Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2015, Vol. 10 Issue (4) : 380-391    https://doi.org/10.1007/s11465-015-0365-7
RESEARCH ARTICLE
Experimental verification of the interface wave method to detect interlaminar damage of a metal multilayer structure
Bing LI(),Xu GENG,Tong LU,Lei QIANG,Minghang LI
State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
 Download: PDF(1336 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The interface wave traveling along the boundary of two materials has been studied for nearly a century. However, experiments, engineering applications, and interface wave applications to the non-destructive inspection of interlaminar composite have developed slowly. In this research, an experiment that applies Stoneley waves (a type of interfacial wave between two solid half-spaces) is implemented to detect the damage in a multilayer structure. The feasibility of this method is also verified. First, the wave velocity and wave structure of Stoneley waves at a perfectly bonded aluminum-steel interface are obtained by solving the Stoneley wave dispersion equation of two elastic half-spaces. Thereafter, an experiment is conducted to measure the Stoneley wave velocity of an aluminum-steel laminated beam and to locate interlaminar cracks by referring to the Stoneley wave velocity and echo wave time. Results indicate that the location error is less than 2%. Therefore, Stoneley waves show great potential as a non-destructive inspection method of a multilayer structure.

Keywords crack localization      interface waves      Stoneley waves      interlaminar damage      multilayer structure     
Corresponding Author(s): Bing LI   
Online First Date: 24 November 2015    Issue Date: 03 December 2015
 Cite this article:   
Bing LI,Xu GENG,Tong LU, et al. Experimental verification of the interface wave method to detect interlaminar damage of a metal multilayer structure[J]. Front. Mech. Eng., 2015, 10(4): 380-391.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-015-0365-7
https://academic.hep.com.cn/fme/EN/Y2015/V10/I4/380
Fig.1  Coordinate system for interface wave studies
Material Density /(kg·m−3) Young’s modulus/GPa Poisson’s ratio Longitudinal speed of sound/(m·s−1) Transverse speed of sound/(m·s−1) Dimension/mm3
Al 2700 79 0.33 6584 3316 15×20×400
Steel 7850 210 0.30 6001 3208 15×20×600
Tab.1  Dimensions and material properties of Al and steel beam
Fig.2  Wave structure across an aluminum-steel interface
Fig.3  Time-domain signal and its envelope signal
Fig.4  Schematic of the experimental test system
Fig.5  Overall arrangement of the experimental configuration
Fig.6  Sinusoidal signal (300 kHz) of the five cycles modulated by a Hanning window: (a) Time-domain signal and (b) its spectrum
Fig.7  Schematic of the experimental configuration in the measurement of Rayleigh wave velocity
Fig.8  (a) The waveform signals and (b) their envelope curves of detection Points 2 and 3 in the Al beam
Fig.9  (a) The waveform signals and (b) their envelope curves of detection Points 2 and 3 in the steel beam
Material Direct wave time, t1/μs Damage echo time, t2/μs Time difference, Δt/μs Propagation distance, s/mm Rayleigh waves velocity, v/(m·s−1)
Al 45.24 152.40 107.20 314 2929
Steel 42.96 163.40 120.40 320 2657
Tab.2  Summary of experimental results
Fig.10  Experimental subject and sensors placement
Fig.11  Partial enlarged view transverse crack in the beam below
Fig.12  Schematic of the experimental configuration in the test of Stoneley waves
Combination Material Dimension/mm3
Steel top, Al bottom Steel 15 × 30 × 600
Al 15 × 30 × 800
Al top, steel bottom Steel 15 × 30 × 800
Al 15 × 30 × 600
Tab.3  Dimensions of the Al and steel beams
Fig.13  Time-domain signals received by all sensors
Fig.14  Receiving signals when the top is steel and the bottom is Al: (a) Time-domain signals and (b) envelope curves of (a)
Fig.15  Receiving signals when the top beam is Al and the bottom is steel: (a) Time-domain signals and (b) envelope curves of (a)
1 Hanagud  S V, Ruzzene  M, Gopalakrishnan  S. Computational Techniques for Structural Health Monitoring. London: Springer, 2011
2 Stoneley  R. Elastic waves at the surface of separation of two solids. Proceedings of the Royal Society of London, 1924, 106(738): 416–428
https://doi.org/10.1098/rspa.1924.0079
3 Murty  G S. Theoretical model for attenuation and dispersion of Stoneley waves at loosely bonded interface of elastic half spaces. Physics of the Earth and Planetary Interiors, 1975, 11(1): 65–79
https://doi.org/10.1016/0031-9201(75)90076-X
4 Gardner  M D,  Rose   J L, Koudela   K L,  Inspectability of interfaces between composite and metallic layers using ultrasonic interface waves. The Journal of the Acoustical Society of America, 2013, 133(5): 35–45
https://doi.org/10.1121/1.4806422
5 Li  B, Qiang  L, Lu  T,  A Stoneley wave method to detect interlaminar damage of metal layer composite pipe. Frontiers of Mechanical Engineering, 2015, 10(1): 89–94
https://doi.org/10.1007/s11465-015-0323-4
6 Rose  J L. Ultrasonic Waves in Solid Media. Cambridge: Cambridge University Press, 1999, 132–136
7 Pham  C V, Pham  T H G. On formulas for the velocity of Stoneley waves propagating along the loosely bonded interface of two elastic half-spaces. Wave Motion, 2011, 48: 46–56
[1] Bing LI,Lei QIANG,Tong LU,Xu GENG,Minghang LI. A Stoneley wave method to detect interlaminar damage of metal layer composite pipe[J]. Front. Mech. Eng., 2015, 10(1): 89-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed