Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2015, Vol. 10 Issue (2) : 198-210    https://doi.org/10.1007/s11465-015-0335-0
REVIEW ARTICLE
A systematic review of current and emergent manipulator control approaches
Syed Ali AJWAD,Jamshed IQBAL(),Muhammad Imran ULLAH,Adeel MEHMOOD
Department of Electrical Engineering, COMSATS Institute of Information Technology, Islamabad 44000, Pakistan
 Download: PDF(3081 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Pressing demands of productivity and accuracy in today’s robotic applications have highlighted an urge to replace classical control strategies with their modern control counterparts. This recent trend is further justified by the fact that the robotic manipulators have complex nonlinear dynamic structure with uncertain parameters. Highlighting the authors’ research achievements in the domain of manipulator design and control, this paper presents a systematic and comprehensive review of the state-of-the-art control techniques that find enormous potential in controlling manipulators to execute cutting-edge applications. In particular, three kinds of strategies, i.e., intelligent proportional-integral-derivative (PID) scheme, robust control and adaptation based approaches, are reviewed. Future trend in the subject area is commented. Open-source simulators to facilitate controller design are also tabulated. With a comprehensive list of references, it is anticipated that the review will act as a first-hand reference for researchers, engineers and industrial-interns to realize the control laws for multi-degree of freedom (DOF) manipulators.

Keywords robot control      robust and nonlinear control      adaptive control      intelligent control      industrial manipulators      robotic arm     
Corresponding Author(s): Jamshed IQBAL   
Online First Date: 28 April 2015    Issue Date: 14 July 2015
 Cite this article:   
Syed Ali AJWAD,Jamshed IQBAL,Muhammad Imran ULLAH, et al. A systematic review of current and emergent manipulator control approaches[J]. Front. Mech. Eng., 2015, 10(2): 198-210.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-015-0335-0
https://academic.hep.com.cn/fme/EN/Y2015/V10/I2/198
Fig.1  AUTAREP realized by researchers at COMSATS Institute, Pakistan [33]
Fig.2  Manipulator control design — Sequential engineering approach
Fig.3  Control architecture of the manipulator-type exoskeleton rehabilitation system [46]
Fig.4  Encoder data of AUTAREP joints for pick & place task [47]
Fig.5  Block diagram of CTC-PD for tracking joint angle of a robot [48]
Fig.6  Tracking using CTC-PD corresponding to various λ values: Ramp responses [49]
Fig.7  Comparative tacking performance in the presence of disturbances: Step responses of SMC and CTC [49]
Fig.8  Waveform illustrating working principle of discrete time MPC
Fig.9  Block diagram illustrating MRAC
Fig.10  Block diagram of adaptive neural network based sliding mode control (NNSMC) control [87]
Fig.11  Block diagram of adaptive Fuzzy logic control
Fig.12  Interface for position control of a manipulator with 3 rotational DOF [96]
Framework Developed by Environment GUI Traj. Planning Robots in library Dynamic algo. Ref.
EJS+ EjsRL Univ. of Alicate, Spain Java ? ? Multiplatform support Newton-Euler [96]
CorkeToolBox CSIRO, Australia MATLAB Limited ? Serial manipulators Newton-Euler [97]
RobotiCad Univ. of Bologna, Italy MATLAB ? ? Cartesian and serial robots Newton-Euler / Lagrange [99]
Planar Manipulator Toolbox Inst. Jo?ef Stefan, Slovenia MATLAB/Simulink Limited ? Planar manipulators(n revolute joints) Lagrange [100]
HEMERO Univ. of Seville, Spain MATLAB ? PUMA 560 Newton-Euler [101]
ROBOTLAB Federal Univ. of Paraíba, Brazil MATLAB ? Newton-Euler [102]
Robotica UIUC, USA Mathematica,Simnon, C ? None Lagrange [103]
TUM Platform Tech. Univ. Munich, Germany MATLAB ? [104]
V-REP Coppelia Robotics, Germany Windows, MacOSX and Linux ? ? Generic ODE, Bullet, Vortex [105]
DUT Platform Delft Univ. of Tech., Netherland MATLAB ? 16 robots each with 6 DOF [106]
ReDySim Indian Institute of Technology (IIT), Delhi MATLAB ? ? DeNOC based on Newton-Euler [107]
RobLib Inst. of Engineering of Coimbra, Portugal Borland Delphi ? ? RP, RR Newton-Euler [108]
Arm6x Concurrent Dynamics International MATLAB None Newton-Euler / Lagrange [109]
ROBOSIM2 Thammasat Univ., Thailand MATLAB, LISP Limited R, RR, P, PP, RP, PR [110]
Tab.1  Comparative review of reported platforms for simulating control systems for manipulators
1 Khan H, Iqbal J, Baizid K, . Longitudinal and lateral slip control of autonomous wheeled mobile robot for trajectory tracking. Frontiers of Information Technology & Electronic Engineering, 2015, 16(2): 166–172
https://doi.org/10.1631/FITEE.1400183
2 Spong M W, Vidyasagar M. Robot Dynamics and Control. 3rd ed. New York: John Wiley & Sons, 2008
3 Iqbal J, Tsagarakis N G, Fiorilla A E, . A portable rehabilitation device for the hand. In: 2010 Annual International Conference of the IEEE on Engineering in Medicine and Biology Society (EMBC). Buenos Aires: IEEE, 2010, 3694–3697 doi:10.1109/IEMBS.2010.5627448
4 Iqbal J, Tsagarakis N, Caldwell D. Design optimization of a hand exoskeleton rehabilitation device. In: Proceedings of Workshop on Understanding the Human Hand for Advancing Robotic Manipulation, Robotics Science and Systems (RSS). Seattle, 2009, 44–45
5 Iqbal J, Tsagarakis N G, Caldwell D G. A human hand compatible optimised exoskeleton system. In: 2010 IEEE International Conference on Robotics and Biomimetics (ROBIO). Tianjin: IEEE, 2010, 685–690
https://doi.org/10.1109/ROBIO.2010.5723409
6 Iqbal J, Tsagarakis N G, Caldwell D G. A multi-DOF robotic exoskeleton interface for hand motion assistance. In: 2011 Annual International Conference of the IEEE on Engineering in Medicine and Biology Society (EMBC). Boston: IEEE, 2011, 1575–1578
https://doi.org/10.1109/IEMBS.2011.6090458
7 Iqbal J, Tsagarakis N, Fiorilla A E, . Design requirements of a hand exoskeleton robotic device. In: 14th IASTED International Conference on Robotics and Applications (RA). Massachusetts, 2009, 44–51
8 Khan A A, un Nabi S R, Iqbal J. Surface estimation of a pedestrian walk for outdoor use of power wheelchair based robot. Life Science Journal, 2013, 10(3): 1697–1704
9 Iqbal J, Tsagarakis N, Caldwell D. Design of a wearable direct-driven optimized hand exoskeleton device. In: Proceedings of the Fourth International Conference on Advances in Computer-Human Interactions (ACHI). Gosier: IARIA, 2011, 142–146
10 Azeem M M, Iqbal J, Toivanen P, . Emotions in robots. In: Chowdhry B S, Shaikh F K, Akbar Hussain D M, , eds. Emerging Trends and Applications in Information Communication Technologies. Berlin: Springer, 2012, 144–153
11 Naveed K, Iqbal J, ur Rahman H. Brain controlled human robot interface. In: 2012 International Conference on Robotics and Artificial Intelligence (ICRAI). Rawalpindi: IEEE, 2012, 55–60
12 Iqbal J, Pasha S M, Baizid K, . Computer vision inspired real-time autonomous moving target detection, tracking and locking. Life Science Journal, 2013, 10(4): 3338–3345
13 Iqbal J, Pasha M, Riaz-un-Nabi, . Real-time target detection and tracking: A comparative in-depth review of strategies. Life Science Journal, 2013, 10(3): 804–813
14 Iqbal J, Heikkila S, Halme A. Tether tracking and control of ROSA robotic rover. In: 10th International Conference on Control, Automation, Robotics and Vision (ICARCV). Hanoi: IEEE, 2008, 689–693
https://doi.org/10.1109/ICARCV.2008.4795601
15 Iqbal J, Saad M R, Tahir A M, . State estimation technique for a planetary robotic rover. Revista Facultad de Ingeniería, 2014, 73: 58–68
16 Iqbal J, Tahir A, Islam R U, . Robotics for nuclear power plants—Challenges and future perspectives. In: 2012 2nd International Conference on Applied Robotics for the Power Industry (CARPI). Zurich: IEEE, 2012, 151–156 doi:10.1109/CARPI.2012.6473373
17 Baizid K, Chellali R, Yousnadj A, . Modelling of robotized site and simulation of robot’s optimum placement and orientation zone. In: 21st IASTED International Conference on Modelling and Simulation (MS). Canada, 2010, 9–16
18 Meddahi A, Baizid K, Yousnadj A, . API based graphical simulation of robotized sites. In: IASTED International Conference on Robotics and Applications. Cambridge, 2009, 485–492
19 Groover M P, Weiss M, Nagel R N, . Industrial Robotics: Technology, Programming and Applications. McGraw-Hill Education, 2008
20 Fu K S, Gonzalez R C, Lee C S G. Robotics: Control Sensing Vision and Intelligence. McGraw-Hill Education, 2008
21 Bamdad M. Analytical dynamic solution of a flexible cable-suspended manipulator. Frontiers of Mechanical Engineering, 2013, 8(4): 350–359
https://doi.org/10.1007/s11465-013-0271-9
22 Baizid K, Yousnadj A, Meddahi A, . Time scheduling and optimization of industrial robotized tasks based on genetic algorithms. Robotics and Computer Integrated Manufacturing, 2015, 34: 140–150
https://doi.org/10.1016/j.rcim.2014.12.003
23 Asfahl C. Robots and Manufacturing Automation. 2nd ed. John Wiley & Sons, Inc., 1992
24 Visioli A. Research trends for PID controllers. Acta Polytechnica, 2012, 52(5): 144–150
25 Blevins T. PID advances in industrial control. In: Preprints IFAC Conference on Advances in PID Control. Brescia, 2012
26 McMillan G K. Industrial applications of PID control. In: Vilanova R, Visioli A, eds. PID Control in the Third Millennium. London: Springer, 2012, 415–461
https://doi.org/10.1007/978-1-4471-2425-2_14
27 Brog?rdh T. Present and future robot control development—An industrial perspective. Annual Reviews in Control, 2007, 31(1): 69–79
https://doi.org/10.1016/j.arcontrol.2007.01.002
28 Brog?rdh T. Robot control overview: An industrial perspective. Modeling, Identification and Control, 2009, 30(3): 167–180
https://doi.org/10.4173/mic.2009.3.7
29 Khan M F, Iqbal J, Islam R U. Control strategies for robotic manipulators. In: 2012 International Conference on Robotics and Artificial Intelligence (ICRAI). Rawalpindi: IEEE, 2012, 26–33
https://doi.org/10.1109/ICRAI.2012.6413422
30 Craig J J. Introduction to Robotics. Addison-Wesley Reading, MA, 2006
31 Liang C, Ceccarelli M. Feasible workspace regions for general two-revolute manipulator. Frontiers of Mechanical Engineering, 2011, 6(4): 397–408
32 Islam R U, Iqbal J, Manzoor S, . An autonomous image—Guided robotic system simulating industrial applications. In: 2012 7th International Conference on System of Systems Engineering (SoSE). Genoa: IEEE, 2012, 344–349
https://doi.org/10.1109/SYSoSE.2012.6384195
33 Manzoor S, Islam R U, Khalid A, . An open-source multi-DOF articulated robotic educational platform for autonomous object manipulation. Robotics and Computer-integrated Manufacturing, 2014, 30(3): 351–362
https://doi.org/10.1016/j.rcim.2013.11.003
34 álvarez Chavarría J S, Jiménez Builes J A, Ramírez Pati?o J F. Design cycle of a robot for learning and the development of creativity in engineering. DYNA, 2011, 78(170): 51–58
35 Ajwad S A, Ullah M I, Islam R U, . Modeling robotic arms-A review and derivation of screw theory based kinematics. In: International Conference on Engineering & Emerging Technologies. Lahore, 2014, 66–69
36 Yime-Rodríguez E, Pe?a-Cortés C A, Rojas-Contreras W M. The dynamic model of a four control moment gyroscope system. DYNA, 2014, 81(185): 41–47
https://doi.org/10.15446/dyna.v81n185.35756
37 Márton L, Lantos B. Control of robotic systems with unknown friction and payload. IEEE Transactions on Control Systems Technology, 2011, 19(6): 1534–1539
https://doi.org/10.1109/TCST.2010.2086458
38 Iqbal J, Islam R U, Khan H. Modeling and analysis of a 6 DOF robotic arm manipulator. Canadian Journal on Electrical and Electronics Engineering, 2012, 3(6): 300–306
39 Iqbal J, un Nabi S R, Khan A A, . A novel track-drive mobile robotic framework for conducting projects on robotics and control systems. Journal of Life Science, 2013, 10(3): 130–137
40 Ajwad S A, Iqbal U, Iqbal J. Hardware realization and control of multi-degree of freedom articulated robotic arm. In: Emerging Trends and Applications in Information Communication Technologies, Communications in Computer and Information Science (CCIS). Berlin: Springer2015 (i<?Pub Caret?>n press)
41 Fei Y, Wu Q. Tracking control of robot manipulators via output feedback linearization. Frontiers of Mechanical Engineering in China, 2006, 1(3): 329–335
https://doi.org/10.1007/s11465-006-0034-y
42 Nagaraj B, Murugananth N. A comparative study of PID controller tuning using GA, EP, PSO and ACO. In: 2010 IEEE International Conference on Communication Control and Computing Technologies (ICCCCT). Ramanathapuram: IEEE, 2010, 305–313
https://doi.org/10.1109/ICCCCT.2010.5670571
43 Tan W, Liu J, Chen T, . Comparison of some well-known PID tuning formulas. Computers & Chemical Engineering, 2006, 30(9): 1416–1423
https://doi.org/10.1016/j.compchemeng.2006.04.001
44 Foley M W, Julien R H, Copeland B R. A comparison of PID controller tuning methods. Canadian Journal of Chemical Engineering, 2005, 83(4): 712–722
https://doi.org/10.1002/cjce.5450830412
45 Iqbal J, Tsagarakis N G, Caldwell D G. Human hand compatible underactuated exoskeleton robotic system. Electronics Letters, 2014, 50(7): 494–496
https://doi.org/10.1049/el.2014.0508
46 Iqbal J, Khan H, Tsagarakis N G, . A novel exoskeleton robotic system for hand rehabilitation—Conceptualization to prototyping. Biocybernetics and Biomedical Engineering, 2014, 34(2): 79–89
https://doi.org/10.1016/j.bbe.2014.01.003
47 Iqbal U, Samad A, Nissa Z, . Embedded control system for AUTAREP—A novel AUTonomous articulated robotic educational platform. Technical Gazette, 2014, 21(6): 1255–1261
48 Ajwad S, Ullah M, Baizid K, . A comprehensive state-of-the-art on control of industrial articulated robots. Journal of the Balkan Tribological Association, 2014, 20(4): 499–521
49 Ullah M I, Ajwad S A, Islam R U, . Modeling and computed torque control of a 6 degree of freedom robotic arm. In: 2014 International Conference on Robotics & Emerging Allied Technologies in Engineering (iCREATE). Islamabad: IEEE, 2014, 133–138
https://doi.org/10.1109/iCREATE.2014.6828353
50 Piltan F, Sulaiman N, Jalali A, . Design of model free adaptive fuzzy computed torque controller: Applied to nonlinear second order system. International Journal of Robotics and Automation, 2011, 2(4): 232–244
51 Sharkawy A B, Othman M M, Khalil A M A. A robust fuzzy tracking control scheme for robotic manipulators with experimental verification. Intelligent Control and Automation, 2011, 2(2): 100–111
https://doi.org/10.4236/ica.2011.22012
52 Chen Y, Ma G, Lin S, . Adaptive fuzzy computed-torque control for robot manipulator with uncertain dynamics. International Journal of Advanced Robotic Systems, 2012, 9: 237–245
https://doi.org/10.5772/54643
53 Leines M T, Yang J S. LQR control of an under actuated planar biped robot. In: 2011 6th IEEE Conference on Industrial Electronics and Applications (ICIEA). Beijing: IEEE, 2011, 1684–1689
https://doi.org/10.1109/ICIEA.2011.5975861
54 Simmons G, Demiris Y. Optimal robot arm control using the minimum variance model. Journal of Robotic Systems, 2005, 22(11): 677–690
https://doi.org/10.1002/rob.20092
55 Islam R U, Iqbal J, Khan Q. Design and comparison of two control strategies for multi-DOF articulated robotic arm manipulator. Control Engineering and Applied Informatics, 2014, 16(2): 28–39
56 Wai R J, Muthusamy R. Fuzzy-neural-network inherited sliding-mode control for robot manipulator including actuator dynamics. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(2): 274–287
https://doi.org/10.1109/TNNLS.2012.2228230
57 Nabaee A R, Piltan F, Ebrahimi M M, . Design intelligent robust partly linear term SMC for robot manipulator systems. International Journal of Intelligent Systems and Applications, 2014, 6: 58–71
https://doi.org/10.5815/ijisa.2014.06.07
58 Hacioglu Y, Arslan Y Z, Yagiz N. MIMO fuzzy sliding mode controlled dual arm robot in load transportation. Journal of the Franklin Institute, 2011, 348(8): 1886–1902
https://doi.org/10.1016/j.jfranklin.2011.05.009
59 Corradini M L, Fossi V, Giantomassi A, . Discrete time sliding mode control of robotic manipulators: Development and experimental validation. Control Engineering Practice, 2012, 20(8): 816–822
https://doi.org/10.1016/j.conengprac.2012.04.005
60 Laghrouche S, Mehmood A, Bagdouri M E. Study of the nonlinear control techniques for single acting VGT pneumatic actuator. International Journal of Vehicle Design, 2012, 60(3/4): 264–285
https://doi.org/10.1504/IJVD.2012.050084
61 Camacho E F, Alba C B. Model Predictive Control. Springer, 2013
62 Wang L. Model Predictive Control System Design and Implementation Using MATLAB?. London: Springer, 2009
https://doi.org/10.1007/978-1-84882-331-0
63 Henmi T, Deng M, Inoue A. Adaptive control of a two-link planar manipulator using nonlinear model predictive control. In: 2010 International Conference on Mechatronics and Automation (ICMA). Xi’an: IEEE, 2010, 1868–1873
https://doi.org/10.1109/ICMA.2010.5588869
64 Mazdarani H, Farrokhi M. Adaptive neuro-predictive control of robot manipulators in work space. In: 2012 17th International Conference on Methods and Models in Automation and Robotics (MMAR). Miedzyzdrojie: IEEE, 2012, 349–354
https://doi.org/10.1109/MMAR.2012.6347864
65 Rojas–Moreno A, Valdivia–Mallqui R. Embedded position control system of a manipulator using a robust nonlinear predictive control. In: 2013 16th International Conference on Advanced Robotics (ICAR). Montevideo: IEEE, 2013, 1–6
https://doi.org/10.1109/ICAR.2013.6766581
66 Copot C, Lazar C, Burlacu A. Predictive control of nonlinear visual servoing systems using image moments. IET Control Theory & Applications, 2012, 6(10): 1486–1496
https://doi.org/10.1049/iet-cta.2011.0118
67 Wang L, Chai S, Rogers E, . Multivariable repetitive-predictive controllers using frequency decomposition. IEEE Transactions on Control Systems Technology, 2012, 20(6): 1597–1604
https://doi.org/10.1109/TCST.2011.2171486
68 Gu D W. Robust Control Design with MATLAB?. London: Springer, 2005
https://doi.org/10.1007/978-1-4471-4682-7
69 Montano O E, Orlov Y. Discontinuous H. ∞-control of mechanical manipulators with frictional joints. In: 2012 9th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE). Mexico City: IEEE, 2012, 1–6
https://doi.org/10.1109/ICEEE.2012.6421187
70 Chen C. Robust self-organizing neural-fuzzy control with uncertainty observer for MIMO nonlinear systems. IEEE Transactions on Fuzzy Systems, 2011, 19(4): 694–706
https://doi.org/10.1109/TFUZZ.2011.2136349
71 Siqueira A A G, Terra M H. Mixed model-based/neural network H∞ impedance control of constrained manipulators. In: IEEE International Conference on Control and Automation (ICCA). Christchurch: IEEE, 2009, 1901–1906
https://doi.org/10.1109/ICCA.2009.5410348
72 Yang Z, Fukushima Y, Qin P. Decentralized adaptive robust control of robot manipulators using disturbance observers. IEEE Transactions on Control Systems Technology, 2012, 20(5): 1357–1365
https://doi.org/10.1109/TCST.2011.2164076
73 Kim Y, Seok J, Noh I, . An adaptive disturbance observer for a two-link robot manipulator. In: International Conference on Control, Automation and Systems (ICCAS). Seoul: IEEE, 2008, 141–145
https://doi.org/10.1109/ICCAS.2008.4694540
74 He Z, Xie W. Improved disturbance observer based control structure. In: Chinese Control and Decision Conference (CCDC). Guilin: IEEE, 2009, 1015–1020
https://doi.org/10.1109/CCDC.2009.5191579
75 Parsa M, Farrokhi M. Robust nonlinear model predictive trajectory free control of biped robots based on nonlinear disturbance observer. In: 2010 18th Iranian Conference on Electrical Engineering (ICEE). Isfahan: IEEE, 2010, 617–622
https://doi.org/10.1109/IRANIANCEE.2010.5506996
76 Mohammadi A, Tavakoli M, Marquez H. Disturbance observer-based control of non-linear haptic teleoperation systems. IET Control Theory & Applications, 2011, 5(18): 2063–2074
https://doi.org/10.1049/iet-cta.2010.0517
77 Mohammadi A, Marquez H J, Tavakoli M. Disturbance observer-based trajectory following control of nonlinear robotic manipulators. In: Proceedings of the 23rd Canadian Congress of Applied Mechanics. 2011
78 Mohammadi A, Tavakoli M, Marquez H, . Nonlinear disturbance observer design for robotic manipulators. Control Engineering Practice, 2013, 21(3): 253–267
https://doi.org/10.1016/j.conengprac.2012.10.008
79 Laghrouche S, Ahmed F S, Mehmood A. Pressure and friction observer-based backstepping control for a VGT pneumatic actuator. IEEE Transactions on Control Systems Technology, 2014, 22(2): 456–467
https://doi.org/10.1109/TCST.2013.2258466
80 Arimoto S. Passivity-based control [robot dynamics]. In: IEEE International Conference on Robotics and Automation (ICRA) (Volume 1). San Francisco: IEEE, 2000, 227–232
https://doi.org/10.1109/ROBOT.2000.844063
81 Shibata T, Murakami T. A null space force control based on passivity in redundant manipulator. In: ICM2007 4th IEEE International Conference on Mechatronics. Kumamoto: IEEE, 2007, 1–6
https://doi.org/10.1109/ICMECH.2007.4280027
82 Ott C, Albu-Schaffer A, Kugi A, . On the passivity-based impedance control of flexible joint robots. IEEE Transactions on Robotics, 2008, 24(2): 416–429
https://doi.org/10.1109/TRO.2008.915438
83 Kawai H, Murao T, Sato R, . Passivity-based control for 2DOF robot manipulators with antagonistic bi-articular muscles. In: 2011 IEEE International Conference on Control Applications (CCA). Denver: IEEE, 2011, 1451–1456
https://doi.org/10.1109/CCA.2011.6044445
84 Foudil A, Hadia S. Passivity based control of a 3-DOF robot manipulator. In: International Conference on Communication, Computer & Power (ICCCP). Muscat, 2007, 56–59
85 Bouakrif F, Boukhetala D, Boudjema F. Passivity-based controller-observer for robot manipulators. In: 3rd International Conference on Information and Communication Technologies: From Theory to Applications. Damascus: IEEE, 2008, 1–5
https://doi.org/10.1109/ICTTA.2008.4530121
86 Landau I D, Lozano R, M’Saad M, . Adaptive Control: Algorithms, Analysis and Applications. London: Springer, 2011
https://doi.org/10.1007/978-0-85729-664-1
87 Sun T, Pei H, Pan Y, . Neural network-based sliding mode adaptive control for robot manipulators. Neurocomputing, 2011, 74(14-15): 2377–2384
https://doi.org/10.1016/j.neucom.2011.03.015
88 Aseltine J, Mancini A, Sarture C. A survey of adaptive control systems. IRE Transactions on Automatic Control. 1958, 6(1): 102–108
https://doi.org/10.1109/TAC.1958.1105168
89 ?str?m K J, Wittenmark B. On self tuning regulators. Automatica, 1973, 9(2): 185–199
https://doi.org/10.1016/0005-1098(73)90073-3
90 Slotine J J E, Li W. On the adaptive control of robot manipulators. International Journal of Robotics Research, 1987, 6(3): 49–59
https://doi.org/10.1177/027836498700600303
91 Lozano R, Brogliato B. Adaptive control of robot manipulators with flexible joints. IEEE Transactions on Automatic Control, 1992, 37(2): 174–181
https://doi.org/10.1109/9.121619
92 Huang S, Tan K K, Lee T H. Adaptive friction compensation using neural network approximations. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2000, 30(4): 551–557
https://doi.org/10.1109/5326.897081
93 Purwar S, Kar I N, Jha A N. Adaptive control of robot manipulators using fuzzy logic systems under actuator constraints. In: 2004 IEEE International Conference on Fuzzy Systems (Volume 3). IEEE, 2004, 1449–1454
https://doi.org/10.1109/FUZZY.2004.1375387
94 Schindele D, Aschemann H. Adaptive friction compensation based on the LuGre model for a pneumatic rodless cylinder. In: Industrial Electronics, 2009. IECON’09 35th Annual Conference of IEEE. Porto: IEEE, 2009, 1432–1437
https://doi.org/10.1109/IECON.2009.5414726
95 Garpinger O, H?gglund T, Cederqvist L. Software for PID design: Benefits and pitfalls. In: 2nd IFAC Conference on Advances in PID Control. Brescia, 2012, 2(1): 140–145
https://doi.org/10-3182/20120328-3-IT-3014.00024
96 Jara C A, Candelas F A, Gil P, . Ejs+EjsRL: An interactive tool for industrial robots simulation, computer vision and remote operation. Robotics and Autonomous Systems, 2011, 59(6): 389–401
https://doi.org/10.1016/j.robot.2011.02.002
97 Corke P I. A robotics toolbox for MATLAB. IEEE Robotics & Automation Magazine, 1996, 3(1): 24–32
https://doi.org/10.1109/100.486658
98 Corke P. Robotics, Vision and Control: Fundamental Algorithms in MATLAB. Berlin: Springer, 2011
99 Falconi R, Melchiorri C. Roboticad: An educational tool for robotics. In: Proceedings of the 17th IFAC World Congress. Korea, 2008, 9111–9116
https://doi.org/10.3182/20080706-5-KR-1001.01538
100 ?lajpah L. Integrated environment for modelling, simulation and control design for robotic manipulators. Journal of Intelligent & Robotic Systems, 2001, 32(2): 219–234
https://doi.org/10.1023/A:1013909415775
101 Maza J I, Ollero A. HEMERO: A MATLAB-Simulink toolbox for robotics. In: 1st Workshop on Robotics Education and Training. Germany, 2001, 43–50
102 Alsina P J. ROBOTLAB: A software for robot graphic simulation. Simpósio Brasileiro de Automa??o Inteligente, 1997, 465–470
103 Nethery J F, Spong M W. Robotica: A mathematica package for robot analysis. IEEE Robotics & Automation Magazine, 1994, 1(1): 13–20
https://doi.org/10.1109/100.296449
104 Dean-Leon E, Nair S, Knoll A. User friendly Matlab-toolbox for symbolic robot dynamic modeling used for control design. In: 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO). Guangzhou: IEEE, 2012, 2181–2188
https://doi.org/10.1109/ROBIO.2012.6491292
105 Rohmer E, Singh S P, Freese M. V-REP: A versatile and scalable robot simulation framework. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Tokyo: IEEE, 2013, 1321–1326
https://doi.org/10.1109/IROS.2013.6696520
106 Breijs A, Klaassens B, Babuska R. Matlab design environment for robotic manipulators. In: 16th IFAC World Congress. Prague, 2005, 1331–1336
107 Shah S V, Nandihal P V, Saha S K. Recursive dynamics simulator (ReDySim): A multibody dynamics solver. Theoretical and Applied Mechanics Letters, 2012, 2: 063011
https://doi.org/10.1063/2.1206311
108 Ferreira N F, Machado J T. RobLib: An educational program for robotics. In: Symposium on Robot Control (SYROCO). Vienna, 2000, 563–568
109 Arm6x Manual. Concurrent Dynamics International, 2014
110 Fueanggan S, Chokchaitam S. Dynamics and kinematics simulation for robots. In: International Association of Computer Science and Information Technology—Spring Conference. Singapore: IEEE, 2009, 136–140
https://doi.org/10.1109/IACSIT-SC.2009.95
[1] Jianyong YAO. Model-based nonlinear control of hydraulic servo systems: Challenges, developments and perspectives[J]. Front. Mech. Eng., 2018, 13(2): 179-210.
[2] Dan ZHANG,Bin WEI. Convergence performance comparisons of PID, MRAC, and PID+MRAC hybrid controller[J]. Front. Mech. Eng., 2016, 11(2): 213-217.
[3] Jie LIU,Youmin HU,Bo WU,Kaibo ZHOU,Mingfeng GE. An adaptive sliding mode control technology for weld seam tracking[J]. Front. Mech. Eng., 2015, 10(1): 95-101.
[4] M. H. KORAYEM, H. N. RAHIMI. Nonlinear dynamic analysis for elastic robotic arms[J]. Front Mech Eng, 2011, 6(2): 219-228.
[5] Guilin YANG, Shabbir Kurbanhusen MUSTAFA, Song Huat YEO, Wei LIN, Wen Bin LIM. Kinematic design of an anthropomimetic 7-DOF cable-driven robotic arm[J]. Front Mech Eng, 2011, 6(1): 45-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed