|
|
|
Dysregulated N6-methyladenosine modification in peripheral immune cells contributes to the pathogenesis of amyotrophic lateral sclerosis |
Di He1, Xunzhe Yang1, Liyang Liu2,3, Dongchao Shen1, Qing Liu1, Mingsheng Liu1, Xue Zhang3,4( ), Liying Cui1( ) |
1. Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China 2. Medical Doctor Program, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China 3. McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100730, China 4. Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China |
|
|
|
|
Abstract Amyotrophic lateral sclerosis (ALS) is a progressive neurogenerative disorder with uncertain origins. Emerging evidence implicates N6-methyladenosine (m6A) modification in ALS pathogenesis. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and liquid chromatography–mass spectrometry were utilized for m6A profiling in peripheral immune cells and serum proteome analysis, respectively, in patients with ALS (n = 16) and controls (n = 6). The single-cell transcriptomic dataset (GSE174332) of primary motor cortex was further analyzed to illuminate the biological implications of differentially methylated genes and cell communication changes. Analysis of peripheral immune cells revealed extensive RNA hypermethylation, highlighting candidate genes with differential m6A modification and expression, including C-X3-C motif chemokine receptor 1 (CX3CR1). In RAW264.7 macrophages, disrupted CX3CR1 signaling affected chemotaxis, potentially influencing immune cell migration in ALS. Serum proteome analysis demonstrated the role of dysregulated immune cell migration in ALS. Cell type-specific expression variations of these genes in the central nervous system (CNS), particularly microglia, were observed. Intercellular communication between neurons and glial cells was selectively altered in ALS CNS. This integrated approach underscores m6A dysregulation in immune cells as a potential ALS contributor.
|
| Keywords
amyotrophic lateral sclerosis
N6-methyladenosine
epi-transcriptome
proteome
single cell RNA sequencing analysis
CX3CR1
|
|
Corresponding Author(s):
Xue Zhang,Liying Cui
|
|
Just Accepted Date: 30 January 2024
Online First Date: 15 March 2024
Issue Date: 27 May 2024
|
|
| 1 |
O Hardiman, A Al-Chalabi, A Chio, EM Corr, G Logroscino, W Robberecht, PJ Shaw, Z Simmons, LH van den Berg. Amyotrophic lateral sclerosis. Nat Rev Dis Primers 2017; 3(1): 17071
https://doi.org/10.1038/nrdp.2017.71
|
| 2 |
MA van Es, O Hardiman, A Chio, A Al-Chalabi, RJ Pasterkamp, JH Veldink, LH van den Berg. Amyotrophic lateral sclerosis. Lancet 2017; 390(10107): 2084–2098
https://doi.org/10.1016/S0140-6736(17)31287-4
|
| 3 |
RH Brown, A Al-Chalabi. Amyotrophic lateral sclerosis. N Engl J Med 2017; 377(2): 162–172
https://doi.org/10.1056/NEJMra1603471
|
| 4 |
EL Feldman, SA Goutman, S Petri, L Mazzini, MG Savelieff, PJ Shaw, G Sobue. Amyotrophic lateral sclerosis. Lancet 2022; 400(10360): 1363–1380
https://doi.org/10.1016/S0140-6736(22)01272-7
|
| 5 |
MF Keller, L Ferrucci, AB Singleton, PJ Tienari, H Laaksovirta, G Restagno, A Chiò, BJ Traynor, MA Nalls. Genome-wide analysis of the heritability of amyotrophic lateral sclerosis. JAMA Neurol 2014; 71(9): 1123–1134
https://doi.org/10.1001/jamaneurol.2014.1184
|
| 6 |
R Chia, A Chiò, BJ Traynor. Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications. Lancet Neurol 2018; 17(1): 94–102
https://doi.org/10.1016/S1474-4422(17)30401-5
|
| 7 |
C Cook, L Petrucelli. Genetic convergence brings clarity to the enigmatic red line in ALS. Neuron 2019; 101(6): 1057–1069
https://doi.org/10.1016/j.neuron.2019.02.032
|
| 8 |
ME McCauley, JG O’Rourke, A Yáñez, JL Markman, R Ho, X Wang, S Chen, D Lall, M Jin, AKMG Muhammad, S Bell, J Landeros, V Valencia, M Harms, M Arditi, C Jefferies, RH Baloh. C9orf72 in myeloid cells suppresses STING-induced inflammation. Nature 2020; 585(7823): 96–101
https://doi.org/10.1038/s41586-020-2625-x
|
| 9 |
CH Yu, S Davidson, CR Harapas, JB Hilton, MJ Mlodzianoski, P Laohamonthonkul, C Louis, RRJ Low, J Moecking, D De Nardo, KR Balka, DJ Calleja, F Moghaddas, E Ni, CA McLean, AL Samson, S Tyebji, CJ Tonkin, CR Bye, BJ Turner, G Pepin, MP Gantier, KL Rogers, K McArthur, PJ Crouch, SL Masters. TDP-43 triggers mitochondrial DNA release via mPTP to activate cGAS/STING in ALS. Cell 2020; 183(3): 636–649.e18
https://doi.org/10.1016/j.cell.2020.09.020
|
| 10 |
E Coque, C Salsac, G Espinosa-Carrasco, B Varga, N Degauque, M Cadoux, R Crabé, A Virenque, C Soulard, JK Fierle, A Brodovitch, M Libralato, AG Végh, S Venteo, F Scamps, J Boucraut, D Laplaud, J Hernandez, C Gergely, T Vincent, C Raoul. Cytotoxic CD8+ T lymphocytes expressing ALS-causing SOD1 mutant selectively trigger death of spinal motoneurons. Proc Natl Acad Sci USA 2019; 116(6): 2312–2317
https://doi.org/10.1073/pnas.1815961116
|
| 11 |
DR Beers, SH Appel. Immune dysregulation in amyotrophic lateral sclerosis: mechanisms and emerging therapies. Lancet Neurol 2019; 18(2): 211–220
https://doi.org/10.1016/S1474-4422(18)30394-6
|
| 12 |
ME McCauley, RH Baloh. Inflammation in ALS/FTD pathogenesis. Acta Neuropathol 2019; 137(5): 715–730
https://doi.org/10.1007/s00401-018-1933-9
|
| 13 |
CN Fournier, D Schoenfeld, JD Berry, ME Cudkowicz, J Chan, C Quinn, RH Brown, JS Salameh, MG Tansey, DR Beers, SH Appel, JD Glass. An open label study of a novel immunosuppression intervention for the treatment of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2018; 19(3–4): 242–249
https://doi.org/10.1080/21678421.2017.1421666
|
| 14 |
H Huang, H Weng, J Chen. The biogenesis and precise control of RNA m6A methylation. Trends Genet 2020; 36(1): 44–52
https://doi.org/10.1016/j.tig.2019.10.011
|
| 15 |
IA Roundtree, ME Evans, T Pan, C He. Dynamic RNA modifications in gene expression regulation. Cell 2017; 169(7): 1187–1200
https://doi.org/10.1016/j.cell.2017.05.045
|
| 16 |
BS Zhao, IA Roundtree, C He. Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol 2017; 18(1): 31–42
https://doi.org/10.1038/nrm.2016.132
|
| 17 |
Y Yang, PJ Hsu, YS Chen, YG Yang. Dynamic transcriptomic m6A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Res 2018; 28(6): 616–624
https://doi.org/10.1038/s41422-018-0040-8
|
| 18 |
S Zaccara, RJ Ries, SR Jaffrey. Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol 2019; 20(10): 608–624
https://doi.org/10.1038/s41580-019-0168-5
|
| 19 |
X Xiong, L Hou, YP Park, B; GTEx Consortium; Gregory RI Molinie, M Kellis. Genetic drivers of m6A methylation in human brain, lung, heart and muscle. Nat Genet 2021; 53(8): 1156–1165
https://doi.org/10.1038/s41588-021-00890-3
|
| 20 |
M McMillan, N Gomez, C Hsieh, M Bekier, X Li, R Miguez, EMH Tank, SJ Barmada. RNA methylation influences TDP43 binding and disease pathogenesis in models of amyotrophic lateral sclerosis and frontotemporal dementia. Mol Cell 2023; 83(2): 219–236.e7
https://doi.org/10.1016/j.molcel.2022.12.019
|
| 21 |
F He, A Krans, BD Freibaum, JP Taylor, PK Todd. TDP-43 suppresses CGG repeat-induced neurotoxicity through interactions with HnRNP A2/B1. Hum Mol Genet 2014; 23(19): 5036–5051
https://doi.org/10.1093/hmg/ddu216
|
| 22 |
L Wang, M Wen, X Cao. Nuclear hnRNPA2B1 initiates and amplifies the innate immune response to DNA viruses. Science 2019; 365(6454): eaav0758
https://doi.org/10.1126/science.aav0758
|
| 23 |
R Winkler, E Gillis, L Lasman, M Safra, S Geula, C Soyris, A Nachshon, J Tai-Schmiedel, N Friedman, VTK Le-Trilling, M Trilling, M Mandelboim, JH Hanna, S Schwartz, N Stern-Ginossar. m6A modification controls the innate immune response to infection by targeting type I interferons. Nat Immunol 2019; 20(2): 173–182
https://doi.org/10.1038/s41590-018-0275-z
|
| 24 |
BF Vahsen, E Gray, AG Thompson, O Ansorge, DC Anthony, SA Cowley, K Talbot, MR Turner. Non-neuronal cells in amyotrophic lateral sclerosis—from pathogenesis to biomarkers. Nat Rev Neurol 2021; 17(6): 333–348
https://doi.org/10.1038/s41582-021-00487-8
|
| 25 |
KJ Spiller, CR Restrepo, T Khan, MA Dominique, TC Fang, RG Canter, CJ Roberts, KR Miller, RM Ransohoff, JQ Trojanowski, VM Lee. Microglia-mediated recovery from ALS-relevant motor neuron degeneration in a mouse model of TDP-43 proteinopathy. Nat Neurosci 2018; 21(3): 329–340
https://doi.org/10.1038/s41593-018-0083-7
|
| 26 |
AD Greenhalgh, S David, FC Bennett. Immune cell regulation of glia during CNS injury and disease. Nat Rev Neurosci 2020; 21(3): 139–152
https://doi.org/10.1038/s41583-020-0263-9
|
| 27 |
S Garbuzova-Davis, PR Sanberg. Blood-CNS barrier impairment in ALS patients versus an animal model. Front Cell Neurosci 2014; 8: 21
https://doi.org/10.3389/fncel.2014.00021
|
| 28 |
MR Turner, R Goldacre, S Ramagopalan, K Talbot, MJ Goldacre. Autoimmune disease preceding amyotrophic lateral sclerosis: an epidemiologic study. Neurology 2013; 81(14): 1222–1225
https://doi.org/10.1212/WNL.0b013e3182a6cc13
|
| 29 |
W Zhao, DR Beers, KG Hooten, DH Sieglaff, A Zhang, S Kalyana-Sundaram, CM Traini, WS Halsey, AM Hughes, GM Sathe, GP Livi, GH Fan, SH Appel. Characterization of gene expression phenotype in amyotrophic lateral sclerosis monocytes. JAMA Neurol 2017; 74(6): 677–685
https://doi.org/10.1001/jamaneurol.2017.0357
|
| 30 |
A Chiot, S Zaïdi, C Iltis, M Ribon, F Berriat, L Schiaffino, A Jolly, la Grange P de, M Mallat, D Bohl, S Millecamps, D Seilhean, CS Lobsiger, S Boillée. Modifying macrophages at the periphery has the capacity to change microglial reactivity and to extend ALS survival. Nat Neurosci 2020; 23(11): 1339–1351
https://doi.org/10.1038/s41593-020-00718-z
|
| 31 |
RK Sheean, FC McKay, E Cretney, CR Bye, ND Perera, D Tomas, RA Weston, KJ Scheller, E Djouma, P Menon, SD Schibeci, N Marmash, JJ Yerbury, SL Nutt, DR Booth, GJ Stewart, MC Kiernan, S Vucic, BJ Turner. Association of regulatory T-cell expansion with progression of amyotrophic lateral sclerosis: a study of humans and a transgenic mouse model. JAMA Neurol 2018; 75(6): 681–689
https://doi.org/10.1001/jamaneurol.2018.0035
|
| 32 |
Z Zhang, K Luo, Z Zou, M Qiu, J Tian, L Sieh, H Shi, Y Zou, G Wang, J Morrison, AC Zhu, M Qiao, Z Li, M Stephens, X He, C He. Genetic analyses support the contribution of mRNA N6-methyladenosine (m6A) modification to human disease heritability. Nat Genet 2020; 52(9): 939–949
https://doi.org/10.1038/s41588-020-0644-z
|
| 33 |
Wollberg A Ridderstad, A Ericsson-Dahlstrand, A Juréus, P Ekerot, S Simon, M Nilsson, SJ Wiklund, AL Berg, M Ferm, D Sunnemark, R Johansson. Pharmacological inhibition of the chemokine receptor CX3CR1 attenuates disease in a chronic-relapsing rat model for multiple sclerosis. Proc Natl Acad Sci USA 2014; 111(14): 5409–5414
https://doi.org/10.1073/pnas.1316510111
|
| 34 |
J Schindelin, I Arganda-Carreras, E Frise, V Kaynig, M Longair, T Pietzsch, S Preibisch, C Rueden, S Saalfeld, B Schmid, JY Tinevez, DJ White, V Hartenstein, K Eliceiri, P Tomancak, A Cardona. Fiji: an open-source platform for biological-image analysis. Nat Methods 2012; 9(7): 676–682
https://doi.org/10.1038/nmeth.2019
|
| 35 |
A Subramanian, P Tamayo, VK Mootha, S Mukherjee, BL Ebert, MA Gillette, A Paulovich, SL Pomeroy, TR Golub, ES Lander, JP Mesirov. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102(43): 15545–15550
https://doi.org/10.1073/pnas.0506580102
|
| 36 |
Y Hao, S Hao, E Andersen-Nissen, WM 3rd Mauck, S Zheng, A Butler, MJ Lee, AJ Wilk, C Darby, M Zager, P Hoffman, M Stoeckius, E Papalexi, EP Mimitou, J Jain, A Srivastava, T Stuart, LM Fleming, B Yeung, AJ Rogers, JM McElrath, CA Blish, R Gottardo, P Smibert, R Satija. Integrated analysis of multimodal single-cell data. Cell 2021; 184(13): 3573–3587.e29
https://doi.org/10.1016/j.cell.2021.04.048
|
| 37 |
SS PinedaH LeeBE FitzwalterS MohammadiLJ Pregent ME GardashliJ ManteroE Engelberg-CookM DeJesus-HernandezM van BlitterswijkC PottierR RademakersB OskarssonJS ShahRC PetersenNR Graff-RadfordBF BoeveDS KnopmanKA Josephs M DeTureME MurrayDW DicksonM HeimanVV Belzil M Kellis. Single-cell profiling of the human primary motor cortex in ALS and FTLD. bioRvix 2021; doi:10.1101/2021.07.07.451374
|
| 38 |
S Jin, CF Guerrero-Juarez, L Zhang, I Chang, R Ramos, CH Kuan, P Myung, MV Plikus, Q Nie. Inference and analysis of cell-cell communication using CellChat. Nat Commun 2021; 12(1): 1088
https://doi.org/10.1038/s41467-021-21246-9
|
| 39 |
Y Zhou, P Zeng, YH Li, Z Zhang, Q Cui. SRAMP: prediction of mammalian N6-methyladenosine (m6A) sites based on sequence-derived features. Nucleic Acids Res 2016; 44(10): e91
https://doi.org/10.1093/nar/gkw104
|
| 40 |
S Deng, H Zhang, K Zhu, X Li, Y Ye, R Li, X Liu, D Lin, Z Zuo, J Zheng. M6A2Target: a comprehensive database for targets of m6A writers, erasers and readers. Brief Bioinform 2021; 22(3): bbaa055
https://doi.org/10.1093/bib/bbaa055
|
| 41 |
L Cui, R Ma, J Cai, C Guo, Z Chen, L Yao, Y Wang, R Fan, X Wang, Y Shi. RNA modifications: importance in immune cell biology and related diseases. Signal Transduct Target Ther 2022; 7(1): 334
https://doi.org/10.1038/s41392-022-01175-9
|
| 42 |
JJ Yerbury, NE Farrawell, L McAlary. Proteome homeostasis dysfunction: a unifying principle in ALS pathogenesis. Trends Neurosci 2020; 43(5): 274–284
https://doi.org/10.1016/j.tins.2020.03.002
|
| 43 |
JS Katzeff, F Bright, K Lo, JJ Kril, A Connolly, B Crossett, LM Ittner, M Kassiou, CT Loy, JR Hodges, O Piguet, MC Kiernan, GM Halliday, WS Kim. Altered serum protein levels in frontotemporal dementia and amyotrophic lateral sclerosis indicate calcium and immunity dysregulation. Sci Rep 2020; 10(1): 13741
https://doi.org/10.1038/s41598-020-70687-7
|
| 44 |
Z Xu, A Lee, A Nouwens, RD Henderson, PA McCombe. Mass spectrometry analysis of plasma from amyotrophic lateral sclerosis and control subjects. Amyotroph Lateral Scler Frontotemporal Degener 2018; 19(5–6): 362–376
https://doi.org/10.1080/21678421.2018.1433689
|
| 45 |
ZT King, MT Butler, MA Hockenberry, BC Subramanian, PF Siesser, DM Graham, WR Legant, JE Bear. Coro1B and Coro1C regulate lamellipodia dynamics and cell motility by tuning branched actin turnover. J Cell Biol 2022; 221(8): e202111126
https://doi.org/10.1083/jcb.202111126
|
| 46 |
A Zaritsky, YY Tseng, MA Rabadán, S Krishna, M Overholtzer, G Danuser, A Hall. Diverse roles of guanine nucleotide exchange factors in regulating collective cell migration. J Cell Biol 2017; 216(6): 1543–1556
https://doi.org/10.1083/jcb.201609095
|
| 47 |
Z Jia, X Wan. ISYNA1: an immunomodulatory-related prognostic biomarker in colon adenocarcinoma and pan-cancer. Front Cell Dev Biol 2022; 10: 792564
https://doi.org/10.3389/fcell.2022.792564
|
| 48 |
SA Goutman, O Hardiman, A Al-Chalabi, A Chió, MG Savelieff, MC Kiernan, EL Feldman. Emerging insights into the complex genetics and pathophysiology of amyotrophic lateral sclerosis. Lancet Neurol 2022; 21(5): 465–479
https://doi.org/10.1016/S1474-4422(21)00414-2
|
| 49 |
D He, Y Xu, M Liu, L Cui. The inflammatory puzzle: piecing together the links between neuroinflammation and amyotrophic lateral sclerosis. Aging Dis 2023; 15(1): 96–114
https://doi.org/10.14336/AD.2023.0519
|
| 50 |
Z Shulman, N Stern-Ginossar. The RNA modification N6-methyladenosine as a novel regulator of the immune system. Nat Immunol 2020; 21(5): 501–512
https://doi.org/10.1038/s41590-020-0650-4
|
| 51 |
Y Li, X Dou, J Liu, Y Xiao, Z Zhang, L Hayes, R Wu, X Fu, Y Ye, B Yang, LW Ostrow, C He, S Sun. Globally reduced N6-methyladenosine (m6A) in C9ORF72-ALS/FTD dysregulates RNA metabolism and contributes to neurodegeneration. Nat Neurosci 2023; 26(8): 1328–1338
https://doi.org/10.1038/s41593-023-01374-9
|
| 52 |
X Wang, Z Lu, A Gomez, GC Hon, Y Yue, D Han, Y Fu, M Parisien, Q Dai, G Jia, B Ren, T Pan, C He. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 2014; 505(7481): 117–120
https://doi.org/10.1038/nature12730
|
| 53 |
H Huang, H Weng, W Sun, X Qin, H Shi, H Wu, BS Zhao, A Mesquita, C Liu, CL Yuan, YC Hu, S Hüttelmaier, JR Skibbe, R Su, X Deng, L Dong, M Sun, C Li, S Nachtergaele, Y Wang, C Hu, K Ferchen, KD Greis, X Jiang, M Wei, L Qu, JL Guan, C He, J Yang, J Chen. Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol 2018; 20(3): 285–295
https://doi.org/10.1038/s41556-018-0045-z
|
| 54 |
RH Song, P Du, CQ Gao, XR Liu, JA Zhang. METTL3 is involved in the development of Graves’ disease by inducing SOCS mRNA m6A modification. Front Endocrinol (Lausanne) 2021; 12: 666393
https://doi.org/10.3389/fendo.2021.666393
|
| 55 |
HB Li, J Tong, S Zhu, PJ Batista, EE Duffy, J Zhao, W Bailis, G Cao, L Kroehling, Y Chen, G Wang, JP Broughton, YG Chen, Y Kluger, MD Simon, HY Chang, Z Yin, RA Flavell. m6A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. Nature 2017; 548(7667): 338–342
https://doi.org/10.1038/nature23450
|
| 56 |
WKE Ip, N Hoshi, DS Shouval, S Snapper, R Medzhitov. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science 2017; 5; 356(6337): 513–519
https://doi.org/10.1126/science.aal3535
|
| 57 |
Y Qin, B Li, S Arumugam, Q Lu, SM Mankash, J Li, B Sun, J Li, RA Flavell, HB Li, X Ouyang. m6A mRNA methylation-directed myeloid cell activation controls progression of NAFLD and obesity. Cell Rep 2021; 37(6): 109968
https://doi.org/10.1016/j.celrep.2021.109968
|
| 58 |
WA Goodman, SM Bedoyan, HL Havran, B Richardson, MJ Cameron, TT Pizarro. Impaired estrogen signaling underlies regulatory T cell loss-of-function in the chronically inflamed intestine. Proc Natl Acad Sci USA 2020; 117(29): 17166–17176
https://doi.org/10.1073/pnas.2002266117
|
| 59 |
E Smeets, S Huang, XY Lee, Nieuwenhove E Van, C Helsen, F Handle, L Moris, Kharraz S El, R Eerlings, W Devlies, M Willemsen, L Bücken, T Prezzemolo, S Humblet-Baron, A Voet, A Rochtus, Schepdael A Van, Zegher F de, F Claessens. A disease-associated missense mutation in CYP4F3 affects the metabolism of leukotriene B4 via disruption of electron transfer. J Cachexia Sarcopenia Muscle 2022; 13(4): 2242–2253
https://doi.org/10.1002/jcsm.13022
|
| 60 |
HK Lee, LS Chaboub, W Zhu, D Zollinger, MN Rasband, SP Fancy, B Deneen. Daam2-PIP5K is a regulatory pathway for Wnt signaling and therapeutic target for remyelination in the CNS. Neuron 2015; 85(6): 1227–1243
https://doi.org/10.1016/j.neuron.2015.02.024
|
| 61 |
X Ding, J Jo, CY Wang, CD Cristobal, Z Zuo, Q Ye, M Wirianto, A Lindeke-Myers, JM Choi, CA Mohila, H Kawabe, SY Jung, HJ Bellen, SH Yoo, HK Lee. The Daam2-VHL-Nedd4 axis governs developmental and regenerative oligodendrocyte differentiation. Genes Dev 2020; 34(17–18): 1177–1189
https://doi.org/10.1101/gad.338046.120
|
| 62 |
J Jo, J Woo, CD Cristobal, JM Choi, CY Wang, Q Ye, JA Smith, K Ung, G Liu, D Cortes, SY Jung, BR Arenkiel, HK Lee. Regional heterogeneity of astrocyte morphogenesis dictated by the formin protein, Daam2, modifies circuit function. EMBO Rep 2021; 22(12): e53200
https://doi.org/10.15252/embr.202153200
|
| 63 |
D Zhao, Y Zhou, Y Huo, J Meng, X Xiao, L Han, X Zhang, H Luo, D Can, H Sun, TY Huang, X Wang, J Zhang, FR Liu, H Xu, YW Zhang. RPS23RG1 modulates tau phosphorylation and axon outgrowth through regulating p35 proteasomal degradation. Cell Death Differ 2021; 28(1): 337–348
https://doi.org/10.1038/s41418-020-00620-y
|
| 64 |
A Calvo, C Moglia, A Canosa, S Cammarosano, A Ilardi, D Bertuzzo, BJ Traynor, M Brunetti, M Barberis, G Mora, F Casale, A Chiò. Common polymorphisms of chemokine (C-X3-C motif) receptor 1 gene modify amyotrophic lateral sclerosis outcome: a population-based study. Muscle Nerve 2018; 57(2): 212–216
https://doi.org/10.1002/mus.25653
|
| 65 |
A Lopez-Lopez, J Gamez, E Syriani, M Morales, M Salvado, MJ Rodríguez, N Mahy, JM Vidal-Taboada. CX3CR1 is a modifying gene of survival and progression in amyotrophic lateral sclerosis. PLoS One 2014; 9(5): e96528
https://doi.org/10.1371/journal.pone.0096528
|
| 66 |
MS Subbarayan, A Joly-Amado, PC Bickford, KR Nash. CX3CL1/CX3CR1 signaling targets for the treatment of neurodegenerative diseases. Pharmacol Ther 2022; 231: 107989
https://doi.org/10.1016/j.pharmthera.2021.107989
|
| 67 |
S Hickman, S Izzy, P Sen, L Morsett, J El Khoury. Microglia in neurodegeneration. Nat Neurosci 2018; 21(10): 1359–1369
https://doi.org/10.1038/s41593-018-0242-x
|
| 68 |
AE Cardona, EP Pioro, ME Sasse, V Kostenko, SM Cardona, IM Dijkstra, D Huang, G Kidd, S Dombrowski, R Dutta, JC Lee, DN Cook, S Jung, SA Lira, DR Littman, RM Ransohoff. Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 2006; 9(7): 917–924
https://doi.org/10.1038/nn1715
|
| 69 |
SM Cardona, SV Kim, KA Church, VO Torres, IA Cleary, AS Mendiola, SP Saville, SS Watowich, J Parker-Thornburg, A Soto-Ospina, P Araque, RM Ransohoff, AE Cardona. Role of the fractalkine receptor in CNS autoimmune inflammation: new approach utilizing a mouse model expressing the human CX3CR1I249/M280 variant. Front Cell Neurosci 2018; 12(October): 365
https://doi.org/10.3389/fncel.2018.00365
|
| 70 |
K Inoue, H Morimoto, M Ohgidani, T Ueki. Modulation of inflammatory responses by fractalkine signaling in microglia. PLoS One 2021; 16(5): e0252118
https://doi.org/10.1371/journal.pone.0252118
|
| 71 |
de Cossío L Fernández, C Lacabanne, M Bordeleau, G Castino, P Kyriakakis, MÈ Tremblay. Lipopolysaccharide-induced maternal immune activation modulates microglial CX3CR1 protein expression and morphological phenotype in the hippocampus and dentate gyrus, resulting in cognitive inflexibility during late adolescence. Brain Behav Immun 2021; 97(April): 440–454
https://doi.org/10.1016/j.bbi.2021.07.025
|
| 72 |
J Wang, S Yan, H Lu, S Wang, D Xu. METTL3 attenuates LPS-induced inflammatory response in macrophages via NF-κB signaling pathway. Mediators Inflamm 2019; 2019: 3120391
https://doi.org/10.1155/2019/3120391
|
| 73 |
H Wang, X Hu, M Huang, J Liu, Y Gu, L Ma, Q Zhou, X Cao. Mettl3-mediated mRNA m6A methylation promotes dendritic cell activation. Nat Commun 2019; 10(1): 1898
https://doi.org/10.1038/s41467-019-09903-6
|
| 74 |
Z Feng, Q Li, R Meng, B Yi, Q Xu. METTL3 regulates alternative splicing of MyD88 upon the lipopolysaccharide-induced inflammatory response in human dental pulp cells. J Cell Mol Med 2018; 22(5): 2558–2568
https://doi.org/10.1111/jcmm.13491
|
| 75 |
JH Jara, M Gautam, N Kocak, EF Xie, Q Mao, EH Bigio, PH Özdinler. MCP1-CCR2 and neuroinflammation in the ALS motor cortex with TDP-43 pathology. J Neuroinflammation 2019; 16(1): 196
https://doi.org/10.1186/s12974-019-1589-y
|
| 76 |
S Garofalo, G Cocozza, A Porzia, M Inghilleri, M Raspa, F Scavizzi, E Aronica, G Bernardini, L Peng, RM Ransohoff, A Santoni, C Limatola. Natural killer cells modulate motor neuron-immune cell cross talk in models of Amyotrophic Lateral Sclerosis. Nat Commun 2020; 11(1): 1773
https://doi.org/10.1038/s41467-020-15644-8
|
| 77 |
L Fourgeaud, PG Través, Y Tufail, H Leal-Bailey, ED Lew, PG Burrola, P Callaway, A Zagórska, CV Rothlin, A Nimmerjahn, G Lemke. TAM receptors regulate multiple features of microglial physiology. Nature 2016; 532(7598): 240–244
https://doi.org/10.1038/nature17630
|
| 78 |
Y Huang, K Happonen, P Burrola, C O’Connor, N Hah, L Huang, A Nimmerjahn, G Lemke. Microglia use TAM receptors to detect and engulf amyloid beta plaques. Nat. Immunol 2021; 22(5): 586–594
|
| 79 |
X Zhou, L Sun, O Bracko, JW Choi, Y Jia, AL Nana, OA Brady, JCC Hernandez, N Nishimura, WW Seeley, F Hu. Impaired prosaposin lysosomal trafficking in frontotemporal lobar degeneration due to progranulin mutations. Nat Commun 2017; 8(1): 15277
https://doi.org/10.1038/ncomms15277
|
| 80 |
W Zhao, DR Beers, S Bell, J Wang, S Wen, RH Baloh, SH Appel. TDP-43 activates microglia through NF-κB and NLRP3 inflammasome. Exp Neurol 2015; 273: 24–35
https://doi.org/10.1016/j.expneurol.2015.07.019
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|