Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front Mech Eng    2011, Vol. 6 Issue (1) : 45-60    https://doi.org/10.1007/s11465-011-0205-3
RESEARCH ARTICLE
Kinematic design of an anthropomimetic 7-DOF cable-driven robotic arm
Guilin YANG1(), Shabbir Kurbanhusen MUSTAFA1, Song Huat YEO2, Wei LIN1, Wen Bin LIM2
1. Mechatronics Group, Singapore Institute of Manufacturing Technology, Singapore, Singapore; 2. School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
 Download: PDF(888 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, an anthropomimetic design of a 7-DOF dexterous robotic arm is proposed. Similar to the human arm, the arm consists of three sequentially connected modules, i.e., a 3-DOF shoulder module, a 1-DOF elbow module, and a 3-DOF wrist module. All three arm modules are also driven by cables in order to mimic the driving scheme and functionality of the human muscles. This paper addresses three critical design analysis issues, i.e., the displacement analysis, the tension-closure analysis, and the workspace analysis. A closed-form solution approach is presented for the forward displacement analysis, while the inverse displacement solution is obtained through an efficient optimization algorithm, in which both task-decomposition and dimension-reduction techniques are employed. An effective tension-closure analysis algorithm is also formulated based on the theory of convex analysis. The orientation workspace for the 3-DOF shoulder and wrist modules are then analyzed using a new equi-volumetric partition scheme based on the intuitive Tilt-and-Torsion angle parameterization. An optimization approach is then investigated for the kinematic design of the three joint modules, in which the design objective is to maximize the matched workspace of the robotic arm joints with that of the human arm joints. A research prototype of the 7-DOF cable-driven robotic arm has also been developed in order to demonstrate the anthropomimetic design concept. With a lightweight structure of 1 kg, the cable-driven robotic arm can carry a payload of 5 kg and has motion repeatability of±2.5mm.

Keywords anthropomimetic design      robotic arm      cable-driven mechanism      kinematic analysis      design optimization     
Corresponding Author(s): YANG Guilin,Email:glyang@simtech.a-star.edu.sg   
Issue Date: 05 March 2011
 Cite this article:   
Guilin YANG,Shabbir Kurbanhusen MUSTAFA,Song Huat YEO, et al. Kinematic design of an anthropomimetic 7-DOF cable-driven robotic arm[J]. Front Mech Eng, 2011, 6(1): 45-60.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-011-0205-3
https://academic.hep.com.cn/fme/EN/Y2011/V6/I1/45
Fig.1  Conceptual design of the 7-DOF cable driven robotic arm
Fig.2  Possible cable arrangement of the 3-DOF shoulder module
Fig.3  (a) 3-DOF shoulder/wrist module; (b) 1-DOF elbow module
Fig.4  Schematic diagram of the cable driven robotic arm
Fig.5  Schematic diagram of the 1-DOF elbow module
Fig.6  Inverse displacement analysis of the cable driven robotic arm
Fig.7  Inverse displacement analysis for Step 1
Fig.8  Kinetostatic equilibrium of the 3-DOF spherical joint module
Fig.9  Coordinate frames of the elbow joint. (a) Initial frame; (b) moving frame
Fig.10  Tilt-&-Torsion angles representation []
Fig.11  Coordinate frames attached to the shoulder joint. (a) Initial frame; (b) moving frame
Fig.12  Coordinate frames attached to the wrist joint. (a) Initial frame; (b) moving frame
Fig.13  Equi-volumetric partition of a solid cylinder. (a) 3D view of cylindrical workspace; (b) division scheme of circular disc; (c) division scheme of circular band in disc; (d) element in the cylindrical workspace
Fig.14  Workspace of the human shoulder joint. (a) Cross-section of the right shoulder joint workspace; (b) corresponding regions in the Cartesian task space at
Fig.15  Workspace of the human wrist joint. (a) Cross-section of the right wrist joint workspace; (b) corresponding regions in the Cartesian task space at
Fig.16  Optimized two-cable 2-2 configuration elbow module
Fig.17  (a) Design variables of the 3-3 six-cable shoulder and wrist modules; (b) optimized cylindrical workspace plot of shoulder module; (c) optimized cylindrical workspace plot of wrist module
Fig.18  Prototype of the 7-DOF cable-driven robotic arm
Fig.19  Prototype components. (a) Flat-wire spiral tube; (b) delrin insert
1 Kwee H, Quaedackers J, Van de Bool E, Theeuwen L, Speth L. Ocus project: Adapting the control of the manus manipulator for persons with cerebral palsy. In: Proceedings of IEEE ICORR. Stanford, CA , 1999, 106-114
2 Romer G R B E, Stuyt H J A, Peters A. Cost-savings and economic benefits due to the assistive robotic manipulator (ARM). In: Proceedings of IEEE ICORR. Chicago, IL , 2005, 201-204
3 Alqasemi R M, McCaffrey E J, Edwards K D, Dubey R V. Analysis, evaluation and development of wheelchair-mounted robotic arms. In: Proceedings of IEEE ICORR. Chicago, IL , 2005, 469-472
4 Topping M, Smith J. The development of handy 1: A robotic system to assist the severely disabled. In: Proceedings of ICORR. Stanford, CA , 1999, 244-249
5 Krebs H I, Palazzolo J J, Dipietro L, Ferraro M, Krol J, Rannekleiv K, Volpe B T, Hogan N. Rehabilitation robotics: Performance-based progressive robot-assisted therapy. Autonomous Robots , 2003, 15(1): 7-20
doi: 10.1023/A:1024494031121
6 Lusardi M M, Nielsen C C. Orthotics and Prosthetics in Rehabilitation: Butterworth Heinemann, 2000
7 Tsagarakis N G, Caldwell D G. Development and control of a ‘soft-actuated’ exoskeleton for use in physiotherapy and training. Autonomous Robots , 2003, 15(1): 21-33
doi: 10.1023/A:1024484615192
8 Kiguchi K, Tanaka T, Watanabe K, Fukuda T. Design and control of an exoskeleton system for human upper-limb motion assist. In: Proceedings of IEEE/ASME AIM. Kobe , 2003, 926-931
9 Homma K, Fukuda O, Sugawara J, Nagata Y, Usuba M. A wire-driven leg rehabilitation system: Development of a 4-dof experimental system. In: Proceedings of IEEE/ASME AIM. Kobe , 2003, 908-913
10 Surdilovic D, Bernhardt R. String-man: A new wire robot for gait rehabilitation. In: Proceedings of IEEE ICRA. New Orleans, LA , 2004, 2031-2036
11 Bernhardt M, Frey M, Colombo G, Riener R. Hybrid force-position control yields cooperative behaviour of the rehabilitation robot LOKOMAT. In: Proceedings of IEEE ICRA. Chicago, IL , 2005, 536-539
12 Takahashi Y, Suzuki T, Obuchi Y, Kusakabe K, Takahashi K, Sakamoto T. Evaluations of human physical burdens when using transfer aid robotic system. In: Proceedings of SICE. Hokkaido , 2004, 933-938
13 Cook A M, Bentz B, Harbottle N, Lynch C, Miller B. School-based use of a robotic arm system by children with disabilities. IEEE Transactions on Neural Systems and Rehabilitation Engineering , 2005, 13(4): 452-460
doi: 10.1109/TNSRE.2005.856075 pmid:16425826
14 Robins B, Dickerson P, Dautenhahn K. Robots as embodied beings- interactionally sensitive body movements in interactions among autistic children and a robot. In: Proceedings of IEEE RO-MAN. Nashville, TN , 2005, 54-59
15 Graf B, Hans M, Kubacki J, Schraft R D. Robotic home assistant care-o-bot II. In: Proceedings of the Second Joint Meeting of the IEEE Engineering in Medicine and Biology Society and the Biomedical Engineering Society. Houston, Texas , 2002, 2343-2344
16 Pineau J, Montemerlo M, Pollack M, Roy N, Thrun S. Towards robotic assistants in nursing homes: Challenges and results. Robotics and Autonomous Systems , 2003, 42(3-4): 271-281
doi: 10.1016/S0921-8890(02)00381-0
17 Balaguer C, Gimenez A, Huete A J, Sabatini A M, Topping M, Bolmsjo G. The mats robot: Service climbing robot for personal assistance. IEEE Robotics & Automation Magazine , 2006, 13(1): 51-58
doi: 10.1109/MRA.2006.1598053
18 Asfour T, Berns K, Dillmann R. The humanoid robot ARMAR. In: Proceedings of the 2nd International Symposium in Humanoid Robots. Tokyo , 1999, 174-180
19 Asfour T, Dillmann R. Human-like motion of a humanoid robot arm based on a closed-form solution of the inverse kinematics problem. In: Proceedings of IEEE/RSJ IROS. Las Vegas, Nevada , 2003, 1407-1412
20 Zinn M, Khatib O, Roth B. A new actuation approach for human friendly robot design. In: Proceedings of IEEE ICRA. New Orleans, LA , 2004, 249-254
21 Yoon S S, Kang S, Kim S J, Kim Y H, Kim M, Lee C W. Safe arm design with mr-based passive compliant joints and visco-elastic covering for service robot applications. In: Proceedings of IEEE/RSJ IROS. Las Vegas, Nevada , 2003, 2191-2196
22 Jeong S H, Takahashi T, Nakano E. A safety service manipulator system: The reduction of harmful forces by a controllable torque limiter. In: Proceedings of IEEE/RSJ ROS. Sendai, Japan , 2004, 162-167
23 Tondu B, Ippolito S, Guiochet J, Daidie A. A seven-degrees-of-freedom robot-arm driven by pneumatic artificial muscles for humanoid robots. International Journal of Robotics Research , 2005, 24(4): 257-274
doi: 10.1177/0278364905052437
24 Yokoi K, Tanie K, Inamura N, Kawai T, Agou K. Design and control of a seven-degrees-of-freedom manipulator actuated by a coupled tendon-driven system. In: Proceedings on IEEE/RSJ IROS. Osaka, Japan , 1991, 737-742
25 Salisbury K, Eberman B, Levin M, Townsend W. An experimental whole-arm manipulator. Artificial intelligence at MIT: Expanding Frontiers . Cambridge, MA: MIT Press, 1990, 228-249
26 Lenarcic J, Stanisic M. A humanoid shoulder complex and the humeral pointing kinematics. IEEE Transactions on Robotics and Automation , 2003, 19(3): 499-506
doi: 10.1109/TRA.2003.810578
27 Murray R, Li Z, Sastry S S. A Mathematical Introduction to Robotic Manipulation. CRC Press , 1994
28 Brockett R. Robotic manipulators and the product-of-exponential formula. Mathematical Theory of Network and Systems . New York: Springer, 1984, 120-129
29 Rockafella R T. Convex Analysis. Princeton University Press , 1970
30 Lim W B, Yang G, Yeo S H, Mustafa S K, Chen I M. A Generic Tension-Closure Analysis Method for Fully-Constrained Cable-Driven Parallel Manipulators. In: Proceedings of IEEE ICRA. Kobe , 2009, 2187-2192
31 Hamilton N, Luttgens K. Kinesiology: Scientific Basis of Human Motion. Mc-Graw Hill , 2002
32 Korein J U. A Geometric Investigation of Reach.Cambridge, MA: MIT Press, 1984
33 Bonev I A, Gosselin C M. Analytical determination of the workspace of symmetrical spherical parallel mechanisms. IEEE Transactions on Robotics , 2006, 22(5): 1011-1017
doi: 10.1109/TRO.2006.878983
34 Bonev I A, Gosselin C M. Singularity Loci of Spherical Parallel Mechanisms. In: Proceedings of IEEE ICRA. Barcelona , 2005, 2968-2973
35 Yang G, Lin W, Mustafa S K, Chen I M, Yeo S H. Numerical orientation workspace analysis with different parameterization methods. In: Proceedings of IEEE CISRAM. Bangkok, Thailand , 2006, 720-725
36 Chirikjian G S, Kyatkin A B. Engineering Applications of Noncommutative Harmonic Analysis with Emphasis on Rotation and Motion Groups.Boca Raton: CRC Press, 2000
37 Deb K. Optimization for Engineering Design: Algorithms and Examples.New Delhi: Prentice-Hall, 1998
[1] Mao LI, Yuanzhi LIU, Xiaobang WANG, Jie ZHANG. Modeling and optimization of an enhanced battery thermal management system in electric vehicles[J]. Front. Mech. Eng., 2019, 14(1): 65-75.
[2] Ming FENG,Yongbo WU,Julong YUAN,Zhao PING. Processing of high-precision ceramic balls with a spiral V-groove plate[J]. Front. Mech. Eng., 2017, 12(1): 132-142.
[3] Syed Ali AJWAD,Jamshed IQBAL,Muhammad Imran ULLAH,Adeel MEHMOOD. A systematic review of current and emergent manipulator control approaches[J]. Front. Mech. Eng., 2015, 10(2): 198-210.
[4] Yimin ZHANG. Reliability-based robust design optimization of vehicle components, Part II: Case studies[J]. Front. Mech. Eng., 2015, 10(2): 145-153.
[5] Yimin ZHANG. Reliability-based robust design optimization of vehicle components, Part I: Theory[J]. Front. Mech. Eng., 2015, 10(2): 138-144.
[6] M. H. KORAYEM, H. N. RAHIMI. Nonlinear dynamic analysis for elastic robotic arms[J]. Front Mech Eng, 2011, 6(2): 219-228.
[7] MA Lv-zhong, GUO Zong-he, YANG Qi-zhi, YIN Xiao-qin, HAN Ya-li, SHEN Hui-ping. Precision analysis of a weakly-coupled parallel mechanism with three translational degrees of freedom[J]. Front. Mech. Eng., 2006, 1(2): 227-232.
[8] WANG Yan, HANG Lu-bin, YANG Ting-li. Inverse Kinematics Analysis of General 6R Serial Robot Mechanism Based on Groebner Base[J]. Front. Mech. Eng., 2006, 1(1): 115-124.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed