Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2024, Vol. 18 Issue (4) : 571-596    https://doi.org/10.1007/s11684-023-1038-2
Epigenetics and environmental health
Min Zhang1, Ting Hu1, Tianyu Ma1,2, Wei Huang2(), Yan Wang1,2()
1. Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
2. Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
 Download: PDF(3383 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Epigenetic modifications including DNA methylation, histone modifications, chromatin remodeling, and RNA modifications complicate gene regulation and heredity and profoundly impact various physiological and pathological processes. In recent years, accumulating evidence indicates that epigenetics is vulnerable to environmental changes and regulates the growth, development, and diseases of individuals by affecting chromatin activity and regulating gene expression. Environmental exposure or induced epigenetic changes can regulate the state of development and lead to developmental disorders, aging, cardiovascular disease, Alzheimer’s disease, cancers, and so on. However, epigenetic modifications are reversible. The use of specific epigenetic inhibitors targeting epigenetic changes in response to environmental exposure is useful in disease therapy. Here, we provide an overview of the role of epigenetics in various diseases. Furthermore, we summarize the mechanism of epigenetic alterations induced by different environmental exposures, the influence of different environmental exposures, and the crosstalk between environmental variation epigenetics, and genes that are implicated in the body’s health. However, the interaction of multiple factors and epigenetics in regulating the initiation and progression of various diseases complicates clinical treatments. We discuss some commonly used epigenetic drugs targeting epigenetic modifications and methods to prevent or relieve various diseases regulated by environmental exposure and epigenetics through diet.

Keywords epigenetics      environmental exposure      health      prevention and therapy     
Corresponding Author(s): Wei Huang,Yan Wang   
Just Accepted Date: 07 February 2024   Online First Date: 24 May 2024    Issue Date: 30 August 2024
 Cite this article:   
Min Zhang,Ting Hu,Tianyu Ma, et al. Epigenetics and environmental health[J]. Front. Med., 2024, 18(4): 571-596.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-023-1038-2
https://academic.hep.com.cn/fmd/EN/Y2024/V18/I4/571
Fig.1  Epigenetic modifications. Epigenetic modifications include chromatin remodeling, DNA methylation, histone modifications (histone methylation (Me), acetylation (Ac), phosphorylation (P), ubiquitylation (Ub), ADP ribosylation (Ar), lactylation (La), sumoylation (Su), citrullination (Cit)), RNA modifications (m6A modifications and noncoding (nc) RNA).
Fig.2  Epigenetic modifications influence health by regulating gene expression. Epigenetic modifications such as chromatin remodeling, DNA methylation, histone modifications, and RNA modifications can regulate gene expression through permissive or repressive modifications.
Fig.3  Environmental exposure influences health through epigenetic regulation of gene expression. Environmental exposure to air pollution, light pollution, smoking, alcohol, and sugar influences epigenetic modifications that further regulate gene expression by permissive or repressive modifications to affect the overall health of the human body.
Fig.4  DNA methylation induced by environmental exposure. In the process of DNA demethylation, passive DNA demethylation, wherein methylated cytosines are diluted in the genome owing to the loss of methylation enzymes. In the process of DNA demethylation, 5mC is initially oxidized to 5-hydroxymethyl cytosine (5hmC), then oxidized to 5-formylcytosine (5fC), further oxidized to 5-carboxycytosine (5caC). Thymine DNA glycosylase (TDG) removes 5fC and 5caC from the DNA to produce unmodified C.
Fig.5  Histone modification state changes induced by environmental factors. Changes in histone modification status is one of the key links between the interaction of the body and environmental factors. Various environmental factors can influence the histone modification status of cells. This mainly affects the methylation and acetylation levels of histones H3 and H4 that regulate the expression of downstream proteins and signaling pathways, and ultimately realize the cell response to environmental factors.
Fig.6  Chromatin remodeling induced by environmental exposure. Histone deacetylases (HDACs), histone acetyltransferases (HATs), histone demethylases (HDMs), histone methyltransferases (HMTs), and DNA methyltransferases (DNMTs) regulate gene expression by modifying histones or DNA, and ATP-dependent chromatin remodelers participate in regulating the condensation and relaxation of chromatin after environmental exposure.
Fig.7  RNA modification induced by environmental exposure. The adenosine (A) bases residing in mRNA (ZBTB4, TP53, IFNB1, and ANLKLE) can be methylated by the core component of the METTL3–METTL14–WTAP complex or METTL16 alone and other regulatory cofactors to form N6-methyladenosine (m6A) after environmental exposure. S-Adenosyl methionine (SAM) is a methyl donor in enzymatic reactions. m6A of mRNA can be removed by m6A eraser proteins (FTO or ALKBH5) or recognized by m6A binding proteins to further affect mRNA fate in response to environmental exposure. Demethylation of mRNA requires α-ketoglutaric acid as a cofactor. JHDM, Jumonji domain-containing histone demethylase; TET1/2, ten-11 translocation methylcytosine dioxygenase 1/2; α-KG, α-ketoglutarate. Noncoding RNAs such as microRNAs and lncRNAs are methylated and affect target genes under certain environmental conditions.
Fig.8  Pb exposure influences disease initiation and progression. Pb exposure influences various gene expressions through different signal pathways or genes and epigenetics crosstalk, further regulating the initiation and progression of diseases.
Drug classCompoundTargetMechanismDiseaseReference/clinical trial number
DNMTiC02SPan-DNMTEnzymatic inhibitionBreast cancer[175]
AzacitidinePan-DNMTEnzymatic inhibitionMyelodysplastic syndrome (MDS) Acute myelogenous leukemia (AML)NCT01995578
DecitabinePan-DNMTEnzymatic inhibitionLiver metastasis colorectal cancerNCT02316028
RG108Pan-DNMTGenome instabilityEmbryo development[176]
FdcydPan-DNMTEnzymatic inhibition induces DNA damageSolid tumorNCT00978250
CM272Pan-DNMTInhibits cell proliferation and promotes apoptosisBladder cancer[177]
Bobcat339TET1/2Inhibition of enzyme functionNasopharyngeal carcinoma, Parkinson’s disease[178]
HDACiVorinostat (SAHA)HDACEnzymatic inhibitionLeiomyosarcoma endometrial stromal tumorsNCT03509207
Dacinostat (LAQ824)HDACEnzymatic inhibitionNon-small cell lung cancer, colorectal cancer[179]
EPZ005687EZH2/PRC2Enzymatic inhibitionEmbryo development[180]
Curcuminp300/HDACInduces apoptosis and cell cycle arrestSolid tumor and acute myeloid leukemiaNCT03211104
PRMTiMS023I-type PRMTsEnzymatic inhibitionLung cancer[181]
DOT1LiEPZ5676DOT1LS-adenosyl methionine competitive inhibitorAcute myeloid leukemiaNCT03701295
JMJD3/UTXiGSKJ4 H-ClJMJD3/UTXEnzymatic inhibitionMammalian neurogenesis[182]
FTOiR-2HGFTOSuppress demethylationLeukemia and glioma[183]
METTL3iSTM2457METTL3Enzymatic inhibitionAcute myeloid leukemia (AML)[184]
Tab.1  Common epigenetic inhibitors targeting epigenetic modification alterations induced by environmental exposure
1 CH Waddington. The epigenotype. Int J Epidemiol 2012; 41(1): 10–13
https://doi.org/10.1093/ije/dyr184
2 AP Feinberg. The key role of epigenetics in human disease prevention and mitigation. N Engl J Med 2018; 378(14): 1323–1334
https://doi.org/10.1056/NEJMra1402513
3 I Loughland, A Little, F Seebacher. DNA methyltransferase 3a mediates developmental thermal plasticity. BMC Biol 2021; 19(1): 11
https://doi.org/10.1186/s12915-020-00942-w
4 EM Martin, RC Fry. Environmental influences on the epigenome: exposure-associated DNA methylation in human populations. Annu Rev Public Health 2018; 39(1): 309–333
https://doi.org/10.1146/annurev-publhealth-040617-014629
5 K Skvortsova, N Iovino, O Bogdanović. Functions and mechanisms of epigenetic inheritance in animals. Nat Rev Mol Cell Biol 2018; 19(12): 774–790
https://doi.org/10.1038/s41580-018-0074-2
6 A Nishiyama, M Nakanishi. Navigating the DNA methylation landscape of cancer. Trends Genet 2021; 37(11): 1012–1027
https://doi.org/10.1016/j.tig.2021.05.002
7 PA Jones. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 2012; 13(7): 484–492
https://doi.org/10.1038/nrg3230
8 K Skvortsova, C Stirzaker, P Taberlay. The DNA methylation landscape in cancer. Essays Biochem 2019; 63(6): 797–811
https://doi.org/10.1042/EBC20190037
9 L Fontana, S Tabano, S Maitz, P Colapietro, E Garzia, AG Gerli, SM Sirchia, M Miozzo. Clinical and molecular diagnosis of Beckwith–Wiedemann syndrome with single- or multi-locus imprinting disturbance. Int J Mol Sci 2021; 22(7): 3445
https://doi.org/10.3390/ijms22073445
10 L Wu, Y Zhang, J Ren. Epigenetic modification in alcohol use disorder and alcoholic cardiomyopathy: from pathophysiology to therapeutic opportunities. Metabolism 2021; 125: 154909
https://doi.org/10.1016/j.metabol.2021.154909
11 ZZ Zhang, EE Lee, J Sudderth, Y Yue, A Zia, D Glass, RJ Deberardinis, RC Wang. Glutathione depletion, pentose phosphate pathway activation, and hemolysis in erythrocytes protecting cancer cells from vitamin C-induced oxidative stress. J Biol Chem 2016; 291(44): 22861–22867
https://doi.org/10.1074/jbc.C116.748848
12 S Li, FE Garrett-Bakelman, SS Chung, MA Sanders, T Hricik, F Rapaport, J Patel, R Dillon, P Vijay, AL Brown, AE Perl, J Cannon, L Bullinger, S Luger, M Becker, ID Lewis, LB To, R Delwel, B Löwenberg, H Döhner, K Döhner, ML Guzman, DC Hassane, GJ Roboz, D Grimwade, PJ Valk, RJ D’Andrea, M Carroll, CY Park, D Neuberg, R Levine, AM Melnick, CE Mason. Distinct evolution and dynamics of epigenetic and genetic heterogeneity in acute myeloid leukemia. Nat Med 2016; 22(7): 792–799
https://doi.org/10.1038/nm.4125
13 H Pan, Y Jiang, M Boi, F Tabbò, D Redmond, K Nie, M Ladetto, A Chiappella, L Cerchietti, R Shaknovich, AM Melnick, GG Inghirami, W Tam, O Elemento. Epigenomic evolution in diffuse large B-cell lymphomas. Nat Commun 2015; 6(1): 6921
https://doi.org/10.1038/ncomms7921
14 F Recillas-Targa. Cancer epigenetics: an overview. Arch Med Res 2022; 53(8): 732–740
https://doi.org/10.1016/j.arcmed.2022.11.003
15 KI Tong, S Yoon, K Isaev, M Bakhtiari, T Lackraj, MY He, J Joynt, A Silva, MC Xu, GG Privé, HH He, RE Tiedemann, EA Chavez, LC Chong, M Boyle, DW Scott, C Steidl, R Kridel. Combined EZH2 inhibition and IKAROS degradation leads to enhanced antitumor activity in diffuse large B-cell lymphoma. Clin Cancer Res 2021; 27(19): 5401–5414
https://doi.org/10.1158/1078-0432.CCR-20-4027
16 Y Fang, G Liao, B Yu. LSD1/KDM1A inhibitors in clinical trials: advances and prospects. J Hematol Oncol 2019; 12(1): 129
https://doi.org/10.1186/s13045-019-0811-9
17 K Bajbouj, A Al-Ali, RK Ramakrishnan, M Saber-Ayad, Q Hamid. Histone modification in NSCLC: molecular mechanisms and therapeutic targets. Int J Mol Sci 2021; 22(21): 11701
https://doi.org/10.3390/ijms222111701
18 JC Pardo, de Porras V Ruiz, J Gil, A Font, M Puig-Domingo, M Jordà. Lipid metabolism and epigenetics crosstalk in prostate cancer. Nutrients 2022; 14(4): 851
https://doi.org/10.3390/nu14040851
19 P Nombela, B Miguel-López, S Blanco. The role of m6A, m5C and Ψ RNA modifications in cancer: novel therapeutic opportunities. Mol Cancer 2021; 20(1): 18
https://doi.org/10.1186/s12943-020-01263-w
20 I Barbieri, T Kouzarides. Role of RNA modifications in cancer. Nat Rev Cancer 2020; 20(6): 303–322
https://doi.org/10.1038/s41568-020-0253-2
21 I Barbieri, K Tzelepis, L Pandolfini, J Shi, G Millán-Zambrano, SC Robson, D Aspris, V Migliori, AJ Bannister, N Han, Braekeleer E De, H Ponstingl, A Hendrick, CR Vakoc, GS Vassiliou, T Kouzarides. Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control. Nature 2017; 552(7683): 126–131
https://doi.org/10.1038/nature24678
22 LP Vu, BF Pickering, Y Cheng, S Zaccara, D Nguyen, G Minuesa, T Chou, A Chow, Y Saletore, M MacKay, J Schulman, C Famulare, M Patel, VM Klimek, FE Garrett-Bakelman, A Melnick, M Carroll, CE Mason, SR Jaffrey, MG Kharas. The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat Med 2017; 23(11): 1369–1376
https://doi.org/10.1038/nm.4416
23 JZ Ma, F Yang, CC Zhou, F Liu, JH Yuan, F Wang, TT Wang, QG Xu, WP Zhou, SH Sun. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N6-methyladenosine-dependent primary microRNA processing. Hepatology 2017; 65(2): 529–543
https://doi.org/10.1002/hep.28885
24 J Liu, MA Eckert, BT Harada, SM Liu, Z Lu, K Yu, SM Tienda, A Chryplewicz, AC Zhu, Y Yang, JT Huang, SM Chen, ZG Xu, XH Leng, XC Yu, J Cao, Z Zhang, J Liu, E Lengyel, C He. m6A mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer. Nat Cell Biol 2018; 20(9): 1074–1083
https://doi.org/10.1038/s41556-018-0174-4
25 B Huang, C Jiang, R Zhang. Epigenetics: the language of the cell?. Epigenomics 2014; 6(1): 73–88
https://doi.org/10.2217/epi.13.72
26 Y Zhang, H Yang, Y Long, Y Zhang, R Chen, J Shi, J Chen. circRNA N6-methyladenosine methylation in preeclampsia and the potential role of N6-methyladenosine-modified circPAPPA2 in trophoblast invasion. Sci Rep 2021; 11(1): 24357
https://doi.org/10.1038/s41598-021-03662-5
27 L Qiu, GF Zhang, L Yu, HY Wang, XJ Jia, TJ Wang. Novel oncogenic and chemoresistance-inducing functions of resistin in ovarian cancer cells require miRNAs-mediated induction of epithelial-to-mesenchymal transition. Sci Rep 2018; 8(1): 12522
https://doi.org/10.1038/s41598-018-30978-6
28 X Lin, S Zuo, R Luo, Y Li, G Yu, Y Zou, Y Zhou, Z Liu, Y Liu, Y Hu, Y Xie, W Fang, Z Liu. HBX-induced miR-5188 impairs FOXO1 to stimulate β-catenin nuclear translocation and promotes tumor stemness in hepatocellular carcinoma. Theranostics 2019; 9(25): 7583–7598
https://doi.org/10.7150/thno.37717
29 Y Zou, X Lin, J Bu, Z Lin, Y Chen, Y Qiu, H Mo, Y Tang, W Fang, Z Wu. Timeless-stimulated miR-5188-FOXO1/β-catenin-c-Jun feedback loop promotes stemness via ubiquitination of β-catenin in breast cancer. Mol Ther 2020; 28(1): 313–327
https://doi.org/10.1016/j.ymthe.2019.08.015
30 A Weisbeck, RJ Jansen. Nutrients and the pancreas: an epigenetic perspective. Nutrients 2017; 9(3): 283
https://doi.org/10.3390/nu9030283
31 L Garcia-Martinez, Y Zhang, Y Nakata, HL Chan, L Morey. Epigenetic mechanisms in breast cancer therapy and resistance. Nat Commun 2021; 12(1): 1786
https://doi.org/10.1038/s41467-021-22024-3
32 FD Fuchs, PK Whelton. High blood pressure and cardiovascular disease. Hypertension 2020; 75(2): 285–292
https://doi.org/10.1161/HYPERTENSIONAHA.119.14240
33 C Schiano, G Benincasa, M Franzese, N Della Mura, K Pane, M Salvatore, C Napoli. Epigenetic-sensitive pathways in personalized therapy of major cardiovascular diseases. Pharmacol Ther 2020; 210: 107514
https://doi.org/10.1016/j.pharmthera.2020.107514
34 H Tang, Z Zeng, C Shang, Q Li, J Liu. Epigenetic regulation in pathology of atherosclerosis: a novel perspective. Front Genet 2021; 12: 810689
https://doi.org/10.3389/fgene.2021.810689
35 MS Chen, RT Lee, JC Garbern. Senescence mechanisms and targets in the heart. Cardiovasc Res 2022; 118(5): 1173–1187
https://doi.org/10.1093/cvr/cvab161
36 A Schober, M Nazari-Jahantigh, Y Wei, K Bidzhekov, F Gremse, J Grommes, RT Megens, K Heyll, H Noels, M Hristov, S Wang, F Kiessling, EN Olson, C Weber. MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat Med 2014; 20(4): 368–376
https://doi.org/10.1038/nm.3487
37 L Renaud, LG Harris, SK Mani, H Kasiganesan, JC Chou, CF Baicu, A Van Laer, AW Akerman, RE Stroud, JA Jones, MR Zile, DR Menick. HDACs regulate miR-133a expression in pressure overload-induced cardiac fibrosis. Circ Heart Fail 2015; 8(6): 1094–1104
https://doi.org/10.1161/CIRCHEARTFAILURE.114.001781
38 C López-Otín, F Pietrocola, D Roiz-Valle, L Galluzzi, G Kroemer. Meta-hallmarks of aging and cancer. Cell Metab 2023; 35(1): 12–35
https://doi.org/10.1016/j.cmet.2022.11.001
39 W Zhang, J Qu, GH Liu, JCI Belmonte. The ageing epigenome and its rejuvenation. Nat Rev Mol Cell Biol 2020; 21(3): 137–150
https://doi.org/10.1038/s41580-019-0204-5
40 C Soto-Palma, LJ Niedernhofer, CD Faulk, X Dong. Epigenetics, DNA damage, and aging. J Clin Invest 2022; 132(16): e158446
https://doi.org/10.1172/JCI158446
41 S Horvath, K Raj. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet 2018; 19(6): 371–384
https://doi.org/10.1038/s41576-018-0004-3
42 A Jambhekar, A Dhall, Y Shi. Roles and regulation of histone methylation in animal development. Nat Rev Mol Cell Biol 2019; 20(10): 625–641
https://doi.org/10.1038/s41580-019-0151-1
43 Q Tan, BT Heijmans, JV Hjelmborg, M Soerensen, K Christensen, L Christiansen. Epigenetic drift in the aging genome: a ten-year follow-up in an elderly twin cohort. Int J Epidemiol 2016; 45(4): 1146–1158
https://doi.org/10.1093/ije/dyw132
44 M Kitada, Y Ogura, I Monno, D Koya. Sirtuins and type 2 diabetes: role in inflammation, oxidative stress, and mitochondrial function. Front Endocrinol (Lausanne) 2019; 10: 187
https://doi.org/10.3389/fendo.2019.00187
45 MF Fraga, M Esteller. Epigenetics and aging: the targets and the marks. Trends Genet 2007; 23(8): 413–418
https://doi.org/10.1016/j.tig.2007.05.008
46 S Maegawa, G Hinkal, HS Kim, L Shen, L Zhang, J Zhang, N Zhang, S Liang, LA Donehower, JP Issa. Widespread and tissue specific age-related DNA methylation changes in mice. Genome Res 2010; 20(3): 332–340
https://doi.org/10.1101/gr.096826.109
47 W Zhou, HQ Dinh, Z Ramjan, DJ Weisenberger, CM Nicolet, H Shen, PW Laird, BP Berman. DNA methylation loss in late-replicating domains is linked to mitotic cell division. Nat Genet 2018; 50(4): 591–602
https://doi.org/10.1038/s41588-018-0073-4
48 A Unnikrishnan, WM Freeman, J Jackson, JD Wren, H Porter, A Richardson. The role of DNA methylation in epigenetics of aging. Pharmacol Ther 2019; 195: 172–185
https://doi.org/10.1016/j.pharmthera.2018.11.001
49 A Moskalev, Z Guvatova, IA Lopes, CW Beckett, BK Kennedy, JP De Magalhaes, AA Makarov. Targeting aging mechanisms: pharmacological perspectives. Trends Endocrinol Metab 2022; 33(4): 266–280
https://doi.org/10.1016/j.tem.2022.01.007
50 Y Liu, MJ Aryee, L Padyukov, MD Fallin, E Hesselberg, A Runarsson, L Reinius, N Acevedo, M Taub, M Ronninger, K Shchetynsky, A Scheynius, J Kere, L Alfredsson, L Klareskog, TJ Ekström, AP Feinberg. Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nat Biotechnol 2013; 31(2): 142–147
https://doi.org/10.1038/nbt.2487
51 D Wu, D Hu, H Chen, G Shi, IS Fetahu, F Wu, K Rabidou, R Fang, L Tan, S Xu, H Liu, C Argueta, L Zhang, F Mao, G Yan, J Chen, Z Dong, R Lv, Y Xu, M Wang, Y Ye, S Zhang, D Duquette, S Geng, C Yin, CG Lian, GF Murphy, GK Adler, R Garg, L Lynch, P Yang, Y Li, F Lan, J Fan, Y Shi, YG Shi. Glucose-regulated phosphorylation of TET2 by AMPK reveals a pathway linking diabetes to cancer. Nature 2018; 559(7715): 637–641
https://doi.org/10.1038/s41586-018-0350-5
52 R Nativio, Y Lan, G Donahue, S Sidoli, A Berson, AR Srinivasan, O Shcherbakova, A Amlie-Wolf, J Nie, X Cui, C He, LS Wang, BA Garcia, JQ Trojanowski, NM Bonini, SL Berger. An integrated multi-omics approach identifies epigenetic alterations associated with Alzheimer’s disease. Nat Genet 2020; 52(10): 1024–1035
https://doi.org/10.1038/s41588-020-0696-0
53 J Gräff, D Rei, JS Guan, WY Wang, J Seo, KM Hennig, TJ Nieland, DM Fass, PF Kao, M Kahn, SC Su, A Samiei, N Joseph, SJ Haggarty, I Delalle, LH Tsai. An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature 2012; 483(7388): 222–226
https://doi.org/10.1038/nature10849
54 L Li, A Zhou, Y Wei, F Liu, P Li, R Fang, L Ma, S Zhang, L Wang, J Liu, HT Richard, Y Chen, H Wang, S Huang. Critical role of lncEPAT in coupling dysregulated EGFR pathway and histone H2A deubiquitination during glioblastoma tumorigenesis. Sci Adv 2022; 8(40): eabn2571
https://doi.org/10.1126/sciadv.abn2571
55 Q Liu, H Li, L Guo, Q Chen, X Gao, PH Li, N Tang, X Guo, F Deng, S Wu. Effects of short-term personal exposure to air pollution on platelet mitochondrial DNA methylation levels and the potential mitigation by L-arginine supplementation. J Hazard Mater 2021; 417: 125963
https://doi.org/10.1016/j.jhazmat.2021.125963
56 C Wang, R Chen, J Cai, J Shi, C Yang, LA Tse, H Li, Z Lin, X Meng, C Liu, Y Niu, Y Xia, Z Zhao, H Kan. Personal exposure to fine particulate matter and blood pressure: a role of angiotensin converting enzyme and its DNA methylation. Environ Int 2016; 94: 661–666
https://doi.org/10.1016/j.envint.2016.07.001
57 E Abraham, S Rousseaux, L Agier, L Giorgis-Allemand, J Tost, J Galineau, A Hulin, V Siroux, D Vaiman, MA Charles, B Heude, A Forhan, J Schwartz, F Chuffart, E Bourova-Flin, S Khochbin, R Slama, J; EDEN Mother-Child Cohort Study Group Lepeule. Pregnancy exposure to atmospheric pollution and meteorological conditions and placental DNA methylation. Environ Int 2018; 118: 334–347
https://doi.org/10.1016/j.envint.2018.05.007
58 D Wang, W Ruan, L Fan, H Xu, Q Song, H Diao, R He, Y Jin, A Zhang. Hypermethylation of Mig-6 gene promoter region inactivates its function, leading to EGFR/ERK signaling hyperphosphorylation, and is involved in arsenite-induced hepatic stellate cells activation and extracellular matrix deposition. J Hazard Mater 2022; 439: 129577
https://doi.org/10.1016/j.jhazmat.2022.129577
59 S Virani, KM Rentschler, M Nishijo, W Ruangyuttikarn, W Swaddiwudhipong, N Basu, LS Rozek. DNA methylation is differentially associated with environmental cadmium exposure based on sex and smoking status. Chemosphere 2016; 145: 284–290
https://doi.org/10.1016/j.chemosphere.2015.10.123
60 J Park, J Kim, E Kim, S Won, WJ Kim. Association between prenatal cadmium exposure and cord blood DNA methylation. Environ Res 2022; 212(Pt B): 113268
https://doi.org/10.1016/j.envres.2022.113268
61 F Hu, L Yin, F Dong, M Zheng, Y Zhao, S Fu, W Zhang, X Chen. Effects of long-term cadmium exposure on growth, antioxidant defense and DNA methylation in juvenile Nile tilapia (Oreochromis niloticus). Aquat Toxicol 2021; 241: 106014
https://doi.org/10.1016/j.aquatox.2021.106014
62 SMM Nakayama, H Nakata, Y Ikenaka, J Yabe, B Oroszlany, YB Yohannes, N Bortey-Sam, K Muzandu, K Choongo, T Kuritani, M Nakagawa, M Ishizuka. One year exposure to Cd- and Pb-contaminated soil causes metal accumulation and alteration of global DNA methylation in rats. Environ Pollut 2019; 252(Pt B): 1267–1276
https://doi.org/10.1016/j.envpol.2019.05.038
63 AK Bozack, SL Rifas-Shiman, BA Coull, AA Baccarelli, RO Wright, C Amarasiriwardena, DR Gold, E Oken, MF Hivert, A Cardenas. Prenatal metal exposure, cord blood DNA methylation and persistence in childhood: an epigenome-wide association study of 12 metals. Clin Epigenetics 2021; 13(1): 208
https://doi.org/10.1186/s13148-021-01198-z
64 J Zhang, J Zhang, M Li, Y Wu, Y Fan, Y Zhou, L Tan, Z Shao, H Shi. Methylation of RAR-β2, RASSF1A, and CDKN2A genes induced by nickel subsulfide and nickel-carcinogenesis in rats. Biomed Environ Sci 2011; 24(2): 163–171
65 J Yang, W Chen, X Li, J Sun, Q Guo, Z Wang. Relationship between urinary nickel and methylation of p15, p16 in workers exposed to nickel. J Occup Environ Med 2014; 56(5): 489–492
https://doi.org/10.1097/JOM.0000000000000168
66 I Ansari, G Raddatz, J Gutekunst, M Ridnik, D Cohen, M Abu-Remaileh, T Tuganbaev, H Shapiro, E Pikarsky, E Elinav, F Lyko, Y Bergman. The microbiota programs DNA methylation to control intestinal homeostasis and inflammation. Nat Microbiol 2020; 5(4): 610–619
https://doi.org/10.1038/s41564-019-0659-3
67 P Xu, S Berto, A Kulkarni, B Jeong, C Joseph, KH Cox, ME Greenberg, TK Kim, G Konopka, JS Takahashi. NPAS4 regulates the transcriptional response of the suprachiasmatic nucleus to light and circadian behavior. Neuron 2021; 109(20): 3268–3282.e6
https://doi.org/10.1016/j.neuron.2021.07.026
68 X Ji, H Yue, T Ku, Y Zhang, Y Yun, G Li, N Sang. Histone modification in the lung injury and recovery of mice in response to PM2.5 exposure. Chemosphere 2019; 220: 127–136
https://doi.org/10.1016/j.chemosphere.2018.12.079
69 M Luo, Y Xu, R Cai, Y Tang, MM Ge, ZH Liu, L Xu, F Hu, DY Ruan, HL Wang. Epigenetic histone modification regulates developmental lead exposure induced hyperactivity in rats. Toxicol Lett 2014; 225(1): 78–85
https://doi.org/10.1016/j.toxlet.2013.11.025
70 X Han, MN Alam, M Cao, X Wang, M Cen, M Tian, Y Lu, Q Huang. Low levels of perfluorooctanoic acid exposure activates steroid hormone biosynthesis through repressing histone methylation in rats. Environ Sci Technol 2022; 56(9): 5664–5672
https://doi.org/10.1021/acs.est.1c08885
71 KA Krautkramer, JH Kreznar, KA Romano, EI Vivas, GA Barrett-Wilt, ME Rabaglia, MP Keller, AD Attie, FE Rey, JM Denu. Diet-microbiota interactions mediate global epigenetic programming in multiple host tissues. Mol Cell 2016; 64(5): 982–992
https://doi.org/10.1016/j.molcel.2016.10.025
72 L Migliore, F Coppedè. Gene-environment interactions in Alzheimer disease: the emerging role of epigenetics. Nat Rev Neurol 2022; 18(11): 643–660
https://doi.org/10.1038/s41582-022-00714-w
73 A Ionescu-Tucker, CW Cotman. Emerging roles of oxidative stress in brain aging and Alzheimer’s disease. Neurobiol Aging 2021; 107: 86–95
https://doi.org/10.1016/j.neurobiolaging.2021.07.014
74 F Coppedè. One-carbon epigenetics and redox biology of neurodegeneration. Free Radic Biol Med 2021; 170: 19–33
https://doi.org/10.1016/j.freeradbiomed.2020.12.002
75 S Rajagopalan, B Park, R Palanivel, V Vinayachandran, JA Deiuliis, RS Gangwar, L Das, J Yin, Y Choi, S Al-Kindi, MK Jain, KD Hansen, S Biswal. Metabolic effects of air pollution exposure and reversibility. J Clin Invest 2020; 130(11): 6034–6040
https://doi.org/10.1172/JCI137315
76 D Chen, L Fang, S Mei, H Li, X Xu, TL Des Marais, K Lu, XS Liu, C Jin. Regulation of chromatin assembly and cell transformation by formaldehyde exposure in human cells. Environ Health Perspect 2017; 125(9): 097019
https://doi.org/10.1289/EHP1275
77 IK Sundar, H Yao, I Rahman. Oxidative stress and chromatin remodeling in chronic obstructive pulmonary disease and smoking-related diseases. Antioxid Redox Signal 2013; 18(15): 1956–1971
https://doi.org/10.1089/ars.2012.4863
78 A Öst, A Lempradl, E Casas, M Weigert, T Tiko, M Deniz, L Pantano, U Boenisch, PM Itskov, M Stoeckius, M Ruf, N Rajewsky, G Reuter, N Iovino, C Ribeiro, M Alenius, S Heyne, T Vavouri, JA Pospisilik. Paternal diet defines offspring chromatin state and intergenerational obesity. Cell 2014; 159(6): 1352–1364
https://doi.org/10.1016/j.cell.2014.11.005
79 Y An, H Duan. The role of m6A RNA methylation in cancer metabolism. Mol Cancer 2022; 21(1): 14
https://doi.org/10.1186/s12943-022-01500-4
80 H Huang, H Weng, J Chen. m6A modification in coding and non-coding RNAs: roles and therapeutic implications in cancer. Cancer Cell 2020; 37(3): 270–288
https://doi.org/10.1016/j.ccell.2020.02.004
81 X Zhu, H Fu, J Sun, Q Xu. Interaction between N6-methyladenosine (m6A) modification and environmental chemical-induced diseases in various organ systems. Chem Biol Interact 2023; 373: 110376
https://doi.org/10.1016/j.cbi.2023.110376
82 X Guo, Y Lin, Y Lin, Y Zhong, H Yu, Y Huang, J Yang, Y Cai, F Liu, Y Li, QQ Zhang, J Dai. PM2.5 induces pulmonary microvascular injury in COPD via METTL16-mediated m6A modification. Environ Pollut 2022; 303: 119115
https://doi.org/10.1016/j.envpol.2022.119115
83 L Li, M Zhou, B Chen, Q Wang, S Pan, Y Hou, J Xia, X Zhou. ALKBH5 promotes cadmium-induced transformation of human bronchial epithelial cells by regulating PTEN expression in an m6A-dependent manner. Ecotoxicol Environ Saf 2021; 224: 112686
https://doi.org/10.1016/j.ecoenv.2021.112686
84 NN Pavlova, J Zhu, CB Thompson. The hallmarks of cancer metabolism: still emerging. Cell Metab 2022; 34(3): 355–377
https://doi.org/10.1016/j.cmet.2022.01.007
85 S Gu, D Sun, H Dai, Z Zhang. N6-methyladenosine mediates the cellular proliferation and apoptosis via microRNAs in arsenite-transformed cells. Toxicol Lett 2018; 292: 1–11
https://doi.org/10.1016/j.toxlet.2018.04.018
86 X Zhu, H Fu, J Sun, Q Xu. Interaction between N6-methyladenosine (m6A) modification and environmental chemical-induced diseases in various organ systems. Chem Biol Interact 2023; 373: 110376
https://doi.org/10.1016/j.cbi.2023.110376
87 F Yang, H Jin, B Que, Y Chao, H Zhang, X Ying, Z Zhou, Z Yuan, J Su, B Wu, W Zhang, D Qi, D Chen, W Min, S Lin, W Ji. Dynamic m6A mRNA methylation reveals the role of METTL3-m6A-CDCP1 signaling axis in chemical carcinogenesis. Oncogene 2019; 38(24): 4755–4772
https://doi.org/10.1038/s41388-019-0755-0
88 H Du, Y Zhao, J He, Y Zhang, H Xi, M Liu, J Ma, L Wu. YTHDF2 destabilizes m6A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat Commun 2016; 7(1): 12626
https://doi.org/10.1038/ncomms12626
89 B He, Z Zhao, Q Cai, Y Zhang, P Zhang, S Shi, H Xie, X Peng, W Yin, Y Tao, X Wang. miRNA-based biomarkers, therapies, and resistance in cancer. Int J Biol Sci 2020; 16(14): 2628–2647
https://doi.org/10.7150/ijbs.47203
90 J Zhang, R Bai, M Li, H Ye, C Wu, C Wang, S Li, L Tan, D Mai, G Li, L Pan, Y Zheng, J Su, Y Ye, Z Fu, S Zheng, Z Zuo, Z Liu, Q Zhao, X Che, D Xie, W Jia, MS Zeng, W Tan, R Chen, RH Xu, J Zheng, D Lin. Excessive miR-25-3p maturation via N6-methyladenosine stimulated by cigarette smoke promotes pancreatic cancer progression. Nat Commun 2019; 10(1): 1858
https://doi.org/10.1038/s41467-019-09712-x
91 T Yu, F Guo, Y Yu, T Sun, D Ma, J Han, Y Qian, I Kryczek, D Sun, N Nagarsheth, Y Chen, H Chen, J Hong, W Zou, JY Fang. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell 2017; 170(3): 548–563.e16
https://doi.org/10.1016/j.cell.2017.07.008
92 N Liu, M Parisien, Q Dai, G Zheng, C He, T Pan. Probing N6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA. RNA 2013; 19(12): 1848–1856
https://doi.org/10.1261/rna.041178.113
93 S Zhang, BS Zhao, A Zhou, K Lin, S Zheng, Z Lu, Y Chen, EP Sulman, K Xie, O Bögler, S Majumder, C He, S Huang. m6A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell 2017; 31(4): 591–606.e6
https://doi.org/10.1016/j.ccell.2017.02.013
94 J Zhang, L Huang, G Ge, K Hu. Emerging epigenetic-based nanotechnology for cancer therapy: modulating the tumor microenvironment. Adv Sci (Weinh) 2023; 10(7): 2206169
https://doi.org/10.1002/advs.202206169
95 D Dixit, BC Prager, RC Gimple, TE Miller, Q Wu, S Yomtoubian, RL Kidwell, D Lv, L Zhao, Z Qiu, G Zhang, D Lee, DE Park, RJ Wechsler-Reya, X Wang, S Bao, JN Rich. Glioblastoma stem cells reprogram chromatin in vivo to generate selective therapeutic dependencies on DPY30 and phosphodiesterases. Sci Transl Med 2022; 14(626): eabf3917
https://doi.org/10.1126/scitranslmed.abf3917
96 Z Lu, J Zou, S Li, MJ Topper, Y Tao, H Zhang, X Jiao, W Xie, X Kong, M Vaz, H Li, Y Cai, L Xia, P Huang, K Rodgers, B Lee, JB Riemer, CP Day, RC Yen, Y Cui, Y Wang, Y Wang, W Zhang, H Easwaran, A Hulbert, K Kim, RA Juergens, SC Yang, RJ Battafarano, EL Bush, SR Broderick, SM Cattaneo, JR Brahmer, CM Rudin, J Wrangle, Y Mei, YJ Kim, B Zhang, KK Wang, PM Forde, JB Margolick, BD Nelkin, CA Zahnow, DM Pardoll, F Housseau, SB Baylin, L Shen, MV Brock. Epigenetic therapy inhibits metastases by disrupting premetastatic niches. Nature 2020; 579(7798): 284–290
https://doi.org/10.1038/s41586-020-2054-x
97 J Jiang, J Liu, D Sanders, S Qian, W Ren, J Song, F Liu, X Zhong. UVR8 interacts with de novo DNA methyltransferase and suppresses DNA methylation in Arabidopsis. Nat Plants 2021; 7(2): 184–197
https://doi.org/10.1038/s41477-020-00843-4
98 IR Miousse, KR Kutanzi, I Koturbash. Effects of ionizing radiation on DNA methylation: from experimental biology to clinical applications. Int J Radiat Biol 2017; 93(5): 457–469
https://doi.org/10.1080/09553002.2017.1287454
99 SY Lee, EK Jeong, MK Ju, HM Jeon, MY Kim, CH Kim, HG Park, SI Han, HS Kang. Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation. Mol Cancer 2017; 16(1): 10
https://doi.org/10.1186/s12943-016-0577-4
100 C Mazziotta, CF Cervellera, C Lanzillotti, A Touzé, P Gaboriaud, M Tognon, F Martini, JC Rotondo. MicroRNA dysregulations in Merkel cell carcinoma: molecular mechanisms and clinical applications. J Med Virol 2023; 95(1): e28375
https://doi.org/10.1002/jmv.28375
101 JR Choi, SB Koh, HR Kim, H Lee, DR Kang. Radon exposure-induced genetic variations in lung cancers among never smokers. J Korean Med Sci 2018; 33(29): e207
https://doi.org/10.3346/jkms.2018.33.e207
102 Y Guan, M Xu, Z Zhang, C Liu, J Zhou, F Lin, J Fang, Y Zhang, Q Yue, X Zhen, G Yan, H Sun, W Liu. Maternal circadian disruption before pregnancy impairs the ovarian function of female offspring in mice. Sci Total Environ 2023; 864: 161161
https://doi.org/10.1016/j.scitotenv.2022.161161
103 R Zheng, Z Xin, M Li, T Wang, M Xu, J Lu, M Dai, D Zhang, Y Chen, S Wang, H Lin, W Wang, G Ning, Y Bi, Z Zhao, Y Xu. Outdoor light at night in relation to glucose homoeostasis and diabetes in Chinese adults: a national and cross-sectional study of 98,658 participants from 162 study sites. Diabetologia 2023; 66(2): 336–345
https://doi.org/10.1007/s00125-022-05819-x
104 IC Eze, A Jeong, E Schaffner, FI Rezwan, A Ghantous, M Foraster, D Vienneau, F Kronenberg, Z Herceg, P Vineis, M Brink, JM Wunderli, C Schindler, C Cajochen, M Röösli, JW Holloway, M Imboden, N Probst-Hensch. Genome-wide DNA methylation in peripheral blood and long-term exposure to source-specific transportation noise and air pollution: the SAPALDIA Study. Environ Health Perspect 2020; 128(6): 067003
https://doi.org/10.1289/EHP6174
105 T Münzel, M Sørensen, A Daiber. Transportation noise pollution and cardiovascular disease. Nat Rev Cardiol 2021; 18(9): 619–636
https://doi.org/10.1038/s41569-021-00532-5
106 V Miguel, JY Cui, L Daimiel, C Espinosa-Díez, C Fernández-Hernando, TJ Kavanagh, S Lamas. The role of microRNAs in environmental risk factors, noise-induced hearing loss, and mental stress. Antioxid Redox Signal 2018; 28(9): 773–796
https://doi.org/10.1089/ars.2017.7175
107 A Meerson, L Cacheaux, KA Goosens, RM Sapolsky, H Soreq, D Kaufer. Changes in brain microRNAs contribute to cholinergic stress reactions. J Mol Neurosci 2010; 40(1–2): 47–55
https://doi.org/10.1007/s12031-009-9252-1
108 CM Greco, G Condorelli. Epigenetic modifications and noncoding RNAs in cardiac hypertrophy and failure. Nat Rev Cardiol 2015; 12(8): 488–497
https://doi.org/10.1038/nrcardio.2015.71
109 L Guo, PH Li, H Li, E Colicino, S Colicino, Y Wen, R Zhang, X Feng, TM Barrow, A Cayir, AA Baccarelli, HM Byun. Effects of environmental noise exposure on DNA methylation in the brain and metabolic health. Environ Res 2017; 153: 73–82
https://doi.org/10.1016/j.envres.2016.11.017
110 D Drozdz, J Alvarez-Pitti, M Wójcik, C Borghi, R Gabbianelli, A Mazur, V Herceg-Čavrak, BG Lopez-Valcarcel, M Brzeziński, E Lurbe, E Wühl. Obesity and cardiometabolic risk factors: from childhood to adulthood. Nutrients 2021; 13(11): 4176
https://doi.org/10.3390/nu13114176
111 C Carlberg. Nutrigenomics of vitamin D. Nutrients 2019; 11(3): 676
https://doi.org/10.3390/nu11030676
112 AE Charkiewicz, JR Backstrand. Lead toxicity and pollution in Poland. Int J Environ Res Public Health 2020; 17(12): 4385
https://doi.org/10.3390/ijerph17124385
113 W Zhang, H Wan, G Feng, J Qu, J Wang, Y Jing, R Ren, Z Liu, L Zhang, Z Chen, S Wang, Y Zhao, Z Wang, Y Yuan, Q Zhou, W Li, GH Liu, B Hu. SIRT6 deficiency results in developmental retardation in cynomolgus monkeys. Nature 2018; 560(7720): 661–665
https://doi.org/10.1038/s41586-018-0437-z
114 M Chin-Chan, L Cobos-Puc, I Alvarado-Cruz, M Bayar, M Ermolaeva. Early-life Pb exposure as a potential risk factor for Alzheimer’s disease: are there hazards for the Mexican population?. Eur J Biochem 2019; 24(8): 1285–1303
https://doi.org/10.1007/s00775-019-01739-1
115 R Martinez-Zamudio, HC Ha. Environmental epigenetics in metal exposure. Epigenetics 2011; 6(7): 820–827
https://doi.org/10.4161/epi.6.7.16250
116 C Zuo, L Ai, P Ratliff, JY Suen, E Hanna, TP Brent, CY Fan. O6-methylguanine-DNA methyltransferase gene: epigenetic silencing and prognostic value in head and neck squamous cell carcinoma. Cancer Epidemiol Biomarkers Prev 2004; 13(6): 967–975
https://doi.org/10.1158/1055-9965.967.13.6
117 S Kim, I Thapar, BW Brooks. Epigenetic changes by per- and polyfluoroalkyl substances (PFAS). Environ Pollut 2021; 279: 116929
https://doi.org/10.1016/j.envpol.2021.116929
118 S Singh, SS Li. Epigenetic effects of environmental chemicals bisphenol A and phthalates. Int J Mol Sci 2012; 13(8): 10143–10153
https://doi.org/10.3390/ijms130810143
119 DY Ryu, WK Pang, EO Adegoke, MS Rahman, YJ Park, MG Pang. Abnormal histone replacement following BPA exposure affects spermatogenesis and fertility sequentially. Environ Int 2022; 170: 107617
https://doi.org/10.1016/j.envint.2022.107617
120 MTMT Tran, FC Kuo, JT Low, YM Chuang, S Sultana, WL Huang, ZY Lin, GL Lin, CF Wu, SS Li, JL Suen, CH Hung, MT Wu, MWY Chan. Prenatal DEHP exposure predicts neurological disorders via transgenerational epigenetics. Sci Rep 2023; 13(1): 7399
https://doi.org/10.1038/s41598-023-34661-3
121 NQ Vuong, D Breznan, P Goegan, JS O’Brien, A Williams, S Karthikeyan, P Kumarathasan, R Vincent. In vitro toxicoproteomic analysis of A549 human lung epithelial cells exposed to urban air particulate matter and its water-soluble and insoluble fractions. Part Fibre Toxicol 2017; 14(1): 39
https://doi.org/10.1186/s12989-017-0220-6
122 BB Ural, DP Caron, P Dogra, SB Wells, PA Szabo, T Granot, T Senda, MML Poon, N Lam, P Thapa, YS Lee, M Kubota, R Matsumoto, DL Farber. Inhaled particulate accumulation with age impairs immune function and architecture in human lung lymph nodes. Nat Med 2022; 28(12): 2622–2632
https://doi.org/10.1038/s41591-022-02073-x
123 CY Chang, R You, D Armstrong, A Bandi, YT Cheng, PM Burkhardt, L Becerra-Dominguez, MC Madison, HY Tung, Z Zeng, Y Wu, L Song, PE Phillips, P Porter, JM Knight, N Putluri, X Yuan, DC Marcano, EA McHugh, JM Tour, A Catic, L Maneix, BM Burt, HS Lee, DB Corry, F Kheradmand. Chronic exposure to carbon black ultrafine particles reprograms macrophage metabolism and accelerates lung cancer. Sci Adv 2022; 8(46): eabq0615
https://doi.org/10.1126/sciadv.abq0615
124 A Perfilyev, I Dahlman, L Gillberg, F Rosqvist, D Iggman, P Volkov, E Nilsson, U Risérus, C Ling. Impact of polyunsaturated and saturated fat overfeeding on the DNA-methylation pattern in human adipose tissue: a randomized controlled trial. Am J Clin Nutr 2017; 105(4): 991–1000
https://doi.org/10.3945/ajcn.116.143164
125 X Lu, Y Zhu, R Bai, Z Wu, W Qian, L Yang, R Cai, H Yan, T Li, V Pandey, Y Liu, PE Lobie, C Chen, T Zhu. Long-term pulmonary exposure to multi-walled carbon nanotubes promotes breast cancer metastatic cascades. Nat Nanotechnol 2019; 14(7): 719–727
https://doi.org/10.1038/s41565-019-0472-4
126 Y Chen, M Xu, J Zhang, J Ma, M Gao, Z Zhang, Y Xu, S Liu. Genome-wide DNA methylation variations upon exposure to engineered nanomaterials and their implications in nanosafety assessment. Adv Mater 2017; 29(6): 1604580
https://doi.org/10.1002/adma.201604580
127 X Wang, Y Liu, J Wang, Y Nie, S Chen, TK Hei, Z Deng, L Wu, G Zhao, A Xu. Amplification of arsenic genotoxicity by TiO2 nanoparticles in mammalian cells: new insights from physicochemical interactions and mitochondria. Nanotoxicology 2017; 11(8): 978–995
https://doi.org/10.1080/17435390.2017.1388861
128 S Chang, J Min, X Lu, Q Zhang, S Shangguan, T Zhang, L Wang. Effect of epigenetic activating of Dlk1-Dio3 imprinted cluster on miR-370 expression due to folate deficiency during nerve development. J Nutr Biochem 2023; 116: 109297
https://doi.org/10.1016/j.jnutbio.2023.109297
129 Y An, L Feng, X Zhang, Y Wang, Y Wang, L Tao, Z Qin, R Xiao. Dietary intakes and biomarker patterns of folate, vitamin B6, and vitamin B12 can be associated with cognitive impairment by hypermethylation of redox-related genes NUDT15 and TXNRD1. Clin Epigenetics 2019; 11(1): 139
https://doi.org/10.1186/s13148-019-0741-y
130 B Glimelius, S Stintzing, J Marshall, T Yoshino, A de Gramont. Metastatic colorectal cancer: advances in the folate-fluoropyrimidine chemotherapy backbone. Cancer Treat Rev 2021; 98: 102218
https://doi.org/10.1016/j.ctrv.2021.102218
131 JT Li, H Yang, MZ Lei, WP Zhu, Y Su, KY Li, WY Zhu, J Wang, L Zhang, J Qu, L Lv, HJ Lu, ZJ Chen, L Wang, M Yin, QY Lei. Dietary folate drives methionine metabolism to promote cancer development by stabilizing MAT IIA. Signal Transduct Target Ther 2022; 7(1): 192
https://doi.org/10.1038/s41392-022-01017-8
132 ML Holland, R Lowe, PW Caton, C Gemma, G Carbajosa, AF Danson, AA Carpenter, E Loche, SE Ozanne, VK Rakyan. Early-life nutrition modulates the epigenetic state of specific rDNA genetic variants in mice. Science 2016; 353(6298): 495–498
https://doi.org/10.1126/science.aaf7040
133 L Han, C Ren, L Li, X Li, J Ge, H Wang, YL Miao, X Guo, KH Moley, W Shu, Q Wang. Embryonic defects induced by maternal obesity in mice derive from Stella insufficiency in oocytes. Nat Genet 2018; 50(3): 432–442
https://doi.org/10.1038/s41588-018-0055-6
134 RC Laker, TS Lillard, M Okutsu, M Zhang, KL Hoehn, JJ Connelly, Z Yan. Exercise prevents maternal high-fat diet-induced hypermethylation of the Pgc-1α gene and age-dependent metabolic dysfunction in the offspring. Diabetes 2014; 63(5): 1605–1611
https://doi.org/10.2337/db13-1614
135 M Vaz, SY Hwang, I Kagiampakis, J Phallen, A Patil, HM O’Hagan, L Murphy, CA Zahnow, E Gabrielson, VE Velculescu, HP Easwaran, SB Baylin. Chronic cigarette smoke-induced epigenomic changes precede sensitization of bronchial epithelial cells to single-step transformation by KRAS mutations. Cancer Cell 2017; 32(3): 360–376.e6
https://doi.org/10.1016/j.ccell.2017.08.006
136 MJ Xavier, SD Roman, RJ Aitken, B Nixon. Transgenerational inheritance: how impacts to the epigenetic and genetic information of parents affect offspring health. Hum Reprod Update 2019; 25(5): 518–540
https://doi.org/10.1093/humupd/dmz017
137 F Liu, JK Killian, M Yang, RL Walker, JA Hong, M Zhang, S Davis, Y Zhang, M Hussain, S Xi, M Rao, PA Meltzer, DS Schrump. Epigenomic alterations and gene expression profiles in respiratory epithelia exposed to cigarette smoke condensate. Oncogene 2010; 29(25): 3650–3664
https://doi.org/10.1038/onc.2010.129
138 A Okabe, KK Huang, K Matsusaka, M Fukuyo, M Xing, X Ong, T Hoshii, G Usui, M Seki, Y Mano, B Rahmutulla, T Kanda, T Suzuki, SY Rha, T Ushiku, M Fukayama, P Tan, A Kaneda. Cross-species chromatin interactions drive transcriptional rewiring in Epstein–Barr virus-positive gastric adenocarcinoma. Nat Genet 2020; 52(9): 919–930
https://doi.org/10.1038/s41588-020-0665-7
139 J Xie, Z Wang, W Fan, Y Liu, F Liu, X Wan, M Liu, X Wang, D Zeng, Y Wang, B He, M Yan, Z Zhang, M Zhang, Z Hou, C Wang, Z Kang, W Fang, L Zhang, EW Lam, X Guo, J Yan, Y Zeng, M Chen, Q Liu. Targeting cancer cell plasticity by HDAC inhibition to reverse EBV-induced dedifferentiation in nasopharyngeal carcinoma. Signal Transduct Target Ther 2021; 6(1): 333
https://doi.org/10.1038/s41392-021-00702-4
140 R Guo, BE Gewurz. Epigenetic control of the Epstein–Barr lifecycle. Curr Opin Virol 2022; 52: 78–88
https://doi.org/10.1016/j.coviro.2021.11.013
141 X Chen, JX Loo, X Shi, W Xiong, Y Guo, H Ke, M Yang, Y Jiang, S Xia, M Zhao, S Zhong, C He, L Fu, F Li. E6 protein expressed by high-risk HPV activates super-enhancers of the EGFR and c-MET oncogenes by destabilizing the histone demethylase KDM5C. Cancer Res 2018; 78(6): 1418–1430
https://doi.org/10.1158/0008-5472.CAN-17-2118
142 Z Shen, J Wu, Z Gao, S Zhang, J Chen, J He, Y Guo, Q Deng, Y Xie, J Liu, J Zhang. High mobility group AT-hook 1 (HMGA1) is an important positive regulator of hepatitis B virus (HBV) that is reciprocally upregulated by HBV X protein. Nucleic Acids Res 2022; 50(4): 2157–2171
https://doi.org/10.1093/nar/gkac070
143 S Lee, Y Yu, J Trimpert, F Benthani, M Mairhofer, P Richter-Pechanska, E Wyler, D Belenki, S Kaltenbrunner, M Pammer, L Kausche, TC Firsching, K Dietert, M Schotsaert, C Martínez-Romero, G Singh, S Kunz, D Niemeyer, R Ghanem, HJF Salzer, C Paar, M Mülleder, M Uccellini, EG Michaelis, A Khan, A Lau, M Schönlein, A Habringer, J Tomasits, JM Adler, S Kimeswenger, AD Gruber, W Hoetzenecker, H Steinkellner, B Purfürst, R Motz, Pierro F Di, B Lamprecht, N Osterrieder, M Landthaler, C Drosten, A García-Sastre, R Langer, M Ralser, R Eils, M Reimann, DNY Fan, CA Schmitt. Virus-induced senescence is a driver and therapeutic target in COVID-19. Nature 2021; 599(7884): 283–289
https://doi.org/10.1038/s41586-021-03995-1
144 M Zazhytska, A Kodra, DA Hoagland, J Frere, JF Fullard, H Shayya, NG McArthur, R Moeller, S Uhl, AD Omer, ME Gottesman, S Firestein, Q Gong, PD Canoll, JE Goldman, P Roussos, BR tenOever, B Overdevest Jonathan, S Lomvardas. Non-cell-autonomous disruption of nuclear architecture as a potential cause of COVID-19-induced anosmia. Cell 2022; 185(6): 1052–1064.e12
https://doi.org/10.1016/j.cell.2022.01.024
145 J Kee, S Thudium, DM Renner, K Glastad, K Palozola, Z Zhang, Y Li, Y Lan, J Cesare, A Poleshko, AA Kiseleva, R Truitt, FL Cardenas-Diaz, X Zhang, X Xie, DN Kotton, KD Alysandratos, JA Epstein, PY Shi, W Yang, E Morrisey, BA Garcia, SL Berger, SR Weiss, E Korb. SARS-CoV-2 disrupts host epigenetic regulation via histone mimicry. Nature 2022; 610(7931): 381–388
https://doi.org/10.1038/s41586-022-05282-z
146 Z Li, Q Hao, J Luo, J Xiong, S Zhang, T Wang, L Bai, W Wang, M Chen, W Wang, L Gu, K Lv, J Chen. USP4 inhibits p53 and NF-κB through deubiquitinating and stabilizing HDAC2. Oncogene 2016; 35(22): 2902–2912
https://doi.org/10.1038/onc.2015.349
147 V Woo, T Alenghat. Epigenetic regulation by gut microbiota. Gut Microbes 2022; 14(1): 2022407
https://doi.org/10.1080/19490976.2021.2022407
148 J Wu, Y Zhao, X Wang, L Kong, LJ Johnston, L Lu, X Ma. Dietary nutrients shape gut microbes and intestinal mucosa via epigenetic modifications. Crit Rev Food Sci Nutr 2022; 62(3): 783–797
https://doi.org/10.1080/10408398.2020.1828813
149 S Bubendorfer, J Krebes, I Yang, E Hage, TF Schulz, C Bahlawane, X Didelot, S Suerbaum. Genome-wide analysis of chromosomal import patterns after natural transformation of Helicobacter pylori. Nat Commun 2016; 7(1): 11995
https://doi.org/10.1038/ncomms11995
150 R Capparelli, D Iannelli. Epigenetics and Helicobacter pylori. Int J Mol Sci 2022; 23(3): 1759
https://doi.org/10.3390/ijms23031759
151 J Krebes, RD Morgan, B Bunk, C Spröer, K Luong, R Parusel, BP Anton, C König, C Josenhans, J Overmann, RJ Roberts, J Korlach, S Suerbaum. The complex methylome of the human gastric pathogen Helicobacter pylori. Nucleic Acids Res 2014; 42(4): 2415–2432
https://doi.org/10.1093/nar/gkt1201
152 M Fol, M Włodarczyk, M Druszczyńska. Host epigenetics in intracellular pathogen infections. Int J Mol Sci 2020; 21(13): 4573
https://doi.org/10.3390/ijms21134573
153 I Yaseen, P Kaur, VK Nandicoori, S Khosla. Mycobacteria modulate host epigenetic machinery by Rv1988 methylation of a non-tail arginine of histone H3. Nat Commun 2015; 6(1): 8922
https://doi.org/10.1038/ncomms9922
154 NP Semenkovich, JD Planer, PP Ahern, NW Griffin, CY Lin, JI Gordon. Impact of the gut microbiota on enhancer accessibility in gut intraepithelial lymphocytes. Proc Natl Acad Sci USA 2016; 113(51): 14805–14810
https://doi.org/10.1073/pnas.1617793113
155 Y Wang, H Li. Gut microbiota modulation: a tool for the management of colorectal cancer. J Transl Med 2022; 20(1): 178
https://doi.org/10.1186/s12967-022-03378-8
156 H Lecoeur, E Prina, M Gutiérrez-Sanchez, GF Späth. Going ballistic: Leishmania nuclear subversion of host cell plasticity. Trends Parasitol 2022; 38(3): 205–216
https://doi.org/10.1016/j.pt.2021.09.009
157 G Roy, HK Brar, R Muthuswami, R Madhubala. Epigenetic regulation of defense genes by histone deacetylase1 in human cell line-derived macrophages promotes intracellular survival of Leishmania donovani. PLoS Negl Trop Dis 2020; 14(4): e0008167
https://doi.org/10.1371/journal.pntd.0008167
158 NO Jõgi, N Kitaba, T Storaas, V Schlünssen, K Triebner, JW Holloway, WGC Horsnell, C Svanes, RJ Bertelsen. Ascaris exposure and its association with lung function, asthma, and DNA methylation in Northern Europe. J Allergy Clin Immunol 2022; 149(6): 1960–1969
https://doi.org/10.1016/j.jaci.2021.11.013
159 J Tripathi, L Zhu, S Nayak, M Stoklasa, Z Bozdech. Stochastic expression of invasion genes in Plasmodium falciparum schizonts. Nat Commun 2022; 13(1): 3004
https://doi.org/10.1038/s41467-022-30605-z
160 MA Hakimi. Epigenetic reprogramming in host-parasite coevolution: the Toxoplasma paradigm. Annu Rev Microbiol 2022; 76(1): 135–155
https://doi.org/10.1146/annurev-micro-041320-011520
161 M Sharma, TO Tollefsbol. Combinatorial epigenetic mechanisms of sulforaphane, genistein and sodium butyrate in breast cancer inhibition. Exp Cell Res 2022; 416(1): 113160
https://doi.org/10.1016/j.yexcr.2022.113160
162 E Katsyuba, M Romani, D Hofer, J Auwerx. NAD+ homeostasis in health and disease. Nat Metab 2020; 2(1): 9–31
https://doi.org/10.1038/s42255-019-0161-5
163 MR McReynolds, K Chellappa, E Chiles, C Jankowski, Y Shen, L Chen, HC Descamps, S Mukherjee, YR Bhat, SR Lingala, Q Chu, P Botolin, F Hayat, T Doke, K Susztak, CA Thaiss, W Lu, ME Migaud, X Su, JD Rabinowitz, JA Baur. NAD+ flux is maintained in aged mice despite lower tissue concentrations. Cell Syst 2021; 12(12): 1160–1172.e4
https://doi.org/10.1016/j.cels.2021.09.001
164 JW Lv, YP Song, ZC Zhang, YJ Fan, FX Xu, L Gao, XY Zhang, C Zhang, H Wang, DX Xu. Gestational arsenic exposure induces anxiety-like behaviors in adult offspring by reducing DNA hydroxymethylation in the developing brain. Ecotoxicol Environ Saf 2021; 227: 112901
https://doi.org/10.1016/j.ecoenv.2021.112901
165 H Hou, H Zhao. Epigenetic factors in atherosclerosis: DNA methylation, folic acid metabolism, and intestinal microbiota. Clin Chim Acta 2021; 512: 7–11
https://doi.org/10.1016/j.cca.2020.11.013
166 A Schwiertz. Microbiota of the human body: implications in health and disease. Adv Exp Med Biol 2016; 902: v
https://doi.org/10.1007/978-3-319-31248-4
167 M Chen, S Li, I Arora, N Yi, M Sharma, Z Li, TO Tollefsbol, Y Li. Maternal soybean diet on prevention of obesity-related breast cancer through early-life gut microbiome and epigenetic regulation. J Nutr Biochem 2022; 110: 109119
https://doi.org/10.1016/j.jnutbio.2022.109119
168 AM Intlekofer, AH Shih, B Wang, A Nazir, AS Rustenburg, SK Albanese, M Patel, C Famulare, FM Correa, N Takemoto, V Durani, H Liu, J Taylor, N Farnoud, E Papaemmanuil, JR Cross, MS Tallman, ME Arcila, M Roshal, GA Petsko, B Wu, S Choe, ZD Konteatis, SA Biller, JD Chodera, CB Thompson, RL Levine, EM Stein. Acquired resistance to IDH inhibition through trans or cis dimer-interface mutations. Nature 2018; 559(7712): 125–129
https://doi.org/10.1038/s41586-018-0251-7
169 A Ferrari, R Longo, R Silva, N Mitro, D Caruso, E De Fabiani, M Crestani. Epigenome modifiers and metabolic rewiring: new frontiers in therapeutics. Pharmacol Ther 2019; 193: 178–193
https://doi.org/10.1016/j.pharmthera.2018.08.008
170 J Zhong, E Colicino, X Lin, A Mehta, I Kloog, A Zanobetti, HM Byun, MA Bind, L Cantone, D Prada, L Tarantini, L Trevisi, D Sparrow, P Vokonas, J Schwartz, AA Baccarelli. Cardiac autonomic dysfunction: particulate air pollution effects are modulated by epigenetic immunoregulation of Toll-like receptor 2 and dietary flavonoid intake. J Am Heart Assoc 2015; 4(1): e001423
https://doi.org/10.1161/JAHA.114.001423
171 I Arora, S Li, MR Crowley, Y Li, TO Tollefsbol. Genome-wide analysis on transcriptome and methylome in prevention of mammary tumor induced by early life combined botanicals. Cells 2022; 12(1): 14
https://doi.org/10.3390/cells12010014
172 S Li, M Chen, Y Li, TO Tollefsbol. Prenatal epigenetics diets play protective roles against environmental pollution. Clin Epigenetics 2019; 11(1): 82
https://doi.org/10.1186/s13148-019-0659-4
173 M Lucock. Vitamin-related phenotypic adaptation to exposomal factors: the folate-vitamin D-exposome triad. Mol Aspects Med 2022; 87: 100944
https://doi.org/10.1016/j.mam.2021.100944
174 H Wu, WJ Van Der Pol, LG Dubois, CD Morrow, TO Tollefsbol. Dietary supplementation of inulin contributes to the prevention of estrogen receptor-negative mammary cancer by alteration of gut microbial communities and epigenetic regulations. Int J Mol Sci 2023; 24(10): 9015
https://doi.org/10.3390/ijms24109015
175 Z Yuan, S Chen, C Gao, Q Dai, C Zhang, Q Sun, JS Lin, C Guo, Y Chen, Y Jiang. Development of a versatile DNMT and HDAC inhibitor C02S modulating multiple cancer hallmarks for breast cancer therapy. Bioorg Chem 2019; 87: 200–208
https://doi.org/10.1016/j.bioorg.2019.03.027
176 S Zhang, B Tang, C Fan, L Shi, X Zhang, L Sun, Z Li. Effect of DNMT inhibitor on bovine parthenogenetic embryo development. Biochem Biophys Res Commun 2015; 466(3): 505–511
https://doi.org/10.1016/j.bbrc.2015.09.060
177 C Segovia, José-Enériz E San, E Munera-Maravilla, M Martínez-Fernández, L Garate, E Miranda, A Vilas-Zornoza, I Lodewijk, C Rubio, C Segrelles, LV Valcárcel, O Rabal, N Casares, A Bernardini, C Suarez-Cabrera, FF López-Calderón, P Fortes, JA Casado, M Dueñas, F Villacampa, JJ Lasarte, F Guerrero-Ramos, Velasco G de, J Oyarzabal, D Castellano, X Agirre, F Prósper, JM Paramio. Inhibition of a G9a/DNMT network triggers immune-mediated bladder cancer regression. Nat Med 2019; 25(7): 1073–1081
https://doi.org/10.1038/s41591-019-0499-y
178 X Zhang, J Yang, D Shi, Z Cao. TET2 suppresses nasopharyngeal carcinoma progression by inhibiting glycolysis metabolism. Cancer Cell Int 2020; 20(1): 363
https://doi.org/10.1186/s12935-020-01456-9
179 N Garmpis, C Damaskos, A Garmpi, D Dimitroulis, E Spartalis, GA Margonis, D Schizas, I Deskou, C Doula, E Magkouti, N Andreatos, EA Antoniou, A Nonni, K Kontzoglou, D Mantas. Targeting histone deacetylases in malignant melanoma: a future therapeutic agent or just great expectations?. Anticancer Res 2017; 37(10): 5355–5362
180 YN Zhu, XW Gan, F Pan, XT Ni, L Myatt, WS Wang, K Sun. Role of EZH2-mediated H3K27me3 in placental ADAM12-S expression: implications for fetoplacental growth. BMC Med 2022; 20(1): 189
https://doi.org/10.1186/s12916-022-02391-4
181 X Sun, JM Bieber, H Hammerlindl, RJ Chalkley, KH Li, AL Burlingame, MP Jacobson, LF Wu, SJ Altschuler. Modulating environmental signals to reveal mechanisms and vulnerabilities of cancer persisters. Sci Adv 2022; 8(4): eabi7711
https://doi.org/10.1126/sciadv.abi7711
182 M Vicioso-Mantis, R Fueyo, C Navarro, S Cruz-Molina, Ijcken WFJ van, E Rebollo, Á Rada-Iglesias, MA Martínez-Balbás. JMJD3 intrinsically disordered region links the 3D-genome structure to TGFβ-dependent transcription activation. Nat Commun 2022; 13(1): 3263
https://doi.org/10.1038/s41467-022-30614-y
183 Y You, Y Fu, M Huang, D Shen, B Zhao, H Liu, Y Zheng, L Huang. Recent advances of m6A demethylases inhibitors and their biological functions in human diseases. Int J Mol Sci 2022; 23(10): 5815
https://doi.org/10.3390/ijms23105815
184 E Yankova, W Blackaby, M Albertella, J Rak, E De Braekeleer, G Tsagkogeorga, ES Pilka, D Aspris, D Leggate, AG Hendrick, NA Webster, B Andrews, R Fosbeary, P Guest, N Irigoyen, M Eleftheriou, M Gozdecka, JML Dias, AJ Bannister, B Vick, I Jeremias, GS Vassiliou, O Rausch, K Tzelepis, T Kouzarides. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature 2021; 593(7860): 597–601
https://doi.org/10.1038/s41586-021-03536-w
[1] Zeyu Zhang, Yue Yan, Lina Zhao, Yizhou Bian, Ning Zhao, You Wu, Dahai Zhao, Zongjiu Zhang. Trajectory of COVID-19 response and management strategy in China: scientific rationale driven strategy adjustments[J]. Front. Med., 2024, 18(1): 19-30.
[2] Huichao Qin, Jiaxing Feng, Xiaoke Wu. Effects and mechanisms of acupuncture on women related health[J]. Front. Med., 2024, 18(1): 46-67.
[3] Lingyu Gao, Qianjin Lu. The critical importance of epigenetics in autoimmune-related skin diseases[J]. Front. Med., 2023, 17(1): 43-57.
[4] Kaili Yang, Jiarui Li, Lin Zhao, Zhao Sun, Chunmei Bai. Estimating the number of Chinese cancer patients eligible for and benefit from immune checkpoint inhibitors[J]. Front. Med., 2022, 16(5): 773-783.
[5] Yaxin Chen, Tianyi Yang, Xiaofeng Gao, Ajing Xu. Hybrid deep learning model for risk prediction of fracture in patients with diabetes and osteoporosis[J]. Front. Med., 2022, 16(3): 496-506.
[6] Zheng Zhang, Lu Liu, Yanyun Shen, Ziyuan Meng, Min Chen, Zhong Lu, Xuejun Zhang. Characterization of chromatin accessibility in psoriasis[J]. Front. Med., 2022, 16(3): 483-495.
[7] Lei Lv, Qunying Lei. Proteins moonlighting in tumor metabolism and epigenetics[J]. Front. Med., 2021, 15(3): 383-403.
[8] Zhiruo Zhang, Shelan Liu, Mi Xiang, Shijian Li, Dahai Zhao, Chaolin Huang, Saijuan Chen. Protecting healthcare personnel from 2019-nCoV infection risks: lessons and suggestions[J]. Front. Med., 2020, 14(2): 229-231.
[9] Shuxian Zhang, Zezhou Wang, Ruijie Chang, Huwen Wang, Chen Xu, Xiaoyue Yu, Lhakpa Tsamlag, Yinqiao Dong, Hui Wang, Yong Cai. COVID-19 containment: China provides important lessons for global response[J]. Front. Med., 2020, 14(2): 215-219.
[10] Jiahui Xu, Qianqian Wang, Elaine Lai Han Leung, Ying Li, Xingxing Fan, Qibiao Wu, Xiaojun Yao, Liang Liu. Compound C620-0696, a new potent inhibitor targeting BPTF, the chromatin-remodeling factor in non-small-cell lung cancer[J]. Front. Med., 2020, 14(1): 60-67.
[11] Meng Lv, Xiaohui Zhang, Lanping Xu, Yu Wang, Chenhua Yan, Huan Chen, Yuhong Chen, Wei Han, Fengrong Wang, Jingzhi Wang, Kaiyan Liu, Xiaojun Huang, Xiaodong Mo. Risk factors for chronic graft-versus-host disease after anti-thymocyte globulin-based haploidentical hematopoietic stem cell transplantation in acute myeloid leukemia[J]. Front. Med., 2019, 13(6): 667-679.
[12] Dahai Zhao, Zhiruo Zhang. Changes in public trust in physicians: empirical evidence from China[J]. Front. Med., 2019, 13(4): 504-510.
[13] Jiyu Tong, Richard A. Flavell, Hua-Bing Li. RNA m6A modification and its function in diseases[J]. Front. Med., 2018, 12(4): 481-489.
[14] Qiuxia Han, Hanyu Zhu, Xiangmei Chen, Zhangsuo Liu. Non-genetic mechanisms of diabetic nephropathy[J]. Front. Med., 2017, 11(3): 319-332.
[15] Yan Ma, Albert C. Yang, Ying Duan, Ming Dong, Albert S. Yeung. Quality and readability of online information resources on insomnia[J]. Front. Med., 2017, 11(3): 423-431.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed