|
|
Epigenetic silencing of BEND4, a novel DNA damage repair gene, is a synthetic lethal marker for ATM inhibitor in pancreatic cancer |
Yuanxin Yao1, Honghui Lv2,1, Meiying Zhang1, Yuan Li3,1, James G. Herman4, Malcolm V. Brock5, Aiai Gao1, Qian Wang1, Francois Fuks6, Lirong Zhang2( ), Mingzhou Guo1,7( ) |
1. Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China 2. Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China 3. Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China 4. UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA 5. Department of surgery, School of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA 6. Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Universite Libre de Bruxelles (ULB), Brussels 1070, Belgium 7. National Key Laboratory of Kidney Diseases, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China |
|
|
Abstract Synthetic lethality is a novel model for cancer therapy. To understand the function and mechanism of BEN domain-containing protein 4 (BEND4) in pancreatic cancer, eight cell lines and a total of 492 cases of pancreatic neoplasia samples were included in this study. Methylation-specific polymerase chain reaction, CRISPR/Cas9, immunoprecipitation assay, comet assay, and xenograft mouse model were used. BEND4 is a new member of the BEN domain family. The expression of BEND4 is regulated by promoter region methylation. It is methylated in 58.1% (176/303) of pancreatic ductal adenocarcinoma (PDAC), 33.3% (14/42) of intraductal papillary mucinous neoplasm, 31.0% (13/42) of pancreatic neuroendocrine tumor, 14.3% (3/21) of mucinous cystic neoplasm, 4.3% (2/47) of solid pseudopapillary neoplasm, and 2.7% (1/37) of serous cystic neoplasm. BEND4 methylation is significantly associated with late-onset PDAC (> 50 years, P < 0.01) and tumor differentiation (P < 0.0001), and methylation of BEND4 is an independent poor prognostic marker (P < 0.01) in PDAC. Furthermore, BEND4 plays tumor-suppressive roles in vitro and in vivo. Mechanistically, BEND4 involves non-homologous end joining signaling by interacting with Ku80 and promotes DNA damage repair. Loss of BEND4 increased the sensitivity of PDAC cells to ATM inhibitor. Collectively, the present study revealed an uncharacterized tumor suppressor BEND4 and indicated that methylation of BEND4 may serve as a potential synthetic lethal marker for ATM inhibitor in PDAC treatment.
|
Keywords
BEND4
DNA methylation
synthetic lethality
NHEJ pathway
|
Corresponding Author(s):
Lirong Zhang,Mingzhou Guo
|
Just Accepted Date: 16 May 2024
Online First Date: 28 June 2024
Issue Date: 30 August 2024
|
|
1 |
L Rahib, BD Smith, R Aizenberg, AB Rosenzweig, JM Fleshman, LM Matrisian. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 2014; 74(11): 2913–2921
https://doi.org/10.1158/0008-5472.CAN-14-0155
|
2 |
JD Mizrahi, R Surana, JW Valle, RT Shroff. Pancreatic cancer. Lancet 2020; 395(10242): 2008–2020
https://doi.org/10.1016/S0140-6736(20)30974-0
|
3 |
O Strobel, J Neoptolemos, D Jäger, MW Büchler. Optimizing the outcomes of pancreatic cancer surgery. Nat Rev Clin Oncol 2019; 16(1): 11–26
https://doi.org/10.1038/s41571-018-0112-1
|
4 |
SB Dreyer, DK Chang, P Bailey, AV Biankin. Pancreatic cancer genomes: implications for clinical management and therapeutic development. Clin Cancer Res 2017; 23(7): 1638–1646
https://doi.org/10.1158/1078-0432.CCR-16-2411
|
5 |
A Huang, LA Garraway, A Ashworth, B Weber. Synthetic lethality as an engine for cancer drug target discovery. Nat Rev Drug Discov 2020; 19(1): 23–38
https://doi.org/10.1038/s41573-019-0046-z
|
6 |
H Farmer, N McCabe, CJ Lord, AN Tutt, DA Johnson, TB Richardson, M Santarosa, KJ Dillon, I Hickson, C Knights, NM Martin, SP Jackson, GC Smith, A Ashworth. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 2005; 434(7035): 917–921
https://doi.org/10.1038/nature03445
|
7 |
HE Bryant, N Schultz, HD Thomas, KM Parker, D Flower, E Lopez, S Kyle, M Meuth, NJ Curtin, T Helleday. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 2005; 434(7035): 913–917
https://doi.org/10.1038/nature03443
|
8 |
CJ Lord, A Ashworth. PARP inhibitors: synthetic lethality in the clinic. Science 2017; 355(6330): 1152–1158
https://doi.org/10.1126/science.aam7344
|
9 |
CJ Lord, A Ashworth. BRCAness revisited. Nat Rev Cancer 2016; 16(2): 110–120
https://doi.org/10.1038/nrc.2015.21
|
10 |
M Guo, Y Peng, A Gao, C Du, JG Herman. Epigenetic heterogeneity in cancer. Biomark Res 2019; 7(1): 23
https://doi.org/10.1186/s40364-019-0174-y
|
11 |
A Gao, M Guo. Epigenetic based synthetic lethal strategies in human cancers. Biomark Res 2020; 8: 44
https://doi.org/10.1186/s40364-020-00224-1
|
12 |
Y Cui, H Chen, R Xi, H Cui, Y Zhao, E Xu, T Yan, X Lu, F Huang, P Kong, Y Li, X Zhu, J Wang, W Zhu, J Wang, Y Ma, Y Zhou, S Guo, L Zhang, Y Liu, B Wang, Y Xi, R Sun, X Yu, Y Zhai, F Wang, J Yang, B Yang, C Cheng, J Liu, B Song, H Li, Y Wang, Y Zhang, X Cheng, Q Zhan, Y Li, Z Liu. Whole-genome sequencing of 508 patients identifies key molecular features associated with poor prognosis in esophageal squamous cell carcinoma. Cell Res 2020; 30(10): 902–913
https://doi.org/10.1038/s41422-020-0333-6
|
13 |
S Abhiman, LM Iyer, L Aravind. BEN: a novel domain in chromatin factors and DNA viral proteins. Bioinformatics 2008; 24(4): 458–461
https://doi.org/10.1093/bioinformatics/btn007
|
14 |
KM Sathyan, Z Shen, V Tripathi, KV Prasanth, SG Prasanth. A BEN-domain-containing protein associates with heterochromatin and represses transcription. J Cell Sci 2011; 124(Pt 18): 3149–3163
https://doi.org/10.1242/jcs.086603
|
15 |
F Kurniawan, SG Prasanth. A BEN-domain protein and polycomb complex work coordinately to regulate transcription. Transcription 2022; 13(1–3): 82–87
https://doi.org/10.1080/21541264.2022.2105128
|
16 |
J Zhang, Y Zhang, Q You, C Huang, T Zhang, M Wang, T Zhang, X Yang, J Xiong, Y Li, CP Liu, Z Zhang, RM Xu, B Zhu. Highly enriched BEND3 prevents the premature activation of bivalent genes during differentiation. Science 2022; 375(6584): 1053–1058
https://doi.org/10.1126/science.abm0730
|
17 |
S Babu, Y Takeuchi, I Masai. Banp regulates DNA damage response and chromosome segregation during the cell cycle in zebrafish retina. eLife 2022; 11: e74611
https://doi.org/10.7554/eLife.74611
|
18 |
L Ma, D Xie, M Luo, X Lin, H Nie, J Chen, C Gao, S Duo, C Han. Identification and characterization of BEND2 as a key regulator of meiosis during mouse spermatogenesis. Sci Adv 2022; 8(21): eabn1606
https://doi.org/10.1126/sciadv.abn1606
|
19 |
Y Shi, D Zhang, J Chen, Q Jiang, S Song, Y Mi, T Wang, Q Ye. Interaction between BEND5 and RBPJ suppresses breast cancer growth and metastasis via inhibiting Notch signaling. Int J Biol Sci 2022; 18(10): 4233–4244
https://doi.org/10.7150/ijbs.70866
|
20 |
G Shi, Y Bai, X Zhang, J Su, J Pang, Q He, P Zeng, J Ding, Y Xiong, J Zhang, J Wang, D Liu, W Ma, J Huang, Z Songyang. Bend family proteins mark chromatin boundaries and synergistically promote early germ cell differentiation. Protein Cell 2022; 13(10): 721–741
https://doi.org/10.1007/s13238-021-00884-1
|
21 |
W Du, A Gao, JG Herman, L Wang, L Zhang, S Jiao, M Guo. Methylation of NRN1 is a novel synthetic lethal marker of PI3K-Akt-mTOR and ATR inhibitors in esophageal cancer. Cancer Sci 2021; 112(7): 2870–2883
https://doi.org/10.1111/cas.14917
|
22 |
H Li, M Zhang, E Linghu, F Zhou, JG Herman, L Hu, M Guo. Epigenetic silencing of TMEM176A activates ERK signaling in human hepatocellular carcinoma. Clin Epigenetics 2018; 10(1): 137
https://doi.org/10.1186/s13148-018-0570-4
|
23 |
AJ Pierce, RD Johnson, LH Thompson, M Jasin. XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes Dev 1999; 13(20): 2633–2638
https://doi.org/10.1101/gad.13.20.2633
|
24 |
J Guirouilh-Barbat, S Huck, P Bertrand, L Pirzio, C Desmaze, L Sabatier, BS Lopez. Impact of the KU80 pathway on NHEJ-induced genome rearrangements in mammalian cells. Mol Cell 2004; 14(5): 611–623
https://doi.org/10.1016/j.molcel.2004.05.008
|
25 |
PL Olive, JP Banáth. The comet assay: a method to measure DNA damage in individual cells. Nat Protoc 2006; 1(1): 23–29
https://doi.org/10.1038/nprot.2006.5
|
26 |
C Zhang, B Zhou, F Gu, H Liu, H Wu, F Yao, H Zheng, H Fu, W Chong, S Cai, M Huang, X Ma, Z Guo, T Li, W Deng, M Zheng, Q Ji, Y Zhao, Y Ma, QE Wang, TS Tang, C Guo. Micropeptide PACMP inhibition elicits synthetic lethal effects by decreasing CtIP and poly(ADP-ribosyl)ation. Mol Cell 2022; 82(7): 1297–1312.e8
https://doi.org/10.1016/j.molcel.2022.01.020
|
27 |
B Zhao, E Rothenberg, DA Ramsden, MR Lieber. The molecular basis and disease relevance of non-homologous DNA end joining. Nat Rev Mol Cell Biol 2020; 21(12): 765–781
https://doi.org/10.1038/s41580-020-00297-8
|
28 |
X Yue, C Bai, D Xie, T Ma, PK Zhou. DNA-PKcs: a multi-faceted player in DNA damage response. Front Genet 2020; 11: 607428
https://doi.org/10.3389/fgene.2020.607428
|
29 |
C Almoguera, D Shibata, K Forrester, J Martin, N Arnheim, M Perucho. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 1988; 53(4): 549–554
https://doi.org/10.1016/0092-8674(88)90571-5
|
30 |
A Scarpa, P Capelli, K Mukai, G Zamboni, T Oda, C Iacono, S Hirohashi. Pancreatic adenocarcinomas frequently show p53 gene mutations. Am J Pathol 1993; 142(5): 1534–1543
|
31 |
S Jones, X Zhang, DW Parsons, JC Lin, RJ Leary, P Angenendt, P Mankoo, H Carter, H Kamiyama, A Jimeno, SM Hong, B Fu, MT Lin, ES Calhoun, M Kamiyama, K Walter, T Nikolskaya, Y Nikolsky, J Hartigan, DR Smith, M Hidalgo, SD Leach, AP Klein, EM Jaffee, M Goggins, A Maitra, C Iacobuzio-Donahue, JR Eshleman, SE Kern, RH Hruban, R Karchin, N Papadopoulos, G Parmigiani, B Vogelstein, VE Velculescu, KW Kinzler. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 2008; 321(5897): 1801–1806
https://doi.org/10.1126/science.1164368
|
32 |
AV Biankin, N Waddell, KS Kassahn, MC Gingras, LB Muthuswamy, AL Johns, DK Miller, PJ Wilson, AM Patch, J Wu, DK Chang, MJ Cowley, BB Gardiner, S Song, I Harliwong, S Idrisoglu, C Nourse, E Nourbakhsh, S Manning, S Wani, M Gongora, M Pajic, CJ Scarlett, AJ Gill, AV Pinho, I Rooman, M Anderson, O Holmes, C Leonard, D Taylor, S Wood, Q Xu, K Nones, JL Fink, A Christ, T Bruxner, N Cloonan, G Kolle, F Newell, M Pinese, RS Mead, JL Humphris, W Kaplan, MD Jones, EK Colvin, AM Nagrial, ES Humphrey, A Chou, VT Chin, LA Chantrill, A Mawson, JS Samra, JG Kench, JA Lovell, RJ Daly, ND Merrett, C Toon, K Epari, NQ Nguyen, A Barbour, N; Australian Pancreatic Cancer Genome Initiative; Kakkar N Zeps, F Zhao, YQ Wu, M Wang, DM Muzny, WE Fisher, FC Brunicardi, SE Hodges, JG Reid, J Drummond, K Chang, Y Han, LR Lewis, H Dinh, CJ Buhay, T Beck, L Timms, M Sam, K Begley, A Brown, D Pai, A Panchal, N Buchner, Borja R De, RE Denroche, CK Yung, S Serra, N Onetto, D Mukhopadhyay, MS Tsao, PA Shaw, GM Petersen, S Gallinger, RH Hruban, A Maitra, CA Iacobuzio-Donahue, RD Schulick, CL Wolfgang, RA Morgan, RT Lawlor, P Capelli, V Corbo, M Scardoni, G Tortora, MA Tempero, KM Mann, NA Jenkins, PA Perez-Mancera, DJ Adams, DA Largaespada, LF Wessels, AG Rust, LD Stein, DA Tuveson, NG Copeland, EA Musgrove, A Scarpa, JR Eshleman, TJ Hudson, RL Sutherland, DA Wheeler, JV Pearson, JD McPherson, RA Gibbs, SM Grimmond. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 2012; 491(7424): 399–405
https://doi.org/10.1038/nature11547
|
33 |
P Bailey, DK Chang, K Nones, AL Johns, AM Patch, MC Gingras, DK Miller, AN Christ, TJ Bruxner, MC Quinn, C Nourse, LC Murtaugh, I Harliwong, S Idrisoglu, S Manning, E Nourbakhsh, S Wani, L Fink, O Holmes, V Chin, MJ Anderson, S Kazakoff, C Leonard, F Newell, N Waddell, S Wood, Q Xu, PJ Wilson, N Cloonan, KS Kassahn, D Taylor, K Quek, A Robertson, L Pantano, L Mincarelli, LN Sanchez, L Evers, J Wu, M Pinese, MJ Cowley, MD Jones, EK Colvin, AM Nagrial, ES Humphrey, LA Chantrill, A Mawson, J Humphris, A Chou, M Pajic, CJ Scarlett, AV Pinho, M Giry-Laterriere, I Rooman, JS Samra, JG Kench, JA Lovell, ND Merrett, CW Toon, K Epari, NQ Nguyen, A Barbour, N Zeps, K Moran-Jones, NB Jamieson, JS Graham, F Duthie, K Oien, J Hair, R Grützmann, A Maitra, CA Iacobuzio-Donahue, CL Wolfgang, RA Morgan, RT Lawlor, V Corbo, C Bassi, B Rusev, P Capelli, R Salvia, G Tortora, D Mukhopadhyay, GM; Australian Pancreatic Cancer Genome Initiative; Munzy DM Petersen, WE Fisher, SA Karim, JR Eshleman, RH Hruban, C Pilarsky, JP Morton, OJ Sansom, A Scarpa, EA Musgrove, UM Bailey, O Hofmann, RL Sutherland, DA Wheeler, AJ Gill, RA Gibbs, JV Pearson, N Waddell, AV Biankin, SM Grimmond. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 2016; 531(7592): 47–52
https://doi.org/10.1038/nature16965
|
34 |
SB Dreyer, R Upstill-Goddard, A Legrini, AV; Glasgow Precision Oncology Laboratory; Jamieson NB Biankin, DK; Australian Pancreatic Genome Initiative; Jamieson NB Chang, DK Chang. Genomic and molecular analyses identify molecular subtypes of pancreatic cancer recurrence. Gastroenterology 2022; 162(1): 320–324.e4
https://doi.org/10.1053/j.gastro.2021.09.022
|
35 |
N Waddell, M Pajic, AM Patch, DK Chang, KS Kassahn, P Bailey, AL Johns, D Miller, K Nones, K Quek, MC Quinn, AJ Robertson, MZ Fadlullah, TJ Bruxner, AN Christ, I Harliwong, S Idrisoglu, S Manning, C Nourse, E Nourbakhsh, S Wani, PJ Wilson, E Markham, N Cloonan, MJ Anderson, JL Fink, O Holmes, SH Kazakoff, C Leonard, F Newell, B Poudel, S Song, D Taylor, N Waddell, S Wood, Q Xu, J Wu, M Pinese, MJ Cowley, HC Lee, MD Jones, AM Nagrial, J Humphris, LA Chantrill, V Chin, AM Steinmann, A Mawson, ES Humphrey, EK Colvin, A Chou, CJ Scarlett, AV Pinho, M Giry-Laterriere, I Rooman, JS Samra, JG Kench, JA Pettitt, ND Merrett, C Toon, K Epari, NQ Nguyen, A Barbour, N Zeps, NB Jamieson, JS Graham, SP Niclou, R Bjerkvig, R Grützmann, D Aust, RH Hruban, A Maitra, CA Iacobuzio-Donahue, CL Wolfgang, RA Morgan, RT Lawlor, V Corbo, C Bassi, M Falconi, G Zamboni, G Tortora, MA; Australian Pancreatic Cancer Genome Initiative; Gill AJ Tempero, JR Eshleman, C Pilarsky, A Scarpa, EA Musgrove, JV Pearson, AV Biankin, SM Grimmond. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 2015; 518(7540): 495–501
https://doi.org/10.1038/nature14169
|
36 |
Genome Atlas Research Network Cancer. Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell 2017; 32(2): 185–203.e13
https://doi.org/10.1016/j.ccell.2017.07.007
|
37 |
AD Singhi, B George, JR Greenbowe, J Chung, J Suh, A Maitra, SJ Klempner, A Hendifar, JM Milind, T Golan, RE Brand, AH Zureikat, S Roy, AB Schrock, VA Miller, JS Ross, SM Ali, N Bahary. Real-time targeted genome profile analysis of pancreatic ductal adenocarcinomas identifies genetic alterations that might be targeted with existing drugs or used as biomarkers. Gastroenterology 2019; 156(8): 2242–2253.e4
https://doi.org/10.1053/j.gastro.2019.02.037
|
38 |
Y Qian, Y Gong, Z Fan, G Luo, Q Huang, S Deng, H Cheng, K Jin, Q Ni, X Yu, C Liu. Molecular alterations and targeted therapy in pancreatic ductal adenocarcinoma. J Hematol Oncol 2020; 13(1): 130
https://doi.org/10.1186/s13045-020-00958-3
|
39 |
MS Rémond, A Pellat, C Brezault, M Dhooge, R Coriat. Are targeted therapies or immunotherapies effective in metastatic pancreatic adenocarcinoma?. ESMO Open 2022; 7(6): 100638
https://doi.org/10.1016/j.esmoop.2022.100638
|
40 |
T Golan, P Hammel, M Reni, Cutsem E Van, T Macarulla, MJ Hall, JO Park, D Hochhauser, D Arnold, DY Oh, A Reinacher-Schick, G Tortora, H Algül, EM O’Reilly, D McGuinness, KY Cui, K Schlienger, GY Locker, HL Kindler. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N Engl J Med 2019; 381(4): 317–327
https://doi.org/10.1056/NEJMoa1903387
|
41 |
L Perkhofer, J Gout, E Roger, de Almeida F Kude, Simões C Baptista, L Wiesmüller, T Seufferlein, A Kleger. DNA damage repair as a target in pancreatic cancer: state-of-the-art and future perspectives. Gut 2021; 70(3): 606–617
https://doi.org/10.1136/gutjnl-2019-319984
|
42 |
A Hayashi, J Hong, CA Iacobuzio-Donahue. The pancreatic cancer genome revisited. Nat Rev Gastroenterol Hepatol 2021; 18(7): 469–481
https://doi.org/10.1038/s41575-021-00463-z
|
43 |
C Gourley, J Balmaña, JA Ledermann, V Serra, R Dent, S Loibl, E Pujade-Lauraine, SJ Boulton. Moving from Poly (ADP-ribose) polymerase inhibition to targeting DNA repair and DNA damage response in cancer therapy. J Clin Oncol 2019; 37(25): 2257–2269
https://doi.org/10.1200/JCO.18.02050
|
44 |
H Li, W Yang, M Zhang, T He, F Zhou, J G Herman, L Hu, M Guo. Methylation of TMEM176A, a key ERK signaling regulator, is a novel synthetic lethality marker of ATM inhibitors in human lung cancer. Epigenomics 2021; 13(17): 1403–1419
https://doi.org/10.2217/epi-2021-0217
|
45 |
V Davalos, M Esteller. Cancer epigenetics in clinical practice. CA Cancer J Clin 2023; 73(4): 376–424
https://doi.org/10.3322/caac.21765
|
46 |
MJ Topper, M Vaz, KA Marrone, JR Brahmer, SB Baylin. The emerging role of epigenetic therapeutics in immuno-oncology. Nat Rev Clin Oncol 2020; 17(2): 75–90
https://doi.org/10.1038/s41571-019-0266-5
|
47 |
D Wang, W Wu, E Callen, R Pavani, N Zolnerowich, S Kodali, D Zong, N Wong, S Noriega, WJ Nathan, G Matos-Rodrigues, R Chari, MJ Kruhlak, F Livak, M Ward, K Caldecott, B Di Stefano, A Nussenzweig. Active DNA demethylation promotes cell fate specification and the DNA damage response. Science 2022; 378(6623): 983–989
https://doi.org/10.1126/science.add9838
|
48 |
AR Weber, C Krawczyk, AB Robertson, A Kuśnierczyk, CB Vågbø, D Schuermann, A Klungland, P Schär. Biochemical reconstitution of TET1-TDG-BER-dependent active DNA demethylation reveals a highly coordinated mechanism. Nat Commun 2016; 7(1): 10806
https://doi.org/10.1038/ncomms10806
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|