Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2024, Vol. 18 Issue (1) : 68-80    https://doi.org/10.1007/s11684-023-1005-y
Association of TRMT2B gene variants with juvenile amyotrophic lateral sclerosis
Yanling Liu1,2, Xi He3, Yanchun Yuan4, Bin Li4,5,6, Zhen Liu4, Wanzhen Li4, Kaixuan Li2, Shuo Tan2, Quan Zhu2, Zhengyan Tang2, Feng Han2, Ziqiang Wu2, Lu Shen4,5,6,7,8,9, Hong Jiang4,5,6,7, Beisha Tang4,5,6,7, Jian Qiu5,6,7,10, Zhengmao Hu7(), Junling Wang1,4,5,6,7,8,9()
1. Department of Neurology, Xiangya Hospital, Central South University, Jiangxi, National Regional Center for Neurological Diseases, Nanchang 330038, China
2. Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, Department of Urology, Xiangya Hospital, Central South University, Changsha 410078, China
3. Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China
4. Department of Neurology, Xiangya Hospital, Central South University, Changsha 410078, China
5. National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha 410008, China
6. Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha 410008, China
7. Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
8. Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha 410078, China
9. Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha 410078, China
10. Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha 410078, China
 Download: PDF(4489 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive degeneration of motor neurons, and it demonstrates high clinical heterogeneity and complex genetic architecture. A variation within TRMT2B (c.1356G>T; p.K452N) was identified to be associated with ALS in a family comprising two patients with juvenile ALS (JALS). Two missense variations and one splicing variation were identified in 10 patients with ALS in a cohort with 910 patients with ALS, and three more variants were identified in a public ALS database including 3317 patients with ALS. A decreased number of mitochondria, swollen mitochondria, lower expression of ND1, decreased mitochondrial complex I activities, lower mitochondrial aerobic respiration, and a high level of ROS were observed functionally in patient-originated lymphoblastoid cell lines and TRMT2B interfering HEK293 cells. Further, TRMT2B variations overexpression cells also displayed decreased ND1. In conclusion, a novel JALS-associated gene called TRMT2B was identified, thus broadening the clinical and genetic spectrum of ALS.

Keywords TRMT2B      amyotrophic lateral sclerosis      mitochondrial complex I      tRNA methylation      reactive oxygen species     
Corresponding Author(s): Zhengmao Hu,Junling Wang   
About author:

Li Liu and Yanqing Liu contributed equally to this work.

Just Accepted Date: 31 August 2023   Online First Date: 10 October 2023    Issue Date: 22 April 2024
 Cite this article:   
Yanling Liu,Xi He,Yanchun Yuan, et al. Association of TRMT2B gene variants with juvenile amyotrophic lateral sclerosis[J]. Front. Med., 2024, 18(1): 68-80.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-023-1005-y
https://academic.hep.com.cn/fmd/EN/Y2024/V18/I1/68
Fig.1  TRMT2B was identified to be associated with ALS in a JALS family. (A) JALS family recruited from Hunan, China. The black arrow indicated the proband. (B) TRMT2B c.1356G > T; p.K452N variant co-segregated in this family. (C) Highly conserved K452 on TRMT2B protein among species. (D) Patient deformity of hands and feet. (E) Karyotypes of patients and their mother.
ALS cohort
No. of patients with ALS 910
Juvenile ALS 14
Family history (number) 68
Male (number, rate%) 597, 65.5%
Age at onset (years) 53.75 ± 11.28
Tab.1  Demographic characteristics of patients with ALS
Clinical feature Patient 1 Patient 2
ID in family XY003 XY003
Amino acid change K452N K452N
Sex Male Male
Age at onset (year) < 5 < 5
Age at evaluation (year) 30s 20s
BMI 22.89 16.65
Hand deformities Flexion contracture deformity Flexion contracture deformity
Foot deformities Pes cavus, hallux valgus, and ankle stiffness Pes cavus and hallux valgus
Walking Abnormal Normal
Atrophy Four extremities Four extremities
Weakness Generalized Generalized
Reflexes Normal Normal
UMN signs Ankle clonus and hypertonia Hypertonia
Tongue Fasciculations NA
Jaw jerk Present Present
Dysarthria Normal Normal
Dysphagia Normal Normal
Respiratory Normal Normal
Cognition
MMSE score 27/30 NA
ECAS score 68/136 NA
Sensory Normal Normal
Additional features Visual damage Visual damage and scapular winging
Neurophysiology
Motor Reduced CMAP, chronic neurogenic reinnervation, and ongoing denervation Reduced CMAP, chronic neurogenic reinnervation, and ongoing denervation
Sensory Normal Normal
Tab.2  Clinical features of patients with JALS carrying TRMT2B variants
Sample ID Sex Age of onset Gene Chr Position Location cDNA change AA alteration Mutation type rsID MAF in gnomAD P value b Functional predictions: pathogenic (total) c Sequencing depth
XY003.P1 a M 1 TRMT2B X 100273992 Exon12 c.1356G>T p.K452N missense / / / 2/11 79
XY003.P2 a M 1 TRMT2B X 100273992 Exon12 c.1356G>T p.K452N missense / / / 2/11 86
M6783 M 66 TRMT2B X 100296359 Exon3 c.250C>G p.L84V missense rs201296426 0.0006019(119/197698) < 0.0001 5/11 9
M7966 F 63 TRMT2B X 100296359 Exon3 c.250C>G p.L84V missense rs201296426 0.0006019(119/197698) < 0.0001 5/11 8
S001433 F 65 TRMT2B X 100296359 Exon3 c.250C>G p.L84V missense rs201296426 0.0006019(119/197698) < 0.0001 5/11 17
S003418 F 42 TRMT2B X 100296359 Exon3 c.250C>G p.L84V missense rs201296426 0.0006019(119/197698) < 0.0001 5/11 11
S003943 M 50 TRMT2B X 100296359 Exon3 c.250C>G p.L84V missense rs201296426 0.0006019(119/197698) < 0.0001 5/11 16
S004576 M 56 TRMT2B X 100296359 Exon3 c.250C>G p.L84V missense rs201296426 0.0006019(119/197698) < 0.0001 5/11 5
S004913 M 50 TRMT2B X 100296359 Exon3 c.250C>G p.L84V missense rs201296426 0.0006019(119/197698) < 0.0001 5/11 8
M36116 F 58 TRMT2B X 100290675 Exon7 c.539-3T>C / splicing / / / 39
S003640 M 65 TRMT2B X 100274004 Exon12 c.1344T>G p.F448L missense rs374183741 0.00007793(16/205319) 0.0961 6/11 61
/d F / TRMT2B X 100276156 Exon9 c.1000C>T p.R334W missense rs145089500 0.00001637(3/183278) / 6/11 /
/d / / TRMT2B X 100276212 Exon9 c.944G>T p.R315L missense rs145912589 0.0001268(26/205046) / 4/11 /
/d / / TRMT2B X 100292017 Exon5 c.484C>G p.R162G missense rs141694732 0.00002923(6/205301) / 3/11 /
Tab.3  Variations identified within patients with ALS
Fig.2  Altered mitochondrial morphology in patients’ lymphoblastoid cells. (A) TEM images showing reduced numbers of mitochondria in patients. (B) TEM images of lymphoblastoid cells from XY003.P1 (N = 13), XY003.P2 (N = 15), XY003.S1 (N = 7), and unrelated control (N = 10). (C) TEM images showing swollen mitochondria in patients. (D) TEM images of mitochondria from XY003.P1 (N = 120), XY003.P2 (N = 100), XY003.S1 (N = 185), and unrelated control (N = 274). The size of mitochondria in patients increased. **** P < 0.0001.
Fig.3  Altered mitochondrial function in patients’ lymphoblastoid cells. (A) Unchanged TRMT2B expression in patients. (B) Gray density analysis of TRMT2B. (C) Lower protein expression of ND1 in patients. (D) Gray density analysis of ND1 expression. (E) Lower mRNA expression of ND1 in patient-originated lymphoblastoid cells. (F) Decreased complex I activity in patients. (G) Increased ROS levels in patients. * P < 0.05, ** P < 0.01, *** P < 0.001, and **** P < 0.0001 by unpaired t-test.
Fig.4  Altered mitochondrial morphology in TRMT2B-interfering HEK293 lines. (A) and (B) Decreased number of mitochondria within TRMT2B-interfering HEK293 cells (NNC = 13, Nsh = 14). (C,D) Swollen mitochondria within TRMT2B-interfering HEK293 cells (NNC = 120, Nsh1 = 84, Nsh2 = 79). * P < 0.05, ** P < 0.01, and *** P < 0.001 by unpaired t-test.
Fig.5  Altered mitochondrial function in TRMT2B-interfering HEK293 lines. (A) Decreased ND1 expression by inhibition of TRMT2B expression. (B) Gray density analysis of ND1. (C) Unchanged expression of MTCO1, MTCO2, and TFAM when TRMT2B was interfered. (D) Decreased expression of ND1 in TRMT2B mutated overexpression groups. (E) Gray density analysis of WB lanes of ND1. (F) Increased ROS levels in TRMT2B-interfering HEK293 cells. * P < 0.05, ** P < 0.01, *** P < 0.001, and **** P < 0.0001 by unpaired t-test.
1 MA van Es, O Hardiman, A Chio, A Al-Chalabi, RJ Pasterkamp, JH Veldink, LH van den Berg. Amyotrophic lateral sclerosis. Lancet 2017; 390(10107): 2084–2098
https://doi.org/10.1016/S0140-6736(17)31287-4
2 E Longinetti, F Fang. Epidemiology of amyotrophic lateral sclerosis: an update of recent literature. Curr Opin Neurol 2019; 32(5): 771–776
https://doi.org/10.1097/WCO.0000000000000730
3 R Chia, A Chiò, BJ Traynor. Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications. Lancet Neurol 2018; 17(1): 94–102
https://doi.org/10.1016/S1474-4422(17)30401-5
4 B Oskarsson, DK Horton, H Mitsumoto. Potential environmental factors in amyotrophic lateral sclerosis. Neurol Clin 2015; 33(4): 877–888
https://doi.org/10.1016/j.ncl.2015.07.009
5 EO Talbott, AM Malek, D Lacomis. The epidemiology of amyotrophic lateral sclerosis. Handb Clin Neurol 2016; 138: 225–238
https://doi.org/10.1016/B978-0-12-802973-2.00013-6
6 L Hou, B Jiao, T Xiao, L Zhou, Z Zhou, J Du, X Yan, J Wang, B Tang, L Shen. Screening of SOD1, FUS and TARDBP genes in patients with amyotrophic lateral sclerosis in central-southern China. Sci Rep 2016; 6(1): 32478
https://doi.org/10.1038/srep32478
7 Z Liu, Y Yuan, M Wang, J Ni, W Li, L Huang, Y Hu, P Liu, X Hou, X Hou, J Du, L Weng, R Zhang, Q Niu, J Tang, H Jiang, L Shen, B Tang, J Wang. Mutation spectrum of amyotrophic lateral sclerosis in Central South China. Neurobiol Aging 2021; 107: 181–188
https://doi.org/10.1016/j.neurobiolaging.2021.06.008
8 P Orban, RS Devon, MR Hayden, BR Leavitt. Chapter 15 Juvenile amyotrophic lateral sclerosis. Handb Clin Neurol 2007; 82: 301–312
https://doi.org/10.1016/S0072-9752(07)80018-2
9 JO Johnson, R Chia, DE Miller, R Li, R Kumaran, Y Abramzon, N Alahmady, AE Renton, SD Topp, JR Gibbs, MR Cookson, MS Sabir, CL Dalgard, C Troakes, AR Jones, A Shatunov, A Iacoangeli, Khleifat A Al, N Ticozzi, V Silani, C Gellera, IP Blair, C Dobson-Stone, JB Kwok, ES Bonkowski, R Palvadeau, PJ Tienari, KE Morrison, PJ Shaw, A Al-Chalabi, RH Jr Brown, A Calvo, G Mora, H Al-Saif, M Gotkine, F Leigh, IJ Chang, SJ Perlman, I Glass, AI Scott, CE Shaw, AN Basak, JE Landers, A Chiò, TO Crawford, BN Smith, BJ; FALS Sequencing Consortium; American Genome Center; International ALS Genomics Consortium; Traynor, Consortium ITALSGEN. et al.. Association of variants in the SPTLC1 gene with juvenile amyotrophic lateral sclerosis. JAMA Neurol 2021; 78(10): 1236–1248
https://doi.org/10.1001/jamaneurol.2021.2598
10 P Lanteri, I Meola, A Canosa, Marco G De, A Lomartire, MT Rinaudo, E Albamonte, VA Sansone, C Lunetta, U Manera, R Vasta, C Moglia, A Calvo, P Origone, A Chiò, P Mandich. The heterozygous deletion c.1509_1510delAG in exon 14 of FUS causes an aggressive childhood-onset ALS with cognitive impairment. Neurobiol Aging 2021; 103: 130.e1–130.e7
https://doi.org/10.1016/j.neurobiolaging.2021.01.029
11 R Sprute, H Jergas, A Ölmez, S Alawbathani, H Karasoy, HS Dafsari, K Becker, HS Daimagüler, P Nürnberg, F Muntoni, H Topaloglu, G Uyanik, S Cirak. Genotype-phenotype correlation in seven motor neuron disease families with novel ALS2 mutations. Am J Med Genet A 2021; 185(2): 344–354
https://doi.org/10.1002/ajmg.a.61951
12 YZ Chen, CL Bennett, HM Huynh, IP Blair, I Puls, J Irobi, I Dierick, A Abel, ML Kennerson, BA Rabin, GA Nicholson, M Auer-Grumbach, K Wagner, P De Jonghe, JW Griffin, KH Fischbeck, V Timmerman, DR Cornblath, PF Chance. DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). Am J Hum Genet 2004; 74(6): 1128–1135
https://doi.org/10.1086/421054
13 A Orlacchio, C Babalini, A Borreca, C Patrono, R Massa, S Basaran, RP Munhoz, EA Rogaeva, PH St George-Hyslop, G Bernardi, T Kawarai. SPATACSIN mutations cause autosomal recessive juvenile amyotrophic lateral sclerosis. Brain 2010; 133(2): 591–598
https://doi.org/10.1093/brain/awp325
14 A Al-Saif, F Al-Mohanna, S Bohlega. A mutation in sigma-1 receptor causes juvenile amyotrophic lateral sclerosis. Ann Neurol 2011; 70(6): 913–919
https://doi.org/10.1002/ana.22534
15 T Altman, A Ionescu, A Ibraheem, D Priesmann, T Gradus-Pery, L Farberov, G Alexandra, N Shelestovich, R Dafinca, N Shomron, F Rage, K Talbot, ME Ward, A Dori, M Krüger, E Perlson. Axonal TDP-43 condensates drive neuromuscular junction disruption through inhibition of local synthesis of nuclear encoded mitochondrial proteins. Nat Commun 2021; 12(1): 6914
https://doi.org/10.1038/s41467-021-27221-8
16 S Anoar, NS Woodling, T Niccoli. Mitochondria dysfunction in frontotemporal dementia/amyotrophic lateral sclerosis: lessons from Drosophila models. Front Neurosci 2021; 15: 786076
https://doi.org/10.3389/fnins.2021.786076
17 F Theunissen, PK West, S Brennan, B Petrović, K Hooshmand, PA Akkari, M Keon, B Guennewig. New perspectives on cytoskeletal dysregulation and mitochondrial mislocalization in amyotrophic lateral sclerosis. Transl Neurodegener 2021; 10(1): 46
https://doi.org/10.1186/s40035-021-00272-z
18 LJ Martin. Mitochondriopathy in Parkinson disease and amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 2006; 65(12): 1103–1110
https://doi.org/10.1097/01.jnen.0000248541.05552.c4
19 T Wang, H Liu, K Itoh, S Oh, L Zhao, D Murata, H Sesaki, T Hartung, CH Na, J Wang. C9orf72 regulates energy homeostasis by stabilizing mitochondrial complex I assembly. Cell Metab 2021; 33(3): 531–546.e9
https://doi.org/10.1016/j.cmet.2021.01.005
20 A Ludolph, V Drory, O Hardiman, I Nakano, J Ravits, W Robberecht, J; WFN Research Group On ALS/MND Shefner. A revision of the El Escorial criteria—2015. Amyotrop Lat Scl Fr Deg 2015; 16(5–6): 291–292
https://doi.org/10.3109/21678421.2015.1049183
21 X Jiang, Y Teng, X Chen, N Liang, Z Li, D Liang, L Wu. Six novel mutation analysis of the androgen receptor gene in 17 Chinese patients with androgen insensitivity syndrome. Clin Chim Acta 2020; 506: 180–186
https://doi.org/10.1016/j.cca.2020.03.036
22 H Guo, P Tong, Y Liu, L Xia, T Wang, Q Tian, Y Li, Y Hu, Y Zheng, X Jin, Y Li, W Xiong, B Tang, Y Feng, J Li, Q Pan, Z Hu, K Xia. Mutations of P4HA2 encoding prolyl 4-hydroxylase 2 are associated with nonsyndromic high myopia. Genet Med 2015; 17(4): 300–306
https://doi.org/10.1038/gim.2015.28
23 Y Tian, JL Wang, W Huang, S Zeng, B Jiao, Z Liu, Z Chen, Y Li, Y Wang, HX Min, XJ Wang, Y You, RX Zhang, XY Chen, F Yi, YF Zhou, HY Long, CJ Zhou, X Hou, JP Wang, B Xie, F Liang, ZY Yang, QY Sun, EG Allen, AM Shafik, HE Kong, JF Guo, XX Yan, ZM Hu, K Xia, H Jiang, HW Xu, RH Duan, P Jin, BS Tang, L Shen. Expansion of human-specific GGC repeat in neuronal intranuclear inclusion disease-related disorders. Am J Hum Genet 2019; 105(1): 166–176
https://doi.org/10.1016/j.ajhg.2019.05.013
24 X He, Z Huang, W Liu, Y Liu, H Qian, T Lei, L Hua, Y Hu, Y Zhang, P Lei. Electrospun polycaprolactone/hydroxyapatite/ZnO films as potential biomaterials for application in bone-tendon interface repair. Coll Surf B Bioint 2021; 204: 111825
https://doi.org/10.1016/j.colsurfb.2021.111825
25 JP Grieco, SLE Compton, N Bano, L Brookover, AS Nichenko, JC Drake, EM Schmelz. Mitochondrial plasticity supports proliferative outgrowth and invasion of ovarian cancer spheroids during adhesion. Front Oncol 2023; 12: 1043670
https://doi.org/10.3389/fonc.2022.1043670
26 BR Brooks, RG Miller, M Swash, TL; World Federation of Neurology Research Group on Motor Neuron Diseases Munsat. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotrop Lat Scl Oth Mot Neur Dis 2000; 1(5): 293–299
https://doi.org/10.1080/146608200300079536
27 PA McCombe, NR Wray, RD Henderson. Extra-motor abnormalities in amyotrophic lateral sclerosis: another layer of heterogeneity. Expert Rev Neurother 2017; 17(6): 561–577
https://doi.org/10.1080/14737175.2017.1273772
28 JP Taylor. Multisystem proteinopathy: intersecting genetics in muscle, bone, and brain degeneration. Neurology 2015; 85(8): 658–660
https://doi.org/10.1212/WNL.0000000000001862
29 HL Teoh, K Carey, H Sampaio, D Mowat, T Roscioli, M Farrar. Inherited paediatric motor neuron disorders: beyond spinal muscular atrophy. Neural Plast 2017; 2017: 6509493
https://doi.org/10.1155/2017/6509493
30 M Pereira, S Francisco, AS Varanda, M Santos, MAS Santos, AR Soares. Impact of tRNA modifications and tRNA-modifying enzymes on proteostasis and human disease. Int J Mol Sci 2018; 19(12): 3738
https://doi.org/10.3390/ijms19123738
31 I Laptev, E Shvetsova, S Levitskii, M Serebryakova, M Rubtsova, A Bogdanov, P Kamenski, P Sergiev, O Dontsova. Mouse Trmt2B protein is a dual specific mitochondrial metyltransferase responsible for m5U formation in both tRNA and rRNA. RNA Biol 2020; 17(4): 441–450
https://doi.org/10.1080/15476286.2019.1694733
32 CA Powell, M Minczuk. TRMT2B is responsible for both tRNA and rRNA m5U-methylation in human mitochondria. RNA Biol 2020; 17(4): 451–462
https://doi.org/10.1080/15476286.2020.1712544
33 F Zhang, K Yoon, DY Zhang, NS Kim, GL Ming, H Song. Epitranscriptomic regulation of cortical neurogenesis via Mettl8-dependent mitochondrial tRNA m3C modification. Cell Stem Cell 2023; 30(3): 300–311.e11
https://doi.org/10.1016/j.stem.2023.01.007
34 S Sekar, J McDonald, L Cuyugan, J Aldrich, A Kurdoglu, J Adkins, G Serrano, TG Beach, DW Craig, J Valla, EM Reiman, WS Liang. Alzheimer’s disease is associated with altered expression of genes involved in immune response and mitochondrial processes in astrocytes. Neurobiol Aging 2015; 36(2): 583–591
https://doi.org/10.1016/j.neurobiolaging.2014.09.027
35 B Davarniya, H Hu, K Kahrizi, L Musante, Z Fattahi, M Hosseini, F Maqsoud, R Farajollahi, TF Wienker, HH Ropers, H Najmabadi. The role of a novel TRMT1 gene mutation and rare GRM1 gene defect in intellectual disability in two Azeri families. PLoS One 2015; 10(8): e0129631
https://doi.org/10.1371/journal.pone.0129631
36 M Igoillo-Esteve, A Genin, N Lambert, J Désir, I Pirson, B Abdulkarim, N Simonis, A Drielsma, L Marselli, P Marchetti, P Vanderhaeghen, DL Eizirik, W Wuyts, C Julier, AJ Chakera, S Ellard, AT Hattersley, M Abramowicz, M Cnop. tRNA methyltransferase homolog gene TRMT10A mutation in young onset diabetes and primary microcephaly in humans. PLoS Genet 2013; 9(10): e1003888
https://doi.org/10.1371/journal.pgen.1003888
37 G KoscielnyG YaikhomV IyerTF MeehanH Morgan J Atienza-HerreroA BlakeCK Chen R EastyA Di FenzaT FiegelM GrifithsA Horne NA KarpN KurbatovaJC MasonP MatthewsDJ Oakley A QaziJ RegnartA RethaLA SantosDJ Sneddon J WarrenH WesterbergRJ WilsonDG MelvinD Smedley SD BrownP FlicekWC SkarnesAM MallonH Parkinson. The International Mouse Phenotyping Consortium Web Portal, a unified point of access for knockout mice and related phenotyping data. Nucleic Acids Res 2014; 42(Database issue): D802–D809 doi:10.1093/nar/gkt977
pmid: 24194600
38 KJ De Vos, AL Chapman, ME Tennant, C Manser, EL Tudor, KF Lau, J Brownlees, S Ackerley, PJ Shaw, DM McLoughlin, CE Shaw, PN Leigh, CCJ Miller, AJ Grierson. Familial amyotrophic lateral sclerosis-linked SOD1 mutants perturb fast axonal transport to reduce axonal mitochondria content. Hum Mol Genet 2007; 16(22): 2720–2728
https://doi.org/10.1093/hmg/ddm226
39 P Wang, J Deng, J Dong, J Liu, EH Bigio, M Mesulam, T Wang, L Sun, L Wang, AY Lee, WA McGee, X Chen, K Fushimi, L Zhu, JY Wu. TDP-43 induces mitochondrial damage and activates the mitochondrial unfolded protein response. PLoS Genet 2019; 15(5): e1007947
https://doi.org/10.1371/journal.pgen.1007947
40 MP Murphy. Mitochondrial dysfunction indirectly elevates ROS production by the endoplasmic reticulum. Cell Metab 2013; 18(2): 145–146
https://doi.org/10.1016/j.cmet.2013.07.006
41 F Sivandzade, S Prasad, A Bhalerao, L Cucullo. NRF2 and NF-қB interplay in cerebrovascular and neurodegenerative disorders: molecular mechanisms and possible therapeutic approaches. Redox Biol 2019; 21: 101059
https://doi.org/10.1016/j.redox.2018.11.017
[1] FMD-23024-OF-WJL_suppl_1 Download
[1] Qinming Zhou, Lu He, Jin Hu, Yining Gao, Dingding Shen, You Ni, Yuening Qin, Huafeng Liang, Jun Liu, Weidong Le, Sheng Chen. Increased expression of coronin-1a in amyotrophic lateral sclerosis: a potential diagnostic biomarker and therapeutic target[J]. Front. Med., 2022, 16(5): 723-735.
[2] Jun Song, Yeping Huang, Wenjian Zheng, Jing Yan, Min Cheng, Ruxing Zhao, Li Chen, Cheng Hu, Weiping Jia. Resveratrol reduces intracellular reactive oxygen species levels by inducing autophagy through the AMPK-mTOR pathway[J]. Front. Med., 2018, 12(6): 697-706.
[3] Xiaodong Duan, Daizhi Peng, Yilan Zhang, Yalan Huang, Xiao Liu, Ruifu Li, Xin Zhou, Jing Liu. Sub-cytotoxic concentrations of ionic silver promote the proliferation of human keratinocytes by inducing the production of reactive oxygen species[J]. Front. Med., 2018, 12(3): 289-300.
[4] Kai Qu,Ting Lin,Zhixin Wang,Sinan Liu,Hulin Chang,Xinsen Xu,Fandi Meng,Lei Zhou,Jichao Wei,Minghui Tai,Yafeng Dong,Chang Liu. Reactive oxygen species generation is essential for cisplatin-induced accelerated senescence in hepatocellular carcinoma[J]. Front. Med., 2014, 8(2): 227-235.
[5] Qigong LIU, Honglian ZHOU, Yan ZENG, Shan YE, Jiani LIU, Zaiying LU. Mechanism of vascular endothelial growth factor on the prevention of restenosis after angioplasty[J]. Front Med Chin, 2009, 3(2): 177-180.
[6] ZOU Yunfeng, NIU Piye, GONG Zhiyong, YANG Jin, YUAN Jing, WU Tangchun, CHEN Xuemin. Relationship between reactive oxygen species and sodium-selenite-induced DNA damage in HepG2 cells[J]. Front. Med., 2007, 1(3): 327-332.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed