Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2009, Vol. 4 Issue (4) : 355-362    https://doi.org/10.1007/s11465-009-0065-2
Research articles
Creep of brazed plate-fin structures in high temperature compact heat exchangers
Shantung TU1,Guoyan ZHOU1, 2,
1.Key Laboratory of Safety Science of Pressure Equipment, MOE, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China; 2.2009-11-03 23:20:53;
 Download: PDF(334 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In recent years, the need for high temperature heat exchangers to improve the efficiency of power and chemical conversion systems has been growing. However, the creep design of the high temperature compact heat exchangers has been a primary concern because the working temperature can be well above the creep limit of the materials. To establish the high temperature design criterion for compact heat exchangers, creep behavior of the plate-fin structures and brazed joints are investigated in this paper. The time-dependent deformation and bending stress of the plate-fin structures are obtained analytically by simplifying the fins to elastic springs. The creep damage evolution inside the brazed joint is studied by coupling the finite element method with a damage constitutive equation. The significant effect of creep property mismatch in the brazed joint on the creep strength is demonstrated.
Keywords compact heat exchanger      creep      damage      brazing joint      
Issue Date: 05 December 2009
 Cite this article:   
Shantung TU,Guoyan ZHOU,管理员. Creep of brazed plate-fin structures in high temperature compact heat exchangers[J]. Front. Mech. Eng., 2009, 4(4): 355-362.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-009-0065-2
https://academic.hep.com.cn/fme/EN/Y2009/V4/I4/355
Chen Y, Li J L, Wang J, Yu S Y. The applicationof compact heat exchangerin 10?MW nuclear power conversionsystem. In: Proceeding of the 2nd InternationalTopical Meeting on High Temperature Reactor Technology, Beijing, 2004, C25
Ranganayakulu C, Seetharamu K N. The combined effects of inletfluid flow and temperature nonuniformity in cross flow plate-fin compactheat exchanger using finite element method. Heat and Mass Transfer, 1997, 32(5): 375―383

doi: 10.1007/s002310050134
Pan L W, Wang S D. Modeling of a compact plate-finreformer for methanol steam reforming in fuel cell systems. Chemical Engineering Journal, 2005, 108(4): 51―58

doi: 10.1016/j.cej.2004.12.042
ALPEMA. The Standardsof the Brazed Aluminium Plate-Fin Heat Exchanger Manufacturers’Association. 2nd ed. Houston: Alpema, 2000
Jaroslav M. Finiteelement analysis and simulation of adhesive bonding, soldering andbrazing-an addendum: a bibliography (1996―2002). Modeling and Simulation in Materials Science and Engineering, 2002, 10: 637―671

doi: 10.1088/0965-0393/10/6/304
Jiang W C, Gong J M, Chen H and Tu S T. The effectof filler metal thickness on residual stress and creep for stainless-steelplate-fin structure, Int J of Pres Ves& Piping, 2008, 85(8): 569―574

doi: 10.1016/j.ijpvp.2008.02.007
Inagaki Y, Kunitomi K, Futakawa M, Ikuo I, Kaji Y. R&D on high temperature components. Nuclear Engineering and Design, 2004, 233(1―3): 211―223

doi: 10.1016/j.nucengdes.2004.08.010
Kawashima F, Igari T, Miyoshi Y, Kamito Y, Tanihira M. High temperature strengthand inelastic behavior of plate-fin structures for HTGR. Nuclear Engineering and Design, 2007, 237(6): 591―599

doi: 10.1016/j.nucengdes.2006.09.007
Zhou G Y, Tu S T. Viscoelastic analysis ofrectangular passage of microchanneled plates subjected to internalpressure. International Journal of Solidsand Structures, 2007, 44(21): 6791―6804

doi: 10.1016/j.ijsolstr.2007.03.009
Timoshenko S, Woinowsky-Krieger S. Theory of Platesand Shells. 2nd ed. New York: McGraw-Hill Book Company, 1987
Christensen R M. Theory of Viscoelasticity. New York: Acdemic Press, Inc, 1982
Papoulis A. Anew method of the Laplace transform. Quarterlyof Applied Mathematics, 1956, 14: 405―414
Tu S T, Segle P M, Samuelson L A. Some aspects of design of welded structures subjectedto high temperature creep, high temperature service and time dependentfailure, ASME PVP. Swindeman RW, AsadaedsY, ASME, New York, 1993, 262: 27―34
Hayhurst D R, Dimmer P R, Morrison C J. Development of continuum damage in the creep ruptureof notched bars. Philosophical Transactionsof the Royal Society of London, Series A, Mathematical and PhysicalSciences, 1984, A311: 103―129

doi: 10.1098/rsta.1984.0021
Rabinkin A. Optimizationof brazing technology structural integrity and performance of multi-channeledthree-dimensional metallic structure. In:International Brazing & Soldering Conference Proceedings, 2000
[1] Peng ZOU, Xiangming CHEN, Hao CHEN, Guanhua XU. Damage propagation and strength prediction of a single-lap interference-fit laminate structure[J]. Front. Mech. Eng., 2020, 15(4): 558-570.
[2] Tao SUN, Lufang QIN, Junming HOU, Yucan FU. Machinability of damage-tolerant titanium alloy in orthogonal turn-milling[J]. Front. Mech. Eng., 2020, 15(3): 504-515.
[3] Pan JIA, Huaiju LIU, Caichao ZHU, Wei WU, Guocheng LU. Contact fatigue life prediction of a bevel gear under spectrum loading[J]. Front. Mech. Eng., 2020, 15(1): 123-132.
[4] Haiyang LU, Yanle LI, Fangyi LI, Xingyi ZHANG, Chuanwei ZHANG, Jiyu DU, Zhen LI, Xueju RAN, Jianfeng LI, Weiqiang WANG. Damage mechanism and evaluation model of compressor impeller remanufacturing blanks: A review[J]. Front. Mech. Eng., 2019, 14(4): 402-411.
[5] Dianyin HU, Xiyuan WANG, Jianxing MAO, Rongqiao WANG. Creep-fatigue crack growth behavior in GH4169 superalloy[J]. Front. Mech. Eng., 2019, 14(3): 369-376.
[6] Y. Luo, S. C. Wu, Y. N. Hu, Y. N. Fu. Cracking evolution behaviors of lightweight materials based on in situ synchrotron X-ray tomography: A review[J]. Front. Mech. Eng., 2018, 13(4): 461-481.
[7] Elijah Kwabena ANTWI, Kui LIU, Hao WANG. A review on ductile mode cutting of brittle materials[J]. Front. Mech. Eng., 2018, 13(2): 251-263.
[8] Jia XU,Zhen-yu ZHOU,Zhong-yu PIAO. Accumulated damage process of thermal sprayed coating under rolling contact by acoustic emission technique[J]. Front. Mech. Eng., 2016, 11(3): 227-232.
[9] Bing LI,Xu GENG,Tong LU,Lei QIANG,Minghang LI. Experimental verification of the interface wave method to detect interlaminar damage of a metal multilayer structure[J]. Front. Mech. Eng., 2015, 10(4): 380-391.
[10] Bing LI,Lei QIANG,Tong LU,Xu GENG,Minghang LI. A Stoneley wave method to detect interlaminar damage of metal layer composite pipe[J]. Front. Mech. Eng., 2015, 10(1): 89-94.
[11] Juelong LI, Hairui LI, Jianchun XING, Qiliang YANG. The research on structural damage identification using rough set and integrated neural network[J]. Front Mech Eng, 2013, 8(3): 305-310.
[12] Tahir MAHMOOD, Sangarapillai KANAPATHIPILLAI, Mahiuddin CHOWDHURY. A model for creep life prediction of thin tube using strain energy density as a function of stress triaxiality under quasi-static loading employing elastic-creep & elastic-plastic-creep deformation[J]. Front Mech Eng, 2013, 8(2): 181-186.
[13] Weihua LI, Yang ZHOU, Tongfei TIAN, Gursel ALICI, . Creep and recovery behaviors of magnetorheological elastomers[J]. Front. Mech. Eng., 2010, 5(3): 341-346.
[14] JI Weihong, SONG Yupu, LIANG Bing. Numeric simulation for structure’s damage identification of space truss[J]. Front. Mech. Eng., 2007, 2(4): 423-428.
[15] LIU Ke-ge, YAN Chu-liang, ZHANG Shu-ming. Estimation of fatigue damage of airplane landing gear[J]. Front. Mech. Eng., 2006, 1(4): 424-428.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed