Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2010, Vol. 5 Issue (3) : 341-346    https://doi.org/10.1007/s11465-010-0096-8
Research articles
Creep and recovery behaviors of magnetorheological elastomers
Weihua LI,Yang ZHOU,Tongfei TIAN,Gursel ALICI,
School of Mechanical, Materials & Mechatronic Engineering, University of Wollongong, Northfield Avenue, NSW 2522, Australia;
 Download: PDF(272 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract This paper presents experimental and modeling study of creep and recovery behaviors of magneto-rheological elastomers (MREs) under constant stresses. Experimental study was accomplished using a rheometer with parallel-plate geometry. Under constant stresses ranging from a small value to a large one, the resultant strains were recorded. The experimental results demonstrated that MREs behave as linear visocleastic properties. The effects of the magnetic field and stress on MRE creep behaviors were discussed. Moreover, a four-parameter viscoelastic model was developed to describe MRE creep behaviors. The comparison between the experimental results and the modeling predictions indicates that the model can predict MRE creep behaviors very well.
Keywords magneto-rheological elastomers (MREs)      creep      recovery      linear viscoelastic model      
Issue Date: 05 September 2010
 Cite this article:   
Weihua LI,Tongfei TIAN,Yang ZHOU, et al. Creep and recovery behaviors of magnetorheological elastomers[J]. Front. Mech. Eng., 2010, 5(3): 341-346.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-010-0096-8
https://academic.hep.com.cn/fme/EN/Y2010/V5/I3/341
Carlson J D, Jolly M R. MR fluid, foam and elastomer devices. Mechatronics, 2000, 10(4―5): 555–569

doi: 10.1016/S0957-4158(99)00064-1
Li W H, Yao G Z, Chen G, Yeo S H, Yap F F. Testing and steady statemodelling of a linear MR damper under sinusoidal loading. Smart Materials and Structures, 2000, 9(1): 95–102

doi: 10.1088/0964-1726/9/1/310
Liu B, Li W H, Kosasih P B, Zhang X Z. Development of an MR-brake-based haptic device. Smart Materials and Structures, 2006, 15(6): 1960–1966

doi: 10.1088/0964-1726/15/6/052
Wang X J, Gordaninejad F. Flow analysis and modeling of field-controllable, electro- and magneto-rheologicalfluid dampers. Journal of Applied Mechanics, 2007. 74(1): 13–22

doi: 10.1115/1.2166649
Chen L, Gong X L, Jiang W Q, Yao J J, Deng H X, Li W H. Investigation on magnetorheological elastomers basedon natural rubber. Journal of MaterialsScience, 2007, 42(14): 5483–5489

doi: 10.1007/s10853-006-0975-x
Fuchs A, Zhang Q, Elkins J, Gordaninejad F, Evrensel C. Development and characterizationof magnetorheological elastomers. Journal of Applied Polymer Science, 2007, 105(5): 2497–2508

doi: 10.1002/app.24348
Zhang X Z, Li W H, Gong X L. An effective permeability model to predictfield-dependent modulus of magnetorheological elastomers. Communications in Nonlinear Science and NumericalSimulations, 2008, 13(9): 1910–1916

doi: 10.1016/j.cnsns.2007.03.029
Zhou G Y, Jiang Z J. Deformation in magnetorheological elastomer and elastomer-ferromagnet compositedriven by a magnetic field. Smart Materials and Structures, 2004, 13(2): 309–316

doi: 10.1088/0964-1726/13/2/009
Gong X L, Zhang X Z, Zhang P Q. Fabrication and characterization of isotropicmagnetorheological elastomers. Polymer Testing, 2005, 24(5): 669–676

doi: 10.1016/j.polymertesting.2005.03.015
Lokander M, Stenberg B. Performance of isotropic magnetorheological rubber materials. Polymer Testing, 2003, 22(3): 245–251

doi: 10.1016/S0142-9418(02)00043-0
Zhang X Z, Peng S L, Wen W J, Li W H. Analysis and fabrication of patterned magnetorheological elastomers. Smart Materials and Structures, 2008, 17(4): 5001

doi: 10.1088/0964-1726/17/4/045001
Deng H X, Gong X L, Wang L H. Development of an adaptive tuned vibrationabsorber with magnetorheological elastomer. Smart Materials and Structures, 2006, 15(5): N111–N116

doi: 10.1088/0964-1726/15/5/N02
Ginder J M, Clark S M, Schlotter W F, Nichols M E. Magnetostrictive phenomena in magnetorheological elastomers. International Journal of Modern Physics, 2002, 16(17―18): 2412–2418
Zhang X Z, Li W H. Adaptive tuned vibration absorbers working with MR elastomers. Smart Structures and Systems, 2009, 5(5): 517–529
Ferry J D. Viscoelastic Properties of Polymers. New York: Wiley, 1980
Li W H, Du H, Chen G, Yeo S H. Experimental investigation of creep and recovery behaviors of magnetorheologicalfluids. Materials Science and EngineeringA, 2002, 333(1―2): 368–376

doi: 10.1016/S0921-5093(01)01865-2
Li W H, Du H, Chen G, Yeo S H, Guo N Q. Nonlinear rheological behaviorof magnetorheological fluids: step-strain experiments. Smart Materials and Structures, 2002, 11(2): 209–217

doi: 10.1088/0964-1726/11/2/304
[1] Dianyin HU, Xiyuan WANG, Jianxing MAO, Rongqiao WANG. Creep-fatigue crack growth behavior in GH4169 superalloy[J]. Front. Mech. Eng., 2019, 14(3): 369-376.
[2] Tahir MAHMOOD, Sangarapillai KANAPATHIPILLAI, Mahiuddin CHOWDHURY. A model for creep life prediction of thin tube using strain energy density as a function of stress triaxiality under quasi-static loading employing elastic-creep & elastic-plastic-creep deformation[J]. Front Mech Eng, 2013, 8(2): 181-186.
[3] Shantung TU, Guoyan ZHOU. Creep of brazed plate-fin structures in high temperature compact heat exchangers[J]. Front. Mech. Eng., 2009, 4(4): 355-362.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed