Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2009, Vol. 4 Issue (4) : 415-419    https://doi.org/10.1007/s11465-009-0051-8
Research articles
Performance investigation on ultrasonic levitation axial bearing for flywheel storage system
Taijiang PENG,Zhigang YANG,Junwu KAN,Fengjun TIAN,Xiaohong CHE,
College of Mechanics and Control Engineering, Shenzhen University, Shenzhen 518060, China;
 Download: PDF(144 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The bearing is an important basic mechanical part for supporting a shaft. A flywheel storage system needs a type of noncontact support bearing to enhance the speed of the axis. A magnetic suspension bearing is one type of noncontact bearing but has electromagnetic interference to other electric equipment. Based on the performance research of ultrasonic levitation technology, a novel noncontact bearing called ultrasonic bearing is presented, which consists of a special piezoelectric vibrator supporting the load. Experiments are carried out to study the relationships among the amplitude of the vibrator and levitation clearance, the highest speed of the axis, and the frictional moment of the axis. Results show that the levitation clearance becomes smaller gradually with increasing load; the rotation speed is up to 8946 r/min, and the friction moment is only 2.095×10−5 N·m when the levitation clearance is 8.53 μm. The ultrasonic bearing is highlighted because of its simple structure, strong levitation ability, and low friction moment.
Keywords ultrasonic bearing      flywheel storage system      piezoelectric ceramic      piezoelectric vibrator      
Issue Date: 05 December 2009
 Cite this article:   
Xiaohong CHE,Taijiang PENG,Junwu KAN, et al. Performance investigation on ultrasonic levitation axial bearing for flywheel storage system[J]. Front. Mech. Eng., 2009, 4(4): 415-419.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-009-0051-8
https://academic.hep.com.cn/fme/EN/Y2009/V4/I4/415
Wang J, Dai X J, Li Y L. Progress of bearing technology for flywheel energy storagesystem. Mechanical Engineer, 2008, 4: 71―73 (in Chinese)
Chen M, Zhang S J, Xing Y J, Zhang Y C. Combinedattitude control method of small satellite in the case of reactionwheel failed. Journal of Harbin Instituteof Technology, 2007, 39(5): 811―816 (in Chinese)
Liu H X, Ma R X, Zhang H. Achievement and application of flywheel energy storagetechnique. Energy Technology, 2003, 24(1): 10―13 (in Chinese)
Renuganth V, Stefanos F. Methodology for the developmentof combined energy and attitude control systems for satellites. Aerospace Science and Technology, 2002, 6: 303―311

doi: 10.1016/S1270-9638(02)01157-4
Renuganth V. Acombined energy and attitude control system for small satellites. Acta Astronautica, 2004, 54:701―712

doi: 10.1016/j.actaastro.2003.12.004
Renuganth V, Stefanos F. The combined energy and attitudecontrol system for small satellites-Earth observation missions. Acta Astronautica, 2005, 56: 251―259

doi: 10.1016/j.actaastro.2004.09.027
Andrade R de J, Ferreira A C, Sotelo G G, Suemitsu W I, Rolim L G B, Silva Neto J L, Neves M A, dos Santos V A, da Costa G C, Rosarioa M, Stephan R, Nicolsky R. A superconductinghigh-speed flywheel energy storage system. Physica C, 2004, 408―410: 930―931
Hideo N, Akinori M, Masayuki S. Development and testing of the suspendsion system fora flywheel battery. Control EngineeringPractice, 2001, 9: 1039―1046

doi: 10.1016/S0967-0661(01)00076-4
Han B C. Simulation and experiment research on an integrated power/attitudecontrol system with single axis double flywheels. Changchun Institute of Optics, Fine Mechanics and Physics, ChineseAcademy of Science, 2004
Bai Y. Investigationon high speed rotor and shaft of integrated power/attitude controlsystem. Changchun Institute of Optics,Fine Mechanics and Physics, Chinese Academy of Science, 2005
Zhou Y, Jiang S Y, Zhao L. Progression of research on flywheel energy storage system. Cryogenics and Superconductivity, 2003, 31(1): 42―46 (in Chinese)
Koshizuka N, Ishikawa F, Nasu H. Present status of R&D on superconducting magneticbearing technologies for flywheel energy storage system. Physica C, 2002, 378―381: 11―17

doi: 10.1016/S0921-4534(02)01374-6
Koshizuka N, Ishikawa K, Nasu H, Murakami M, Matsunaga K, Saito S, Saito O, Nakamura Y, Yamamoto h, Takahata R, Oka T, Ikezawa H, Tomita M. Progress of superconductingbearing technologies for flywheel energy storage systems. Physica C, 2003, 386: 444―450

doi: 10.1016/S0921-4534(02)02206-2
Ryosuke S, Kazuyuki D, Mitsuru U. Numerical simulation of coupled problem of electromagneticfield and heat conduction in superconducting magnetic bearing. Physica C, 2003, 392―396: 734―738
Nagaya S, Komura K, Kashima N, Kawashima H, Unisuga S, Kakiuchi Y. Development of the composite superconducting magneticbearing for superconducting flywheel. PhysicaC, 2003, 392―396: 719―722

doi: 10.1016/S0921-4534(03)01015-3
Cansiz A, Campbell A M, Coombs T A. An evershed type superconducting flywheel bearing. Physica C, 2003, 390: 305―310

doi: 10.1016/S0921-4534(03)00725-1
Matsuo E, Koike Y, Nakamura K, Ueha S, Hashimoto Y. Holding characteristics of planar objectssuspended by near-field acoustic levitation. Ultrasonics, 2000, 38: 60―63

doi: 10.1016/S0041-624X(99)00046-3
Sadayuki U, Yoshiki H, Koike Y. Non-contact transportation using near-field acousticlevitation. Ultrasonics, 2000, 38: 26―32

doi: 10.1016/S0041-624X(99)00052-9
Chang K T. A novel ultrasonic clutch using near-field acoustic levitation. Ultrasonics, 2004, 43: 49―55

doi: 10.1016/j.ultras.2004.02.023
Vincent V, Pierre L, Alain D. Non-contact handling in micro-assembly: acoustical levitation. Precision Engineering, 2005, 29: 491―505

doi: 10.1016/j.precisioneng.2005.03.003
Peng T J, Yang S C, Yang Z G, Cheng G M, Zeng P, Zhang D J. Experimental study on ultrasonic antifriction behavior. Journal of Jilin University (Engineering and TechnologyEdition) , 2006, 36(s2): 88―90 (in Chinese)
[1] Ruizhou WANG, Xianmin ZHANG. Preload characteristics identification of the piezoelectric-actuated 1-DOF compliant nanopositioning platform[J]. Front. Mech. Eng., 2015, 10(1): 20-36.
[2] Shihui XIE, Kongjun ZHU, Jinhao QIU, Hua GUO. Microstructure and electrical properties of NaNbO3-BaTiO3 lead-free piezoelectric ceramics[J]. Front Mech Eng Chin, 2009, 4(3): 345-349.
[3] ZHANG Jianhui, LU Jizhuang, XIA Qixiao, LI Hong. Theoretical analysis and experimental investigation of valveless piezoelectric pump with unsymmetrical ridges[J]. Front. Mech. Eng., 2007, 2(1): 13-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed