|
|
|
Research progress on FASN and MGLL in the regulation of abnormal lipid metabolism and the relationship between tumor invasion and metastasis |
Jingyue Zhang, Yawen Song, Qianqian Shi, Li Fu( ) |
| Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical university, Ministry of Education, Tianjin 300060, China |
|
|
|
|
Abstract Tumorigenesis involves metabolic reprogramming and abnormal lipid metabolism, which is manifested by increased endogenous fat mobilization, hypertriglyceridemia, and increased fatty acid synthesis. Fatty acid synthase (FASN) is a key enzyme for the de novo synthesis of fatty acids, and monoacylglycerol esterase (MGLL) is an important metabolic enzyme that converts triglycerides into free fatty acids. Both enzymes play an important role in lipid metabolism and are associated with tumor-related signaling pathways, the most common of which is the PI3K–AKT signaling pathway. They can also regulate the immune microenvironment, participate in epithelial–mesenchymal transition, and then regulate tumor invasion and metastasis. Current literature have shown that these two genes are abnormally expressed in many types of tumors and are highly correlated with tumor migration and invasion. This article introduces the structures and functions of FASN and MGLL, their relationship with abnormal lipid metabolism, and the mechanism of the regulation of tumor invasion and metastasis and reviews the research progress of the relationship of FASN and MGLL with tumor invasion and metastasis.
|
| Keywords
FASN
MGLL
lipid metabolism
tumor invasion
metastasis
|
|
Corresponding Author(s):
Li Fu
|
|
Online First Date: 14 May 2021
Issue Date: 01 November 2021
|
|
| 1 |
M Karlsson, K Reue, YR Xia, AJ Lusis, D Langin, H Tornqvist, C Holm. Exon-intron organization and chromosomal localization of the mouse monoglyceride lipase gene. Gene 2001; 272(1–2): 11–18
https://doi.org/10.1016/S0378-1119(01)00559-5
pmid: 11470505
|
| 2 |
M Karlsson, JA Contreras, U Hellman, H Tornqvist, C Holm. cDNA cloning, tissue distribution, and identification of the catalytic triad of monoglyceride lipase. Evolutionary relationship to esterases, lysophospholipases, and haloperoxidases. J Biol Chem 1997; 272(43): 27218–27223
https://doi.org/10.1074/jbc.272.43.27218
pmid: 9341166
|
| 3 |
T Sun, Y Liu, L Liu, F Ma. MicroRNA-544 attenuates diabetic renal injury via suppressing glomerulosclerosis and inflammation by targeting FASN. Gene 2020; 723: 143986
https://doi.org/10.1016/j.gene.2019.143986
pmid: 31323309
|
| 4 |
X Wei, H Song, L Yin, MG Rizzo, R Sidhu, DF Covey, DS Ory, CF Semenkovich. Fatty acid synthesis configures the plasma membrane for inflammation in diabetes. Nature 2016; 539(7628): 294–298
https://doi.org/10.1038/nature20117
pmid: 27806377
|
| 5 |
LH Huang, HY Chung, HM Su. Docosahexaenoic acid reduces sterol regulatory element binding protein-1 and fatty acid synthase expression and inhibits cell proliferation by inhibiting pAkt signaling in a human breast cancer MCF-7 cell line. BMC Cancer 2017; 17(1): 890
https://doi.org/10.1186/s12885-017-3936-7
pmid: 29282029
|
| 6 |
N Li, X Bu, P Wu, P Wu, P Huang. The “HER2–PI3K/Akt–FASN Axis” regulated malignant phenotype of colorectal cancer cells. Lipids 2012; 47(4): 403–411
https://doi.org/10.1007/s11745-011-3649-7
pmid: 22218925
|
| 7 |
Y Mo, Y Wu, X Li, H Rao, X Tian, D Wu, Z Qiu, G Zheng, J Hu. Osthole delays hepatocarcinogenesis in mice by suppressing AKT/FASN axis and ERK phosphorylation. Eur J Pharmacol 2020; 867: 172788
https://doi.org/10.1016/j.ejphar.2019.172788
pmid: 31712058
|
| 8 |
L Chang, S Fang, Y Chen, Z Yang, Y Yuan, J Zhang, L Ye, W Gu. Inhibition of FASN suppresses the malignant biological behavior of non-small cell lung cancer cells via deregulating glucose metabolism and AKT/ERK pathway. Lipids Health Dis 2019; 18(1): 118
https://doi.org/10.1186/s12944-019-1058-8
pmid: 31122252
|
| 9 |
Z Cao, MM Mulvihill, P Mukhopadhyay, H Xu, K Erdélyi, E Hao, E Holovac, G Haskó, BF Cravatt, DK Nomura. Monoacylglycerol lipase controls endocannabinoid and eicosanoid signaling and hepatic injury in mice. Gastroenterology 2013; 144(4): 808–817.e15
https://doi.org/DOI: 10.1053/j.gastro.2012.12.028
pmid: 23295443
|
| 10 |
M Jiang, M van der Stelt. Activity-based protein profiling delivers selective drug candidate ABX-1431, a monoacylglycerol lipase inhibitor, to control lipid metabolism in neurological disorders. J Med Chem 2018; 61(20): 9059–9061
https://doi.org/10.1021/acs.jmedchem.8b01405
pmid: 30354159
|
| 11 |
DK Nomura, JZ Long, S Niessen, HS Hoover, SW Ng, BF Cravatt. Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell 2010; 140(1): 49–61
https://doi.org/10.1016/j.cell.2009.11.027
pmid: 20079333
|
| 12 |
H Sun, L Jiang, X Luo, W Jin, Q He, J An, K Lui, J Shi, R Rong, W Su, C Lucchesi, Y Liu, MS Sheikh, Y Huang. Potential tumor-suppressive role of monoglyceride lipase in human colorectal cancer. Oncogene 2013; 32(2): 234–241
https://doi.org/10.1038/onc.2012.34
pmid: 22349814
|
| 13 |
D Rajasekaran, N Jariwala, RG Mendoza, CL Robertson, MA Akiel, M Dozmorov, PB Fisher, D Sarkar. Staphylococcal nuclease and Tudor domain containing 1 (SND1 protein) promotes hepatocarcinogenesis by inhibiting monoglyceride lipase (MGLL). J Biol Chem 2016; 291(20): 10736–10746
https://doi.org/10.1074/jbc.M116.715359
pmid: 26997225
|
| 14 |
GG Galli, HA Multhaupt, M Carrara, KH de Lichtenberg, IB Christensen, D Linnemann, E Santoni-Rugiu, RA Calogero, AH Lund. Prdm5 suppresses Apc(Min)-driven intestinal adenomas and regulates monoacylglycerol lipase expression. Oncogene 2014; 33(25): 3342–3350
https://doi.org/10.1038/onc.2013.283
pmid: 23873026
|
| 15 |
E Currie, A Schulze, R Zechner, TC Walther, RV Farese Jr. Cellular fatty acid metabolism and cancer. Cell Metab 2013; 18(2): 153–161
https://doi.org/10.1016/j.cmet.2013.05.017
pmid: 23791484
|
| 16 |
O Warburg. On the origin of cancer cells. Science 1956; 123(3191): 309–314
https://doi.org/10.1126/science.123.3191.309
pmid: 13298683
|
| 17 |
H Qiu, X Zhao. Correlation between PI3K/AKT signal pathway and overexpression of fatty acid synthase in osteosarcoma. Chin J Gerontology (Zhongguo Lao Nian Xue Za Zhi) 2018; 9: 2113–2115 (in Chinese)
|
| 18 |
L Jiang, X Fang, H Wang, D Li, X Wang. Ovarian cancer-intrinsic fatty acid synthase prevents anti-tumor immunity by disrupting tumor-infiltrating dendritic cells. Front Immunol 2018; 9: 2927
https://doi.org/10.3389/fimmu.2018.02927
pmid: 30619288
|
| 19 |
X Wang, G Du, Y Wu, Y Zhang, F Guo, W Liu, R Wu. Association between different levels of lipid metabolismrelated enzymes and fatty acid synthase in Wilms’ tumor. Int J Oncol 2020; 56(2): 568–580
pmid: 31894270
|
| 20 |
CF Li, IC Chuang, TT Liu, KC Chen, YY Chen, FM Fang, SH Li, TJ Chen, SC Yu, J Lan, HY Huang. Transcriptomic reappraisal identifies MGLL overexpression as an unfavorable prognosticator in primary gastrointestinal stromal tumors. Oncotarget 2016; 7(31): 49986–49997
https://doi.org/10.18632/oncotarget.10304
pmid: 27366945
|
| 21 |
W Zhu, Y Zhao, J Zhou, X Wang, Q Pan, N Zhang, L Wang, M Wang, D Zhan, Z Liu, X He, D Ma, S Liu, L Wang. Monoacylglycerol lipase promotes progression of hepatocellular carcinoma via NF-kB-mediated epithelial-mesenchymal transition. J Hematol Oncol 2016; 9(1): 127
https://doi.org/10.1186/s13045-016-0361-3
pmid: 27884159
|
| 22 |
M Zhao, Y Bu, J Feng, H Zhang, Y Chen, G Yang, Z Liu, H Yuan, Y Yuan, L Liu, H Yun, J Wang, X Zhang. SPIN1 triggers abnormal lipid metabolism and enhances tumor growth in liver cancer. Cancer Lett 2020; 470: 54–63
https://doi.org/10.1016/j.canlet.2019.11.032
pmid: 31790762
|
| 23 |
I Vivanco, CL Sawyers. The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer 2002; 2(7): 489–501
https://doi.org/10.1038/nrc839
pmid: 12094235
|
| 24 |
R Ventura, K Mordec, J Waszczuk, Z Wang, J Lai, M Fridlib, D Buckley, G Kemble, TS Heuer. Inhibition of de novo palmitate synthesis by fatty acid synthase induces apoptosis in tumor cells by remodeling cell membranes, inhibiting signaling pathways, and reprogramming gene expression. EBioMedicine 2015; 2(8): 808–824
https://doi.org/10.1016/j.ebiom.2015.06.020
pmid: 26425687
|
| 25 |
X Yang, D Zhang, S Liu, X Li, W Hu, C Han. KLF4 suppresses the migration of hepatocellular carcinoma by transcriptionally upregulating monoglyceride lipase. Am J Cancer Res 2018; 8(6): 1019–1029
pmid: 30034939
|
| 26 |
MS Lawrence, P Stojanov, CH Mermel, JT Robinson, LA Garraway, TR Golub, M Meyerson, SB Gabriel, ES Lander, G Getz. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 2014; 505(7484): 495–501
https://doi.org/10.1038/nature12912
pmid: 24390350
|
| 27 |
N Jiang, Q Dai, X Su, J Fu, X Feng, J Peng. Role of PI3K/AKT pathway in cancer: the framework of malignant behavior. Mol Biol Rep 2020; 47(6): 4587–4629
https://doi.org/10.1007/s11033-020-05435-1
pmid: 32333246
|
| 28 |
F Chang, JT Lee, PM Navolanic, LS Steelman, JG Shelton, WL Blalock, RA Franklin, JA McCubrey. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia 2003; 17(3): 590–603
https://doi.org/10.1038/sj.leu.2402824
pmid: 12646949
|
| 29 |
SA Danielsen, PW Eide, A Nesbakken, T Guren, E Leithe, RA Lothe. Portrait of the PI3K/AKT pathway in colorectal cancer. Biochim Biophys Acta 2015; 1855(1): 104–121
pmid: 25450577
|
| 30 |
F Xu, L Na, Y Li, L Chen. Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci 2020; 10(1): 54
https://doi.org/10.1186/s13578-020-00416-0
pmid: 32266056
|
| 31 |
G Hoxhaj, BD Manning. The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat Rev Cancer 2020; 20(2): 74–88
https://doi.org/10.1038/s41568-019-0216-7
pmid: 31686003
|
| 32 |
J Yang, RA Weinberg. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 2008; 14(6): 818–829
https://doi.org/10.1016/j.devcel.2008.05.009
pmid: 18539112
|
| 33 |
HA Zielinska, JMP Holly, A Bahl, CM Perks. Inhibition of FASN and ERα signalling during hyperglycaemia-induced matrix-specific EMT promotes breast cancer cell invasion via a caveolin-1-dependent mechanism. Cancer Lett 2018; 419: 187–202
https://doi.org/10.1016/j.canlet.2018.01.028
pmid: 29331414
|
| 34 |
W Xiang, R Shi, X Kang, X Zhang, P Chen, L Zhang, A Hou, R Wang, Y Zhao, K Zhao, Y Liu, Y Ma, H Luo, S Shang, J Zhang, F He, S Yu, L Gan, C Shi, Y Li, W Yang, H Liang, H Miao. Monoacylglycerol lipase regulates cannabinoid receptor 2-dependent macrophage activation and cancer progression. Nat Commun 2018; 9(1): 2574
https://doi.org/10.1038/s41467-018-04999-8
pmid: 29968710
|
| 35 |
HA Zielinska, JMP Holly, A Bahl, CM Perks. Inhibition of FASN and ERα signalling during hyperglycaemia-induced matrix-specific EMT promotes breast cancer cell invasion via a caveolin-1-dependent mechanism. Cancer Lett 2018; 419: 187–202
https://doi.org/10.1016/j.canlet.2018.01.028
pmid: 29331414
|
| 36 |
J Wang, X Zhang, J Shi, P Cao, M Wan, Q Zhang, Y Wang, SJ Kridel, W Liu, J Xu, Q Zhang, G Sui. Fatty acid synthase is a primary target of MiR-15a and MiR-16-1 in breast cancer. Oncotarget 2016; 7(48): 78566–78576
https://doi.org/10.18632/oncotarget.12479
pmid: 27713175
|
| 37 |
Z Yu, H Xue. AKT promotes tumorigenesis in mice through regulation FASN lipid metabolism. J Fujian Norm Univ (Natural Science Edition) 2019; 35(03): 58–64
|
| 38 |
J Zhao, X Zhang, T Gao, S Wang, Y Hou, P Yuan, Y Yang, T Yang, J Xing, J Li, S Liu. SIK2 enhances synthesis of fatty acid and cholesterol in ovarian cancer cells and tumor growth through PI3K/Akt signaling pathway. Cell Death Dis 2020; 11(1): 25
https://doi.org/10.1038/s41419-019-2221-x
pmid: 31932581
|
| 39 |
Z Cao, Y Xu, F Guo, X Chen, J Ji, H Xu, J He, Y Yu, Y Sun, X Lu, F Wang. FASN protein overexpression indicates poor biochemical recurrence-free survival in prostate cancer. Dis Markers 2020; 2020: 3904947
https://doi.org/10.1155/2020/3904947
pmid: 32655718
|
| 40 |
M De Piano, V Manuelli, G Zadra, J Otte, PD Edqvist, F Pontén, S Nowinski, A Niaouris, A Grigoriadis, M Loda, M Van Hemelrijck, CM Wells. Lipogenic signalling modulates prostate cancer cell adhesion and migration via modification of Rho GTPases. Oncogene 2020; 39(18): 3666–3679
https://doi.org/10.1038/s41388-020-1243-2
pmid: 32139877
|
| 41 |
WL Zhang, SS Wang, YP Jiang, Y Liu, XH Yu, JB Wu, K Wang, X Pang, P Liao, XH Liang YL , Tang. Fatty acid synthase contributes to epithelial-mesenchymal transition and invasion of salivary adenoid cystic carcinoma through PRRX1/Wnt/β-catenin pathway. J Cell Mol Med 2020; 24(19): 11465–11476
https://doi.org/10.1111/jcmm.15760
pmid: 32820613
|
| 42 |
M Ghaeidamini Harouni, S Rahgozar, S Rahimi Babasheikhali, A Safavi, ES Ghodousi. Fatty acid synthase, a novel poor prognostic factor for acute lymphoblastic leukemia which can be targeted by ginger extract. Sci Rep 2020; 10(1): 14072
https://doi.org/10.1038/s41598-020-70839-9
pmid: 32826925
|
| 43 |
J Szeremeta, J Karlsson, M Alhouayek, CJ Fowler. Low mRNA expression and activity of monoacylglycerol lipase in human SH-SY5Y neuroblastoma cells. Prostaglandins Other Lipid Mediat 2019; 142: 59–67
https://doi.org/10.1016/j.prostaglandins.2019.04.003
pmid: 30978461
|
| 44 |
W Xiang, D Zhang, H Miao. Monoacylglycerol lipase in macrophages suppresses melanoma by potentiating TLR4-Sirp α axis-mediated tumor phagocytosis. Abstracts of IUIS 2019 Beijing—17th International Congress of Immunology (II). The International Union of Immunological Societies (IUIS) and the Chinese Society for Immunology (CSI). 2019: 2
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|