Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2024, Vol. 18 Issue (3) : 499-515    https://doi.org/10.1007/s11684-023-1052-4
m6A reader YTHDF1 promotes cardiac fibrosis by enhancing AXL translation
Han Wu, Weitao Jiang, Ping Pang, Wei Si, Xue Kong, Xinyue Zhang, Yuting Xiong, Chunlei Wang, Feng Zhang, Jinglun Song, Yang Yang, Linghua Zeng, Kuiwu Liu, Yingqiong Jia, Zhuo Wang, Jiaming Ju, Hongtao Diao(), Yu Bian(), Baofeng Yang()
Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
 Download: PDF(4001 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Cardiac fibrosis caused by ventricular remodeling and dysfunction such as post-myocardial infarction (MI) can lead to heart failure. RNA N6-methyladenosine (m6A) methylation has been shown to play a pivotal role in the occurrence and development of many illnesses. In investigating the biological function of the m6A reader YTHDF1 in cardiac fibrosis, adeno-associated virus 9 was used to knock down or overexpress the YTHDF1 gene in mouse hearts, and MI surgery in vivo and transforming growth factor-β (TGF-β)-activated cardiac fibroblasts in vitro were performed to establish fibrosis models. Our results demonstrated that silencing YTHDF1 in mouse hearts can significantly restore impaired cardiac function and attenuate myocardial fibrosis, whereas YTHDF1 overexpression could further enhance cardiac dysfunction and aggravate the occurrence of ventricular pathological remodeling and fibrotic development. Mechanistically, zinc finger BED-type containing 6 mediated the transcriptional function of the YTHDF1 gene promoter. YTHDF1 augmented AXL translation and activated the TGF-β-Smad2/3 signaling pathway, thereby aggravating the occurrence and development of cardiac dysfunction and myocardial fibrosis. Consistently, our data indicated that YTHDF1 was involved in activation, proliferation, and migration to participate in cardiac fibrosis in vitro. Our results revealed that YTHDF1 could serve as a potential therapeutic target for myocardial fibrosis.

Keywords cardiac fibrosis      YTHDF1      AXL      ZBED6      heart failure     
Corresponding Author(s): Hongtao Diao,Yu Bian,Baofeng Yang   
Just Accepted Date: 29 February 2024   Online First Date: 24 May 2024    Issue Date: 17 June 2024
 Cite this article:   
Han Wu,Weitao Jiang,Ping Pang, et al. m6A reader YTHDF1 promotes cardiac fibrosis by enhancing AXL translation[J]. Front. Med., 2024, 18(3): 499-515.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-023-1052-4
https://academic.hep.com.cn/fmd/EN/Y2024/V18/I3/499
Fig.1  Changes in YTHDF1 expression after MI surgery for 4 weeks and TGF-β treatment. (A) YTHDF1 mRNA levels in mouse hearts. n = 6. **P < 0.01 vs. Sham. (B) Representative image of Western blot and quantitative analysis of YTHDF1 protein expression in mouse hearts. n = 5. *P < 0.05 vs. Sham. (C) mRNA expression level of YTHDF1 in TGF-β-treated CFs obtained from neonatal mice. n = 5. *P < 0.05 vs. Ctrl. (D) YTHDF1 protein expression level in CFs obtained from neonatal mice activated by TGF-β. n = 5. **P < 0.01 vs. Ctrl. (E) Representative diagram of YTHDF1 expression in CFs obtained from neonatal mice. Scale bar = 20 μm. n = 5. **P < 0.01 vs. Ctrl.
Fig.2  Inhibition of YTHDF1 reverses MI-induced cardiac fibrosis in mice. (A) YTHDF1 knockdown efficiency determination in mouse heart tissue after delivering shRNA-YTHDF1 AAV9 via tail vein. n = 6. **P < 0.01 vs. shNC-V. (B) Protein expression level of YTHDF1 was measured in each group. n = 4. **P < 0.01 vs. Sham + shNC-V; ##P < 0.01 vs. MI + shNC-V. (C) Echocardiography images and quantitative statistics. (D) EF (%), (E) FS (%), (F) LVID;d (mm), and (G) LVID;s (mm). n = 7. **P < 0.01 vs. Sham + shNC-V; #P < 0.05, ##P < 0.01 vs. MI + shNC-V. (H, I) The areas of fibrosis in the infarcted hearts were assessed using Masson staining. Scale bar = 1 mm. n = 4. **P < 0.01 vs. Sham + shNC-V; ##P < 0.01 vs. MI + shNC-V. (J) The heart-to-body weight ratio. n = 7. **P < 0.01 vs. Sham + shNC-V; #P < 0.05 vs. MI + shNC-V. (K, L) Immunofluorescence assay of α-SMA in mouse hearts. Scale bar = 20 μm. n = 4. **P < 0.01 vs. Sham + shNC-V; ##P < 0.01 vs. MI + shNC-V. (M) qRT-PCR analysis of fibrosis marker in mouse hearts. n = 4–5. **P < 0.01 vs. Sham + shNC-V; ##P < 0.01 vs. MI + shNC-V.
Fig.3  Overexpression of YTHDF1 exacerbates cardiac fibrosis induced by MI injury. (A) YTHDF1 overexpression efficiency determination in mouse hearts after delivering AAV9 vector via tail vein. n = 4. **P < 0.01 vs. NC-V. (B) YTHDF1 protein expression level was measured in each group. n = 4. **P < 0.01 vs. Sham + NC-V; ##P < 0.01 vs. MI + NC-V. (C) Representative images of echocardiographs and statistics. (D) EF (%), (E) FS (%), (F) LVID;d (mm), and (G) LVID;s (mm). n = 5. *P < 0.05, **P < 0.01 vs. Sham + NC-V; #P < 0.05, ##P < 0.01 vs. MI + NC-V. (H) The heart-to-body weight ratio in YTHDF1-overexpressed mice post-MI injury. n = 5. *P < 0.05 vs. Sham + NC-V; #P < 0.05 vs. MI + NC-V. (I, J) Masson staining of heart sections showing the fibrosis areas. Scale bar = 1 mm. n = 4. **P < 0.01 vs. Sham + NC-V; #P < 0.05 vs. MI + NC-V. (K, L) Representative images and quantification of immunofluorescence analysis of α-SMA in mouse hearts. Scale bar = 20 μm. n = 4. **P < 0.01 vs. Sham + NC-V; ##P < 0.01 vs. MI + NC-V. (M) The mRNA expression levels of fibrotic genes in mice. n = 4–6. *P < 0.05, **P < 0.01 vs. Sham + NC-V; #P < 0.05, ##P < 0.01 vs. MI + NC-V.
Fig.4  Suppression of YTHDF1 prevents TGF-β-induced CFs obtained from neonatal mice activation in vitro. (A, B) qRT-PCR and Western blot analysis of si-YTHDF1 transfection efficiency. n = 5. **P < 0.01 vs. si-NC. (C) The YTHDF1 protein expression level was detected by Western blot in each group. n = 5. **P < 0.01 vs. si-NC; ##P < 0.01 vs. TGF-β + si-YTHDF1. (D) CCK-8 detected cell viability in CFs obtained from neonatal mice. n = 6. **P < 0.01 vs. si-NC; ##P < 0.01 vs. TGF-β + si-NC. (E, F) EdU staining measured CFs obtained from the proliferation of neonatal mice. n = 4. **P < 0.01 vs. si-NC; ##P < 0.01 vs. TGF-β + si-NC. (G, H) The migration ratio in each group. Scale bar = 100 μm. n = 5. **P < 0.01 vs. si-NC; ##P < 0.01 vs. TGF-β + si-NC. (I, J) Fluorescence intensity of α-SMA in CFs obtained from neonatal mice determined by immunofluorescence. Scale bar = 20 μm. n = 4. **P < 0.01 vs. si-NC; ##P < 0.01 vs. TGF-β + si-NC. (K) mRNA expression levels of fibrosis-related genes. n = 4–6. *P < 0.05, **P < 0.01 vs. si-NC; #P < 0.05, ##P < 0.01 vs. TGF-β + si-NC.
Fig.5  ZBED6 regulated YTHDF1 expression. (A–C) ZBED6 mRNA and protein expression in mice with MI. n = 5–6. **P < 0.01 vs. Sham. (D–F) Expression levels of ZBED6 in TGF-β-activated CFs obtained from neonatal mice. n = 7. **P < 0.01 vs. Ctrl. (G–I) Si-ZBED6 transfection efficiency. n = 5–6. **P < 0.01 vs. si-NC. (J–L) YTHDF1 expression level post-transfected with si-ZBED6. n = 4–5. **P < 0.01 vs. si-NC. (M–O) Overexpression efficiency of ZBED6. n = 5–6. **P < 0.01 vs. NC. (P–R) YTHDF1 expression level after ZBED6 overexpression. n = 4–6. **P < 0.01 vs. NC. (S) Relative activity of luciferase. n = 3. **P < 0.01 vs. NC. (T) The binding of ZBED6 to the YTHDF1 promoter was analyzed by ChIP-qPCR. n = 3. **P < 0.01 vs. IgG. (U) EMSA using nuclear extracts from CFs obtained from neonatal mice and the indicated probes.
Fig.6  YTHDF1 activates TGF-β/Smad signaling by promoting AXL translation. (A–C) Representative image of the Western blot results of AXL. n = 5–6. *P < 0.05, **P < 0.01 vs. Sham + shNC-V, Sham + NC-V, si-NC; #P < 0.05, ##P < 0.01 vs. MI + shNC-V, MI + NC-V, TGF-β + si-NC. (D, E) Expression of AXL in CFs obtained from neonatal mice determined by immunofluorescence. Scale bar = 20 μm. n = 4. **P < 0.01 vs. si-NC; ##P < 0.01 vs. TGF-β + si-NC. (F) AXL protein expression level post-YTHDF1-AdV treatment in CFs obtained from neonatal mice. n = 4. *P < 0.05 vs. NC-AdV. (G, H) Immunofluorescence determined AXL expression in CFs obtained from neonatal mice. Scale bar = 20 μm. n = 4. **P < 0.01 vs. NC-AdV. (I) m6A qRT-PCR validation of m6A levels in sham mouse hearts. n = 5. *P < 0.05 vs. IgG. (J) YTHDF1 RIP succedent by qRT-PCR proved the interaction of YTHDF1 and AXL mRNA. n = 3. **P < 0.01 vs. IgG. (K and L) Western blot analysis of AXL protein expression upon CHX treatment after transfection with si-YTHDF1 or YTHDF1-AdV in CFs obtained from neonatal mice. n = 5–6. *P < 0.05 vs. si-NC, NC-AdV CHX = 0 h; #P < 0.05 vs. si-NC, NC-AdV CHX = 3 h. (M) The protein expression level of TGF-β1 and phosphorylated Smad2/3 to total Smad2/3 ratio were detected by Western blot in mice. n = 5. **P < 0.01 vs. Sham + shNC-V; #P < 0.05 vs. MI + shNC-V. (N) TGF-β1 expression level and phosphorylated Smad2/3 to total Smad2/3 ratio in CFs obtained from neonatal mice were measured in each group. n = 5–6. *P < 0.05 vs. si-NC; #P < 0.05 vs. TGF-β + si-NC.
Fig.7  YTHDF1 stimulates cardiac fibrosis by targeting AXL in vitro. (A) Overexpression efficiency of YTHDF1-AdV. n = 6. **P < 0.01 vs. NC-AdV. (B) si-AXL transfection efficiency in CFs obtained from neonatal mice. n = 5. **P < 0.01 vs. si-NC. (C) Viability of CCK-8-detected CFs obtained from neonatal mice. n = 6. **P < 0.01 vs. NC-AdV; ##P < 0.01 vs. YTHDF1-AdV. (D, E) CFs obtained from the migration ratio of neonatal mice in each group. Scale bar = 100 μm. n = 4. **P < 0.01 vs. NC-AdV; ##P < 0.01 vs. YTHDF1-AdV. (F, G) EdU assay of CFs obtained from the proliferation of neonatal mice. n = 4. **P < 0.01 vs. NC-AdV; ##P < 0.01 vs. YTHDF1-AdV. (H, I) α-SMA representative immunofluorescence diagram. Scale bar = 20 μm. n = 4. **P < 0.01 vs. NC-AdV; ##P < 0.01 vs. YTHDF1-AdV. (J) mRNA expression levels of fibrotic genes in CFs obtained from neonatal mice. n = 4–5. *P < 0.05, **P < 0.01 vs. NC-AdV; ##P < 0.01 vs. YTHDF1-AdV. (K) TGF-β1 protein expression and phosphorylated Smad2/3 to total Smad2/3 ratio in CFs obtained from neonatal mice. n = 4–5. *P < 0.05, **P < 0.01 vs. NC-AdV; #P < 0.05 vs. YTHDF1-AdV.
Fig.8  The transcriptional repressor ZBED6 decreased the expression level of YTHDF1, which recognizes AXL methylation sites and promotes the overall mRNA translation of AXL, thereby resulting in TGF-β/Smad2/3 signaling pathway activation and myocardial fibrosis aggravation, furnishing a novel therapeutic value to clinical cardiovascular disease.
1 V Castiglione, A Aimo, G Vergaro, L Saccaro, C Passino, M Emdin. Biomarkers for the diagnosis and management of heart failure. Heart Fail Rev 2022; 27(2): 625–643
https://doi.org/10.1007/s10741-021-10105-w
2 AL Bui, TB Horwich, GC Fonarow. Epidemiology and risk profile of heart failure. Nat Rev Cardiol 2011; 8(1): 30–41
https://doi.org/10.1038/nrcardio.2010.165
3 A González, EB Schelbert, J Díez, J Butler. Myocardial interstitial fibrosis in heart failure: biological and translational perspectives. J Am Coll Cardiol 2018; 71(15): 1696–1706
https://doi.org/10.1016/j.jacc.2018.02.021
4 PS Azevedo, BF Polegato, MF Minicucci, SA Paiva, LA Zornoff. Cardiac remodeling: concepts, clinical impact, pathophysiological mechanisms and pharmacologic treatment. Arq Bras Cardiol 2016; 106(1): 62–69
https://doi.org/10.5935/abc.20160005
5 RM Burke, JK Lighthouse, DM Mickelsen, EM Small. Sacubitril/valsartan decreases cardiac fibrosis in left ventricle pressure overload by restoring PKG signaling in cardiac fibroblasts. Circ Heart Fail 2019; 12(4): e005565
https://doi.org/10.1161/CIRCHEARTFAILURE.118.005565
6 SA Su, D Yang, Y Wu, Y Xie, W Zhu, Z Cai, J Shen, Z Fu, Y Wang, L Jia, Y Wang, JA Wang, M Xiang. EphrinB2 regulates cardiac fibrosis through modulating the interaction of Stat3 and TGF-β/Smad3 signaling. Circ Res 2017; 121(6): 617–627
https://doi.org/10.1161/CIRCRESAHA.117.311045
7 J Davis, JD Molkentin. Myofibroblasts: trust your heart and let fate decide. J Mol Cell Cardiol 2014; 70: 9–18
https://doi.org/10.1016/j.yjmcc.2013.10.019
8 M Luo, H Peng, P Chen, Y Zhou. The immunomodulatory role of interleukin-35 in fibrotic diseases. Expert Rev Clin Immunol 2019; 15(4): 431–439
https://doi.org/10.1080/1744666X.2019.1564041
9 MD Tallquist. Cardiac fibroblast diversity. Annu Rev Physiol 2020; 82(1): 63–78
https://doi.org/10.1146/annurev-physiol-021119-034527
10 H Shah, A Hacker, D Langburt, M Dewar, MJ McFadden, H Zhang, U Kuzmanov, YQ Zhou, B Hussain, F Ehsan, B Hinz, AO Gramolini, SP Heximer. Myocardial infarction induces cardiac fibroblast transformation within injured and noninjured regions of the mouse heart. J Proteome Res 2021; 20(5): 2867–2881
https://doi.org/10.1021/acs.jproteome.1c00098
11 LJ Deng, WQ Deng, SR Fan, MF Chen, M Qi, WY Lyu, Q Qi, AK Tiwari, JX Chen, DM Zhang, ZS Chen. m6A modification: recent advances, anticancer targeted drug discovery and beyond. Mol Cancer 2022; 21(1): 52
https://doi.org/10.1186/s12943-022-01510-2
12 R Gong, X Wang, H Li, S Liu, Z Jiang, Y Zhao, Y Yu, Z Han, Y Yu, C Dong, S Li, B Xu, W Zhang, N Wang, X Li, X Gao, F Yang, D Bamba, W Ma, Y Liu, B Cai. Loss of m6A methyltransferase METTL3 promotes heart regeneration and repair after myocardial injury. Pharmacol Res 2021; 174: 105845
https://doi.org/10.1016/j.phrs.2021.105845
13 YS Chen, XP Ouyang, XH Yu, P Novák, L Zhou, PP He, K Yin. N6-adenosine methylation (m6A) RNA modification: an emerging role in cardiovascular diseases. J Cardiovasc Transl Res 2021; 14(5): 857–872
https://doi.org/10.1007/s12265-021-10108-w
14 X Wang, BS Zhao, IA Roundtree, Z Lu, D Han, H Ma, X Weng, K Chen, H Shi, C He. N6-methyladenosine modulates messenger RNA translation efficiency. Cell 2015; 161(6): 1388–1399
https://doi.org/10.1016/j.cell.2015.05.014
15 D Jin, J Guo, Y Wu, L Yang, X Wang, J Du, J Dai, W Chen, K Gong, S Miao, X Li, H Sun. m6A demethylase ALKBH5 inhibits tumor growth and metastasis by reducing YTHDFs-mediated YAP expression and inhibiting miR-107/LATS2-mediated YAP activity in NSCLC. Mol Cancer 2020; 19(1): 40
https://doi.org/10.1186/s12943-020-01161-1
16 L Liu, X Liu, Z Dong, J Li, Y Yu, X Chen, F Ren, G Cui, R Sun. N6-methyladenosine-related genomic targets are altered in breast cancer tissue and associated with poor survival. J Cancer 2019; 10(22): 5447–5459
https://doi.org/10.7150/jca.35053
17 N Okura, N Nishioka, T Yamada, H Taniguchi, K Tanimura, Y Katayama, A Yoshimura, S Watanabe, T Kikuchi, S Shiotsu, T Kitazaki, A Nishiyama, M Iwasaku, Y Kaneko, J Uchino, H Uehara, M Horinaka, T Sakai, K Tanaka, R Kozaki, S Yano, K Takayama. ONO-7475, a novel AXL inhibitor, suppresses the adaptive resistance to initial EGFR-TKI treatment in EGFR-mutated non-small cell lung cancer. Clin Cancer Res 2020; 26(9): 2244–2256
https://doi.org/10.1158/1078-0432.CCR-19-2321
18 M Tanaka, DW Siemann. Therapeutic targeting of the Gas6/Axl signaling pathway in cancer. Int J Mol Sci 2021; 22(18): 9953
https://doi.org/10.3390/ijms22189953
19 L Quirico, F Orso, CL Esposito, S Bertone, R Coppo, L Conti, S Catuogno, F Cavallo, V de Franciscis, D Taverna. Axl-148b chimeric aptamers inhibit breast cancer and melanoma progression. Int J Biol Sci 2020; 16(7): 1238–1251
https://doi.org/10.7150/ijbs.39768
20 M Batlle, P Recarte-Pelz, E Roig, MA Castel, M Cardona, M Farrero, JT Ortiz, B Campos, MJ Pulgarín, J Ramírez, F Pérez-Villa, de Frutos P García. AXL receptor tyrosine kinase is increased in patients with heart failure. Int J Cardiol 2014; 173(3): 402–409
https://doi.org/10.1016/j.ijcard.2014.03.016
21 G Caldentey, De Frutos P García, H Cristóbal, M Garabito, A Berruezo, X Bosch, Antonio R San, E Flores-Umanzor, RJ Perea, Caralt TM De, J Rodríguez, JT Ortiz-Pérez. Serum levels of growth arrest-specific 6 protein and soluble AXL in patients with ST-segment elevation myocardial infarction. Eur Heart J Acute Cardiovasc Care 2019; 8(8): 708–716
https://doi.org/10.1177/2048872617740833
22 M DeBerge, K Glinton, M Subramanian, LD Wilsbacher, CV Rothlin, I Tabas, EB Thorp. Macrophage AXL receptor tyrosine kinase inflames the heart after reperfused myocardial infarction. J Clin Invest 2021; 131(6): e139576
https://doi.org/10.1172/JCI139576
23 TY Li, W Su, LL Li, XG Zhao, N Yang, JX Gai, X Lv, J Zhang, MQ Huang, Q Zhang, WH Ji, XY Song, YH Zhou, XL Li, HL Shan, HH Liang. Critical role of PAFR/YAP1 positive feedback loop in cardiac fibrosis. Acta Pharmacol Sin 2022; 43(11): 2862–2872
https://doi.org/10.1038/s41401-022-00903-9
24 JJ Xu, RJ Li, ZH Zhang, C Yang, SX Liu, YL Li, MW Chen, WW Wang, GY Zhang, G Song, ZR Huang. Loganin inhibits angiotensin II-induced cardiac hypertrophy through the JAK2/STAT3 and NF-κB signaling pathways. Front Pharmacol 2021; 12: 678886
https://doi.org/10.3389/fphar.2021.678886
25 W Qin, L Cao, IY Massey. Role of PI3K/Akt signaling pathway in cardiac fibrosis. Mol Cell Biochem 2021; 476(11): 4045–4059
https://doi.org/10.1007/s11010-021-04219-w
26 MJ Goumans, P Ten Dijke. TGF-β signaling in control of cardiovascular function. Cold Spring Harb Perspect Biol 2018; 10(2): a022210
https://doi.org/10.1101/cshperspect.a022210
27 A Saito, M Horie, T Nagase. TGF-β signaling in lung health and disease. Int J Mol Sci 2018; 19(8): 2460
https://doi.org/10.3390/ijms19082460
28 Y Isaka. Targeting TGF-β signaling in kidney fibrosis. Int J Mol Sci 2018; 19(9): 2532
https://doi.org/10.3390/ijms19092532
29 NG Frangogiannis. Transforming growth factor-β in myocardial disease. Nat Rev Cardiol 2022; 19(7): 435–455
https://doi.org/10.1038/s41569-021-00646-w
30 JX Zhu, W Ling, C Xue, Z Zhou, YS Zhang, C Yan, MP Wu. Higenamine attenuates cardiac fibroblast abstract and fibrosis via inhibition of TGF-β1/Smad signaling. Eur J Pharmacol 2021; 900: 174013
https://doi.org/10.1016/j.ejphar.2021.174013
31 L Tao, Y Wang, E Gao, H Zhang, Y Yuan, WB Lau, L Chan, WJ Koch, XL Ma. Adiponectin: an indispensable molecule in rosiglitazone cardioprotection following myocardial infarction. Circ Res 2010; 106(2): 409–417
https://doi.org/10.1161/CIRCRESAHA.109.211797
32 GL Huang, D Liao, H Chen, Y Lu, L Chen, H Li, B Li, W Liu, C Ye, T Li, Z Zhu, J Wang, T Uchida, Y Zou, Z Dong, Z He. The protein level and transcription activity of activating transcription factor 1 is regulated by prolyl isomerase Pin1 in nasopharyngeal carcinoma progression. Cell Death Dis 2016; 7(12): e2571
https://doi.org/10.1038/cddis.2016.349
33 FF Chen, FQ Song, YQ Chen, ZH Wang, YH Li, MH Liu, Y Li, M Song, W Zhang, J Zhao, M Zhong. Exogenous testosterone alleviates cardiac fibrosis and apoptosis via Gas6/Axl pathway in the senescent mice. Exp Gerontol 2019; 119: 128–137
https://doi.org/10.1016/j.exger.2019.01.029
34 HY Zhu, WD Bai, J Li, K Tao, HT Wang, XK Yang, JQ Liu, YC Wang, T He, ST Xie, DH Hu. Peroxisome proliferator-activated receptor-γ agonist troglitazone suppresses transforming growth factor-β1 signalling through miR-92b upregulation-inhibited Axl expression in human keloid fibroblasts in vitro. Am J Transl Res 2016; 8(8): 3460–3470
35 Q Zhang, L Wang, S Wang, H Cheng, L Xu, G Pei, Y Wang, C Fu, Y Jiang, C He, Q Wei. Signaling pathways and targeted therapy for myocardial infarction. Signal Transduct Target Ther 2022; 7(1): 78
https://doi.org/10.1038/s41392-022-00925-z
36 MM Gladka, A Kohela, B Molenaar, D Versteeg, L Kooijman, J Monshouwer-Kloots, V Kremer, HR Vos, MMH Huibers, JJ Haigh, D Huylebroeck, RA Boon, M Giacca, E van Rooij. Cardiomyocytes stimulate angiogenesis after ischemic injury in a ZEB2-dependent manner. Nat Commun 2021; 12(1): 84
https://doi.org/10.1038/s41467-020-20361-3
37 J Yang, K Savvatis, JS Kang, P Fan, H Zhong, K Schwartz, V Barry, A Mikels-Vigdal, S Karpinski, D Kornyeyev, J Adamkewicz, X Feng, Q Zhou, C Shang, P Kumar, D Phan, M Kasner, B López, J Diez, KC Wright, RL Kovacs, PS Chen, T Quertermous, V Smith, L Yao, C Tschöpe, CP Chang. Targeting LOXL2 for cardiac interstitial fibrosis and heart failure treatment. Nat Commun 2016; 7(1): 13710
https://doi.org/10.1038/ncomms13710
38 P Mathiyalagan, M Adamiak, J Mayourian, Y Sassi, Y Liang, N Agarwal, D Jha, S Zhang, E Kohlbrenner, E Chepurko, J Chen, MG Trivieri, R Singh, R Bouchareb, K Fish, K Ishikawa, D Lebeche, RJ Hajjar, S Sahoo. FTO-dependent N6-methyladenosine regulates cardiac function during remodeling and repair. Circulation 2019; 139(4): 518–532
https://doi.org/10.1161/CIRCULATIONAHA.118.033794
39 Ali M Akhtar, S Younis, O Wallerman, R Gupta, L Andersson, T Sjöblom. Transcriptional modulator ZBED6 affects cell cycle and growth of human colorectal cancer cells. Proc Natl Acad Sci USA 2015; 112(25): 7743–7748
https://doi.org/10.1073/pnas.1509193112
40 YZ Huang, LZ Zhang, XS Lai, MX Li, YJ Sun, CJ Li, XY Lan, CZ Lei, CL Zhang, X Zhao, H Chen. Transcription factor ZBED6 mediates IGF2 gene expression by regulating promoter activity and DNA methylation in myoblasts. Sci Rep 2014; 4(1): 4570
https://doi.org/10.1038/srep04570
41 L Jiang, O Wallerman, S Younis, CJ Rubin, ER Gilbert, E Sundström, A Ghazal, X Zhang, L Wang, TS Mikkelsen, G Andersson, L Andersson. ZBED6 modulates the transcription of myogenic genes in mouse myoblast cells. PLoS One 2014; 9(4): e94187
https://doi.org/10.1371/journal.pone.0094187
42 R Naboulsi, M Larsson, L Andersson, S Younis. ZBED6 regulates Igf2 expression partially through its regulation of miR483 expression. Sci Rep 2021; 11(1): 19484
https://doi.org/10.1038/s41598-021-98777-0
43 X Wu, X Liu, S Koul, CY Lee, Z Zhang, B Halmos. AXL kinase as a novel target for cancer therapy. Oncotarget 2014; 5(20): 9546–9563
https://doi.org/10.18632/oncotarget.2542
44 DC Yang, S Gu, JM Li, SW Hsu, SJ Chen, WH Chang, CH Chen. Targeting the AXL receptor in combating smoking-related pulmonary fibrosis. Am J Respir Cell Mol Biol 2021; 64(6): 734–746
https://doi.org/10.1165/rcmb.2020-0303OC
45 C Bárcena, M Stefanovic, A Tutusaus, L Joannas, A Menéndez, C García-Ruiz, P Sancho-Bru, M Marí, J Caballeria, CV Rothlin, JC Fernández-Checa, Frutos PG de, A Morales. Gas6/Axl pathway is activated in chronic liver disease and its targeting reduces fibrosis via hepatic stellate cell inactivation. J Hepatol 2015; 63(3): 670–678
https://doi.org/10.1016/j.jhep.2015.04.013
46 CA Steiner, ES Rodansky, LA Johnson, JA Berinstein, KC Cushing, S Huang, JR Spence, PDR Higgins. AXL is a potential target for the treatment of intestinal fibrosis. Inflamm Bowel Dis 2021; 27(3): 303–316
https://doi.org/10.1093/ibd/izaa169
47 TS Rigoni, NS Vellozo, K Guimarães-Pinto, M Cabral-Piccin, L Fabiano-Coelho, TC Matos-Silva, AA Filardy, CM Takiya, MF Lopes. Axl receptor induces efferocytosis, dampens M1 macrophage responses and promotes heart pathology in Trypanosoma cruzi infection. Commun Biol 2022; 5(1): 1421
https://doi.org/10.1038/s42003-022-04401-w
48 Z Ma, Q Li, P Liu, W Dong, Y Zuo. METTL3 regulates m6A in endometrioid epithelial ovarian cancer independently of METTl14 and WTAP. Cell Biol Int 2020; 44(12): 2524–2531
https://doi.org/10.1002/cbin.11459
49 M Ikeuchi, H Tsutsui, T Shiomi, H Matsusaka, S Matsushima, J Wen, T Kubota, A Takeshita. Inhibition of TGF-beta signaling exacerbates early cardiac dysfunction but prevents late remodeling after infarction. Cardiovasc Res 2004; 64(3): 526–535
https://doi.org/10.1016/j.cardiores.2004.07.017
50 A Hanna, NG Frangogiannis. The role of the TGF-β superfamily in myocardial infarction. Front Cardiovasc Med 2019; 6: 140
https://doi.org/10.3389/fcvm.2019.00140
51 L Gao, LY Wang, ZQ Liu, D Jiang, SY Wu, YQ Guo, HM Tao, M Sun, LN You, S Qin, XC Cheng, JS Xie, GL Chang, DY Zhang. TNAP inhibition attenuates cardiac fibrosis induced by myocardial infarction through deactivating TGF-β1/Smads and activating P53 signaling pathways. Cell Death Dis 2020; 11(1): 44
https://doi.org/10.1038/s41419-020-2243-4
52 AB Jaykumar, S Plumber, DM Barry, D Binns, C Wichaidit, M Grzemska, S Earnest, EJ Goldsmith, O Cleaver, MH Cobb. WNK1 collaborates with TGF-β in endothelial cell junction turnover and angiogenesis. Proc Natl Acad Sci USA 2022; 119(30): e2203743119
https://doi.org/10.1073/pnas.2203743119
[1] FMD-23071-OF-BY_suppl_1 Download
[1] Xu Hao, Zhiyao Bao, Ranran Dai, Xiaojing Wu, Xin Li, Muyin Zhang, Hao Li, Lili Xu, Panpan Qiao, Xuefei Liu, Weiting Hu, Ze Zhang, Jie Fang, Min Zhou, Weiming Wang, Jieming Qu. A pilot study on Paxlovid therapy for hemodialysis patients with severe acute respiratory syndrome coronavirus 2 infections[J]. Front. Med., 2024, 18(1): 169-179.
[2] Haoran Wei, Mingming Zhao, Man Huang, Chenze Li, Jianing Gao, Ting Yu, Qi Zhang, Xiaoqing Shen, Liang Ji, Li Ni, Chunxia Zhao, Zeneng Wang, Erdan Dong, Lemin Zheng, Dao Wen Wang. FMO3--TMAO axis modulates the clinical outcome in chronic heart-failure patients with reduced ejection fraction: evidence from an Asian population[J]. Front. Med., 2022, 16(2): 295-305.
[3] Hui Wang, Yang Zhang, Zhujun Shen, Ligang Fang, Zhenyu Liu, Shuyang Zhang. Prognostic value of fasting glucose on the risk of heart failure and left ventricular systolic dysfunction in non-diabetic patients with ST-segment elevation myocardial infarction[J]. Front. Med., 2021, 15(1): 70-78.
[4] Qingqiang Ni,Lin Yun,Rui Xu,Guohua Li,Yucai Yao,Jiamin Li. A rare chronic constrictive pericarditis with localized adherent visceral pericardium and normal parietal pericardium: a case report[J]. Front. Med., 2016, 10(3): 356-359.
[5] Wei Gong,Mengwen Yan,Junxiong Chen,Sandip Chaugai,Chen Chen,Daowen Wang. Chronic inhibition of cyclic guanosine monophosphate-specific phosphodiesterase 5 prevented cardiac fibrosis through inhibition of transforming growth factor β-induced Smad signaling[J]. Front. Med., 2014, 8(4): 445-455.
[6] CAI Chunquan, ZHANG Qingjiang, SHEN Changhong. Vein of Galen malformations - report of 2 cases and literature review[J]. Front. Med., 2008, 2(3): 317-322.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed