Ganapathy-Kanniappan, JF Geschwind. Tumor glycolysis as a target for cancer therapy: progress and prospects. Mol Cancer 2013; 12(1): 152
https://doi.org/10.1186/1476-4598-12-152
pmid: 24298908
|
61 |
WH Koppenol, PL Bounds, CV Dang. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer 2011; 11(5): 325–337
https://doi.org/10.1038/nrc3038
pmid: 21508971
|
62 |
G Hatzivassiliou, F Zhao, DE Bauer, C Andreadis, AN Shaw, D Dhanak, SR Hingorani, DA Tuveson, CB Thompson. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 2005; 8(4): 311–321
https://doi.org/10.1016/j.ccr.2005.09.008
pmid: 16226706
|
63 |
RU Svensson, SJ Parker, LJ Eichner, MJ Kolar, M Wallace, SN Brun, PS Lombardo, JL Van Nostrand, A Hutchins, L Vera, L Gerken, J Greenwood, S Bhat, G Harriman, WF Westlin, HJ Harwood Jr, A Saghatelian, R Kapeller, CM Metallo, RJ Shaw. Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small-cell lung cancer in preclinical models. Nat Med 2016; 22(10): 1108–1119
https://doi.org/10.1038/nm.4181
pmid: 27643638
|
64 |
JE Stine, H Guo, X Sheng, X Han, MN Schointuch, TP Gilliam, PA Gehrig, C Zhou, VL Bae-Jump. The HMG-CoA reductase inhibitor, simvastatin, exhibits anti-metastatic and anti-tumorigenic effects in ovarian cancer. Oncotarget 2016; 7(1): 946–960
https://doi.org/10.18632/oncotarget.5834
pmid: 26503475
|
65 |
UE Martinez-Outschoorn, M Peiris-Pages, RG Pestell, F Sotgia, MP Lisanti. Cancer metabolism: a therapeutic perspective. Nat Rev Clin Oncol 2017; 14(1): 11–31
pmid: 27141887
|
66 |
JR Doherty, JL Cleveland. Targeting lactate metabolism for cancer therapeutics. J Clin Invest 2013; 123(9): 3685–3692
https://doi.org/10.1172/JCI69741
pmid: 23999443
|
67 |
RC Sun, NC Denko. Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth. Cell Metab 2014; 19(2): 285–292
https://doi.org/10.1016/j.cmet.2013.11.022
pmid: 24506869
|
68 |
JW Kim, I Tchernyshyov, GL Semenza, CV Dang. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 2006; 3(3): 177–185
https://doi.org/10.1016/j.cmet.2006.02.002
pmid: 16517405
|
69 |
SK Shukla, V Purohit, K Mehla, V Gunda, NV Chaika, E Vernucci, RJ King, J Abrego, GD Goode, A Dasgupta, AL Illies, T Gebregiworgis, B Dai, JJ Augustine, D Murthy, KS Attri, O Mashadova, PM Grandgenett, R Powers, QP Ly, AJ Lazenby, JL Grem, F Yu, JM Matés, JM Asara, JW Kim, JH Hankins, C Weekes, MA Hollingsworth, NJ Serkova, AR Sasson, JB Fleming, JM Oliveto, CA Lyssiotis, LC Cantley, L Berim, PK Singh. MUC1 and HIF-1α signaling crosstalk induces anabolic glucose metabolism to impart gemcitabine resistance to pancreatic cancer. Cancer Cell 2017; 32(1): 71–87.e7
https://doi.org/10.1016/j.ccell.2017.06.004
pmid: 28697344
|
70 |
E Furuta, SK Pai, R Zhan, S Bandyopadhyay, M Watabe, YY Mo, S Hirota, S Hosobe, T Tsukada, K Miura, S Kamada, K Saito, M Iiizumi, W Liu, J Ericsson, K Watabe. Fatty acid synthase gene is up-regulated by hypoxia via activation of Akt and sterol regulatory element binding protein-1. Cancer Res 2008; 68(4): 1003–1011
https://doi.org/10.1158/0008-5472.CAN-07-2489
pmid: 18281474
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|