Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2021, Vol. 15 Issue (5) : 649-656    https://doi.org/10.1007/s11684-021-0830-0
REVIEW
Research progress on FASN and MGLL in the regulation of abnormal lipid metabolism and the relationship between tumor invasion and metastasis
Jingyue Zhang, Yawen Song, Qianqian Shi, Li Fu()
Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical university, Ministry of Education, Tianjin 300060, China
 Download: PDF(1821 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Tumorigenesis involves metabolic reprogramming and abnormal lipid metabolism, which is manifested by increased endogenous fat mobilization, hypertriglyceridemia, and increased fatty acid synthesis. Fatty acid synthase (FASN) is a key enzyme for the de novo synthesis of fatty acids, and monoacylglycerol esterase (MGLL) is an important metabolic enzyme that converts triglycerides into free fatty acids. Both enzymes play an important role in lipid metabolism and are associated with tumor-related signaling pathways, the most common of which is the PI3K–AKT signaling pathway. They can also regulate the immune microenvironment, participate in epithelial–mesenchymal transition, and then regulate tumor invasion and metastasis. Current literature have shown that these two genes are abnormally expressed in many types of tumors and are highly correlated with tumor migration and invasion. This article introduces the structures and functions of FASN and MGLL, their relationship with abnormal lipid metabolism, and the mechanism of the regulation of tumor invasion and metastasis and reviews the research progress of the relationship of FASN and MGLL with tumor invasion and metastasis.

Keywords FASN      MGLL      lipid metabolism      tumor invasion      metastasis     
Corresponding Author(s): Li Fu   
Online First Date: 14 May 2021    Issue Date: 01 November 2021
 Cite this article:   
Jingyue Zhang,Yawen Song,Qianqian Shi, et al. Research progress on FASN and MGLL in the regulation of abnormal lipid metabolism and the relationship between tumor invasion and metastasis[J]. Front. Med., 2021, 15(5): 649-656.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-021-0830-0
https://academic.hep.com.cn/fmd/EN/Y2021/V15/I5/649
Fig.1  Cellular metabolism process involving FASN and MGLL.
Fig.2  PI3K–AKT pathway. RTK will create binding sites that recruit the lipid kinase phosphatidylinositol 3-kinase (PI3K) to the plasma membrane. Phosphatidylinositol (PI) 4,5-bisphosphate (PIP2) is the main phosphoinositide at the cell membrane. PI3K phosphorylates PIP2 and yields PI 3,4,5-triphosphate (PIP3). Phosphatase and tensin homolog (PTEN) counteracts the action of PI3K by dephosphorylating PIP3 to PIP2. PIP3 acts as a second messenger to recruit the serine/threonine protein kinase AKT to the plasma membrane, where it is fully activated by phosphoinositide-dependent protein kinase 1 (PDPK1) and the mechanistic target of rapamycin complex 2 (mTORC2). AKT signal transduction promotes cell survival, growth, and proliferation in part by inducing various changes in cell metabolism.
Gene Cancer type Expression Function and mechanism Reference
FASN Breast cancer Elevated Oncogene [5,35,36]
HCC Elevated Oncogene
AKT–FASN
SPIN1–SREBP1C–FASN
Osthole–AKT–FASN axis
[37]

[22]
[7]
Osteosarcoma Elevated Oncogene
PI3K–AKT pathway
[17]
NSCLC Elevated Oncogene
AKT/ERK
[8]
Colorectal cancer Elevated Oncogene
HER2–PI3K–AKT–FASN axis
[6]
Ovarian cancer Elevated Oncogene
Blunts antitumor immunity
PI3K–AKT pathway
[18]

[38]
Wilms tumor Elevated Oncogene [19]
Prostate cancer Elevated Oncogene
Modifies Rho GTPases
[39,40]
Salivary adenoid cystic carcinoma Elevated Oncogene
PRRX1/Wnt/β-catenin pathway
[41]
Acute lymphoblastic leukemia Elevated Oncogene [42]
MGLL Aggressive melanoma Elevated Oncogene
MGLL–FFA
[11]
Gastrointestinal stromal tumor Elevated Oncogene [20]
Primary colorectal cancers Absent or reduced Tumor suppressor gene
Negatively regulates PI3K–AKT signaling
[12]
HCC Reduced


Elevated
Tumor suppressor gene
KLF4–MGLL axis
SND1–MGLL–AKT axis
NF-kB-mediated EMT
[25]

[13]
[21]
Aggressive ovarian cancer Elevated Oncogene
MGLL–FFA
[11]
Breast cancer
Aggressive breast cancer
Reduced
Elevated
Tumor suppressor gene
Oncogene
MGLL–FFA
[14]
[11]
Intestinal adenomas Elevated Tumor suppressor gene [14]
Primary lung cancer Reduced Tumor suppressor gene [14]
Neuroblastoma Reduced Tumor suppressor gene [43]
TAMs Reduced Tumor suppressor gene
Attenuates endogenous CB2 signaling
[34]
Tab.1  Expression and function of FASN and MGLL in different tumor types
1 M Karlsson, K Reue, YR Xia, AJ Lusis, D Langin, H Tornqvist, C Holm. Exon-intron organization and chromosomal localization of the mouse monoglyceride lipase gene. Gene 2001; 272(1–2): 11–18
https://doi.org/10.1016/S0378-1119(01)00559-5 pmid: 11470505
2 M Karlsson, JA Contreras, U Hellman, H Tornqvist, C Holm. cDNA cloning, tissue distribution, and identification of the catalytic triad of monoglyceride lipase. Evolutionary relationship to esterases, lysophospholipases, and haloperoxidases. J Biol Chem 1997; 272(43): 27218–27223
https://doi.org/10.1074/jbc.272.43.27218 pmid: 9341166
3 T Sun, Y Liu, L Liu, F Ma. MicroRNA-544 attenuates diabetic renal injury via suppressing glomerulosclerosis and inflammation by targeting FASN. Gene 2020; 723: 143986
https://doi.org/10.1016/j.gene.2019.143986 pmid: 31323309
4 X Wei, H Song, L Yin, MG Rizzo, R Sidhu, DF Covey, DS Ory, CF Semenkovich. Fatty acid synthesis configures the plasma membrane for inflammation in diabetes. Nature 2016; 539(7628): 294–298
https://doi.org/10.1038/nature20117 pmid: 27806377
5 LH Huang, HY Chung, HM Su. Docosahexaenoic acid reduces sterol regulatory element binding protein-1 and fatty acid synthase expression and inhibits cell proliferation by inhibiting pAkt signaling in a human breast cancer MCF-7 cell line. BMC Cancer 2017; 17(1): 890
https://doi.org/10.1186/s12885-017-3936-7 pmid: 29282029
6 N Li, X Bu, P Wu, P Wu, P Huang. The “HER2–PI3K/Akt–FASN Axis” regulated malignant phenotype of colorectal cancer cells. Lipids 2012; 47(4): 403–411
https://doi.org/10.1007/s11745-011-3649-7 pmid: 22218925
7 Y Mo, Y Wu, X Li, H Rao, X Tian, D Wu, Z Qiu, G Zheng, J Hu. Osthole delays hepatocarcinogenesis in mice by suppressing AKT/FASN axis and ERK phosphorylation. Eur J Pharmacol 2020; 867: 172788
https://doi.org/10.1016/j.ejphar.2019.172788 pmid: 31712058
8 L Chang, S Fang, Y Chen, Z Yang, Y Yuan, J Zhang, L Ye, W Gu. Inhibition of FASN suppresses the malignant biological behavior of non-small cell lung cancer cells via deregulating glucose metabolism and AKT/ERK pathway. Lipids Health Dis 2019; 18(1): 118
https://doi.org/10.1186/s12944-019-1058-8 pmid: 31122252
9 Z Cao, MM Mulvihill, P Mukhopadhyay, H Xu, K Erdélyi, E Hao, E Holovac, G Haskó, BF Cravatt, DK Nomura. Monoacylglycerol lipase controls endocannabinoid and eicosanoid signaling and hepatic injury in mice. Gastroenterology 2013; 144(4): 808–817.e15
https://doi.org/DOI: 10.1053/j.gastro.2012.12.028 pmid: 23295443
10 M Jiang, M van der Stelt. Activity-based protein profiling delivers selective drug candidate ABX-1431, a monoacylglycerol lipase inhibitor, to control lipid metabolism in neurological disorders. J Med Chem 2018; 61(20): 9059–9061
https://doi.org/10.1021/acs.jmedchem.8b01405 pmid: 30354159
11 DK Nomura, JZ Long, S Niessen, HS Hoover, SW Ng, BF Cravatt. Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell 2010; 140(1): 49–61
https://doi.org/10.1016/j.cell.2009.11.027 pmid: 20079333
12 H Sun, L Jiang, X Luo, W Jin, Q He, J An, K Lui, J Shi, R Rong, W Su, C Lucchesi, Y Liu, MS Sheikh, Y Huang. Potential tumor-suppressive role of monoglyceride lipase in human colorectal cancer. Oncogene 2013; 32(2): 234–241
https://doi.org/10.1038/onc.2012.34 pmid: 22349814
13 D Rajasekaran, N Jariwala, RG Mendoza, CL Robertson, MA Akiel, M Dozmorov, PB Fisher, D Sarkar. Staphylococcal nuclease and Tudor domain containing 1 (SND1 protein) promotes hepatocarcinogenesis by inhibiting monoglyceride lipase (MGLL). J Biol Chem 2016; 291(20): 10736–10746
https://doi.org/10.1074/jbc.M116.715359 pmid: 26997225
14 GG Galli, HA Multhaupt, M Carrara, KH de Lichtenberg, IB Christensen, D Linnemann, E Santoni-Rugiu, RA Calogero, AH Lund. Prdm5 suppresses Apc(Min)-driven intestinal adenomas and regulates monoacylglycerol lipase expression. Oncogene 2014; 33(25): 3342–3350
https://doi.org/10.1038/onc.2013.283 pmid: 23873026
15 E Currie, A Schulze, R Zechner, TC Walther, RV Farese Jr. Cellular fatty acid metabolism and cancer. Cell Metab 2013; 18(2): 153–161
https://doi.org/10.1016/j.cmet.2013.05.017 pmid: 23791484
16 O Warburg. On the origin of cancer cells. Science 1956; 123(3191): 309–314
https://doi.org/10.1126/science.123.3191.309 pmid: 13298683
17 H Qiu, X Zhao. Correlation between PI3K/AKT signal pathway and overexpression of fatty acid synthase in osteosarcoma. Chin J Gerontology (Zhongguo Lao Nian Xue Za Zhi) 2018; 9: 2113–2115 (in Chinese)
18 L Jiang, X Fang, H Wang, D Li, X Wang. Ovarian cancer-intrinsic fatty acid synthase prevents anti-tumor immunity by disrupting tumor-infiltrating dendritic cells. Front Immunol 2018; 9: 2927
https://doi.org/10.3389/fimmu.2018.02927 pmid: 30619288
19 X Wang, G Du, Y Wu, Y Zhang, F Guo, W Liu, R Wu. Association between different levels of lipid metabolismrelated enzymes and fatty acid synthase in Wilms’ tumor. Int J Oncol 2020; 56(2): 568–580
pmid: 31894270
20 CF Li, IC Chuang, TT Liu, KC Chen, YY Chen, FM Fang, SH Li, TJ Chen, SC Yu, J Lan, HY Huang. Transcriptomic reappraisal identifies MGLL overexpression as an unfavorable prognosticator in primary gastrointestinal stromal tumors. Oncotarget 2016; 7(31): 49986–49997
https://doi.org/10.18632/oncotarget.10304 pmid: 27366945
21 W Zhu, Y Zhao, J Zhou, X Wang, Q Pan, N Zhang, L Wang, M Wang, D Zhan, Z Liu, X He, D Ma, S Liu, L Wang. Monoacylglycerol lipase promotes progression of hepatocellular carcinoma via NF-kB-mediated epithelial-mesenchymal transition. J Hematol Oncol 2016; 9(1): 127
https://doi.org/10.1186/s13045-016-0361-3 pmid: 27884159
22 M Zhao, Y Bu, J Feng, H Zhang, Y Chen, G Yang, Z Liu, H Yuan, Y Yuan, L Liu, H Yun, J Wang, X Zhang. SPIN1 triggers abnormal lipid metabolism and enhances tumor growth in liver cancer. Cancer Lett 2020; 470: 54–63
https://doi.org/10.1016/j.canlet.2019.11.032 pmid: 31790762
23 I Vivanco, CL Sawyers. The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer 2002; 2(7): 489–501
https://doi.org/10.1038/nrc839 pmid: 12094235
24 R Ventura, K Mordec, J Waszczuk, Z Wang, J Lai, M Fridlib, D Buckley, G Kemble, TS Heuer. Inhibition of de novo palmitate synthesis by fatty acid synthase induces apoptosis in tumor cells by remodeling cell membranes, inhibiting signaling pathways, and reprogramming gene expression. EBioMedicine 2015; 2(8): 808–824
https://doi.org/10.1016/j.ebiom.2015.06.020 pmid: 26425687
25 X Yang, D Zhang, S Liu, X Li, W Hu, C Han. KLF4 suppresses the migration of hepatocellular carcinoma by transcriptionally upregulating monoglyceride lipase. Am J Cancer Res 2018; 8(6): 1019–1029
pmid: 30034939
26 MS Lawrence, P Stojanov, CH Mermel, JT Robinson, LA Garraway, TR Golub, M Meyerson, SB Gabriel, ES Lander, G Getz. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 2014; 505(7484): 495–501
https://doi.org/10.1038/nature12912 pmid: 24390350
27 N Jiang, Q Dai, X Su, J Fu, X Feng, J Peng. Role of PI3K/AKT pathway in cancer: the framework of malignant behavior. Mol Biol Rep 2020; 47(6): 4587–4629
https://doi.org/10.1007/s11033-020-05435-1 pmid: 32333246
28 F Chang, JT Lee, PM Navolanic, LS Steelman, JG Shelton, WL Blalock, RA Franklin, JA McCubrey. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia 2003; 17(3): 590–603
https://doi.org/10.1038/sj.leu.2402824 pmid: 12646949
29 SA Danielsen, PW Eide, A Nesbakken, T Guren, E Leithe, RA Lothe. Portrait of the PI3K/AKT pathway in colorectal cancer. Biochim Biophys Acta 2015; 1855(1): 104–121
pmid: 25450577
30 F Xu, L Na, Y Li, L Chen. Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci 2020; 10(1): 54
https://doi.org/10.1186/s13578-020-00416-0 pmid: 32266056
31 G Hoxhaj, BD Manning. The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat Rev Cancer 2020; 20(2): 74–88
https://doi.org/10.1038/s41568-019-0216-7 pmid: 31686003
32 J Yang, RA Weinberg. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 2008; 14(6): 818–829
https://doi.org/10.1016/j.devcel.2008.05.009 pmid: 18539112
33 HA Zielinska, JMP Holly, A Bahl, CM Perks. Inhibition of FASN and ERα signalling during hyperglycaemia-induced matrix-specific EMT promotes breast cancer cell invasion via a caveolin-1-dependent mechanism. Cancer Lett 2018; 419: 187–202
https://doi.org/10.1016/j.canlet.2018.01.028 pmid: 29331414
34 W Xiang, R Shi, X Kang, X Zhang, P Chen, L Zhang, A Hou, R Wang, Y Zhao, K Zhao, Y Liu, Y Ma, H Luo, S Shang, J Zhang, F He, S Yu, L Gan, C Shi, Y Li, W Yang, H Liang, H Miao. Monoacylglycerol lipase regulates cannabinoid receptor 2-dependent macrophage activation and cancer progression. Nat Commun 2018; 9(1): 2574
https://doi.org/10.1038/s41467-018-04999-8 pmid: 29968710
35 HA Zielinska, JMP Holly, A Bahl, CM Perks. Inhibition of FASN and ERα signalling during hyperglycaemia-induced matrix-specific EMT promotes breast cancer cell invasion via a caveolin-1-dependent mechanism. Cancer Lett 2018; 419: 187–202
https://doi.org/10.1016/j.canlet.2018.01.028 pmid: 29331414
36 J Wang, X Zhang, J Shi, P Cao, M Wan, Q Zhang, Y Wang, SJ Kridel, W Liu, J Xu, Q Zhang, G Sui. Fatty acid synthase is a primary target of MiR-15a and MiR-16-1 in breast cancer. Oncotarget 2016; 7(48): 78566–78576
https://doi.org/10.18632/oncotarget.12479 pmid: 27713175
37 Z Yu, H Xue. AKT promotes tumorigenesis in mice through regulation FASN lipid metabolism. J Fujian Norm Univ (Natural Science Edition) 2019; 35(03): 58–64
38 J Zhao, X Zhang, T Gao, S Wang, Y Hou, P Yuan, Y Yang, T Yang, J Xing, J Li, S Liu. SIK2 enhances synthesis of fatty acid and cholesterol in ovarian cancer cells and tumor growth through PI3K/Akt signaling pathway. Cell Death Dis 2020; 11(1): 25
https://doi.org/10.1038/s41419-019-2221-x pmid: 31932581
39 Z Cao, Y Xu, F Guo, X Chen, J Ji, H Xu, J He, Y Yu, Y Sun, X Lu, F Wang. FASN protein overexpression indicates poor biochemical recurrence-free survival in prostate cancer. Dis Markers 2020; 2020: 3904947
https://doi.org/10.1155/2020/3904947 pmid: 32655718
40 M De Piano, V Manuelli, G Zadra, J Otte, PD Edqvist, F Pontén, S Nowinski, A Niaouris, A Grigoriadis, M Loda, M Van Hemelrijck, CM Wells. Lipogenic signalling modulates prostate cancer cell adhesion and migration via modification of Rho GTPases. Oncogene 2020; 39(18): 3666–3679
https://doi.org/10.1038/s41388-020-1243-2 pmid: 32139877
41 WL Zhang, SS Wang, YP Jiang, Y Liu, XH Yu, JB Wu, K Wang, X Pang, P Liao, XH Liang YL , Tang. Fatty acid synthase contributes to epithelial-mesenchymal transition and invasion of salivary adenoid cystic carcinoma through PRRX1/Wnt/β-catenin pathway. J Cell Mol Med 2020; 24(19): 11465–11476
https://doi.org/10.1111/jcmm.15760 pmid: 32820613
42 M Ghaeidamini Harouni, S Rahgozar, S Rahimi Babasheikhali, A Safavi, ES Ghodousi. Fatty acid synthase, a novel poor prognostic factor for acute lymphoblastic leukemia which can be targeted by ginger extract. Sci Rep 2020; 10(1): 14072
https://doi.org/10.1038/s41598-020-70839-9 pmid: 32826925
43 J Szeremeta, J Karlsson, M Alhouayek, CJ Fowler. Low mRNA expression and activity of monoacylglycerol lipase in human SH-SY5Y neuroblastoma cells. Prostaglandins Other Lipid Mediat 2019; 142: 59–67
https://doi.org/10.1016/j.prostaglandins.2019.04.003 pmid: 30978461
44 W Xiang, D Zhang, H Miao. Monoacylglycerol lipase in macrophages suppresses melanoma by potentiating TLR4-Sirp α axis-mediated tumor phagocytosis. Abstracts of IUIS 2019 Beijing—17th International Congress of Immunology (II). The International Union of Immunological Societies (IUIS) and the Chinese Society for Immunology (CSI). 2019: 2
[1] Jianpeng Liu, Xinhua Chen, Shusen Zheng. Immune response triggered by the ablation of hepatocellular carcinoma with nanosecond pulsed electric field[J]. Front. Med., 2021, 15(2): 170-177.
[2] Yun Zhang, Robert A. Weinberg. Epithelial-to-mesenchymal transition in cancer: complexity and opportunities[J]. Front. Med., 2018, 12(4): 361-373.
[3] Bo Zhou, Hongbin Xu, Meng Xia, Chaoyang Sun, Na Li, Ensong Guo, Lili Guo, Wanying Shan, Hao Lu, Yifan Wu, Yuan Li, Degui Yang, Danhui Weng, Li Meng, Junbo Hu, Ding Ma, Gang Chen, Kezhen Li. Overexpressed miR-9 promotes tumor metastasis via targeting E-cadherin in serous ovarian cancer[J]. Front. Med., 2017, 11(2): 214-222.
[4] Yugang Cheng,Hanxiang Zhan,Lei Wang,Jianwei Xu,Guangyong Zhang,Zongli Zhang,Sanyuan Hu. Analysis of 100 consecutive cases of resectable pancreatic neuroendocrine neoplasms: clinicopathological characteristics and long-term outcomes[J]. Front. Med., 2016, 10(4): 444-450.
[5] Chunxiao Li,Haijuan Wang,Feng Lin,Hui Li,Tao Wen,Haili Qian,Qimin Zhan. Bioinformatic exploration of MTA1-regulated gene networks in colon cancer[J]. Front. Med., 2016, 10(2): 178-182.
[6] Jiangnan Liu,Bin Yi,Zhe Zhang,Yi Cao. CD176 single-chain variable antibody fragment inhibits the adhesion of cancer cells to endothelial cells and hepatocytes[J]. Front. Med., 2016, 10(2): 204-211.
[7] Felice Ho-Ching Tsang,Sandy Leung-Kuen Au,Lai Wei,Dorothy Ngo-Yin Fan,Joyce Man-Fong Lee,Carmen Chak-Lui Wong,Irene Oi-Lin Ng,Chun-Ming Wong. MicroRNA-142-3p and microRNA-142-5p are downregulated in hepatocellular carcinoma and exhibit synergistic effects on cell motility[J]. Front. Med., 2015, 9(3): 331-343.
[8] Tian Wang, Yan Li, Abidan Tuerhanjiang, Wenwen Wang, Zhangying Wu, Ming Yuan, Shixuan Wang. Correlation of Twist upregulation and senescence bypass during the progression and metastasis of cervical cancer[J]. Front Med, 2014, 8(1): 106-112.
[9] Lunxiu Qin. Osteopontin is a promoter for hepatocellular carcinoma metastasis: a summary of 10 years of studies[J]. Front Med, 2014, 8(1): 24-32.
[10] Carmen Chak-Lui Wong, Alan Ka-Lun Kai, Irene Oi-Lin Ng. The impact of hypoxia in hepatocellular carcinoma metastasis[J]. Front Med, 2014, 8(1): 33-41.
[11] Dong KUANG, Guo-Ping WANG, . Hilar cholangiocarcinoma: Pathology and tumor biology[J]. Front. Med., 2010, 4(4): 371-377.
[12] Ling XU MM, Feng WANG MM, Xuan-Fu XU MD, Wen-Hui MO BM, Rong WAN MD, Chuan-Yong GUO MD, Xing-Peng WANG MD, . Data mining of microarray for differentially expressed genes in liver metastasis from gastric cancer[J]. Front. Med., 2010, 4(2): 247-253.
[13] Liu LIU MD, PhD, Yaogui NING MM, Chen CHEN MD, Daowen WANG MD, PhD, . Effect of atorvastatin on tumor growth and metastasis in a breast cancer cell xenograft model and its mechanism[J]. Front. Med., 2009, 3(4): 443-446.
[14] Hongying ZHANG, Jianwu TANG, Wenting ZHU, Chunxiu HU, Guowang XU. Establishment and drug sensitivity evaluation of murine ascites hepatocarcinoma cell line with high lymphatic metastatic potential (Hca-P/L6)[J]. Front Med Chin, 2009, 3(2): 119-129.
[15] Yang YU, Jibin LIU, Lixue YIN. Application progress of lymphography in oncology[J]. Front Med Chin, 2009, 3(1): 13-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed