Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2015, Vol. 10 Issue (1) : 95-101    https://doi.org/10.1007/s11465-015-0332-3
RESEARCH ARTICLE
An adaptive sliding mode control technology for weld seam tracking
Jie LIU1,Youmin HU1,Bo WU1,*(),Kaibo ZHOU2,Mingfeng GE2
1. State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
2. School of Automation, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(509 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A novel adaptive sliding mode control algorithm is derived to deal with seam tracking control problem of welding robotic manipulator, during the process of large-scale structure component welding. The proposed algorithm does not require the precise dynamic model, and is more practical. Its robustness is verified by the Lyapunov stability theory. The analytical results show that the proposed algorithm enables better high-precision tracking performance with chattering-free than traditional sliding mode control algorithm under various disturbances.

Keywords weld seam tracking      welding robotic manipulator      adaptive control      sliding mode control     
Corresponding Author(s): Bo WU   
Issue Date: 01 April 2015
 Cite this article:   
Jie LIU,Youmin HU,Bo WU, et al. An adaptive sliding mode control technology for weld seam tracking[J]. Front. Mech. Eng., 2015, 10(1): 95-101.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-015-0332-3
https://academic.hep.com.cn/fme/EN/Y2015/V10/I1/95
Fig.1  Manual welding is still dominated and adopted (provided by Weihua Group in Henan, China)
Fig.2  Block diagram of the proposed adaptive sliding mode controller
Fig.3  A 3-link robot manipulator
i Parameter
mi/kga) li/mb) ri/mc)
1 0.5 1.0 0.5
2 1.5 1.0 0.5
3 1.3 1.0 0.5
Tab.1  Robotic manipulator parameter values
i Parameter
qi(0)a) q ˙ i b)
1 8.0 8.0
2 –9.0 –9.0
3 1.5 1.5
Tab.2  Initial conditions of the robotic manipulator
Fig.4  Position tracking error. (a) Traditional adaptive sliding mode control (α=0); (b) proposed adaptive sliding mode control (α≠0)
Fig.5  Position velocity tracking error. (a) Traditional adaptive sliding mode control (α=0); (b) proposed adaptive sliding mode control (α≠0)
1 Chen S, Lv N. Research evolution on intelligentized technologies for arc welding process. Journal of Manufacturing Processes, 2014, 16(1): 109–122
https://doi.org/10.1016/j.jmapro.2013.07.002
2 Antonelli G, Chiaverini S, Fusco G. A new on-line algorithm for inverse kinematics of robot manipulators ensuring path tracking capability under joint limits. IEEE Transactions on Robotics and Automation, 2003, 19(1): 162–167
https://doi.org/10.1109/TRA.2002.807543
3 Ho H, Wong Y, Rad A B. Robust fuzzy tracking control for robotic manipulators. Simulation Modelling Practice and Theory, 2007, 15(7): 801–816
https://doi.org/10.1016/j.simpat.2007.04.008
4 Craig J J. Introduction to Robotics: Mechanics and Control. 2nd ed. Wokingham: Addison-Wisley, 1989
5 Ruderman M. Tracking control of motor drives using feedforward friction observer. IEEE Transactions on Industrial Electronics, 2014, 61(7): 3727–3735
https://doi.org/10.1109/TIE.2013.2264786
6 Slotine J E, Li W. On the adaptive control of robot manipulators. International Journal of Robotics Research, 1987, 6(3): 49–59
https://doi.org/10.1177/027836498700600303
7 Cao Y, Ren W. Distributed coordinated tracking with reduced interaction via a variable structure approach. IEEE Transactions on Automatic Control, 2012, 57(1): 33–48
https://doi.org/10.1109/TAC.2011.2146830
8 Yan Z, Wang J. Model predictive control for tracking of underactuated vessels based on recurrent neural networks. IEEE Journal of Oceanic Engineering, 2012, 37(4): 717–726
https://doi.org/10.1109/JOE.2012.2201797
9 Merchan-Cruz E A, Morris A S. Fuzzy-GA-based trajectory planner for robot manipulators sharing a common workspace. IEEE Transactions on Robotics, 2006, 22(4): 613–624
https://doi.org/10.1109/TRO.2006.878789
10 Guo Y, Woo P Y. Adaptive fuzzy sliding mode control for robotic manipulators. In: Proceedings of the 42nd IEEE Conference on Decision and Control. Hawaii: IEEE, 2003, 149–159
https://doi.org/10.1109/CDC.2003.1272940
11 Fu L. Robust adaptive decentralized control of robot manipulators. IEEE Transactions on Automatic Control, 1992, 37(1): 106–110
https://doi.org/10.1109/9.109643
12 Liu M. Decentralized control of robot manipulators: Nonlinear and adaptive approaches. IEEE Transactions on Automatic Control, 1992, 44(2): 357–363
https://doi.org/10.1109/9.746266
13 Islam S, Liu P. Robust adaptive fuzzy output feedback control system for robot manipulators. IEEE/ASME Transactions on Mechatronics, 2011, 16(2): 288–296
https://doi.org/10.1109/TMECH.2010.2041464
14 Wang X, Zhao J. Switched adaptive tracking control of robot manipulators with friction and changing loads. International Journal of Systems Science, 2015, 46(6): 955–965
https://doi.org/10.1080/00207721.2013.801098
15 Slotine J E, Li W. Applied Nonlinear Control. Englewood Cliffs: Prentice Hall, 1991
16 Ge M, Guan Z, Li T, Robust mode-free sliding mode control of multi-fingered hand with position synchronization in the task space. In: Proceedings of the 5th International Conference on Intelligent Robotics and Applications. Montreal: Springer, 2012, 571–580
https://doi.org/10.1007/978-3-642-33515-0_56
17 Hu Y, Liu J, Wu B, Seam tracking control of welding robotic manipulators based on adaptive chattering-free sliding-mode control technology. In: proceedings of the 11th International Conference of Informatics in Control, Automation and Robotics. Vienna: INSTICC, 2014, 417–420
https://doi.org/10.5220/0005055104170420
18 Slotine J E, Li W. Composite adaptive control of robot manipulators. Automatica, 1989, 25(4): 509–519
https://doi.org/10.1016/0005-1098(89)90094-0
19 Spong M W, Hutchinson S, Vidyasagar M. Robot Modeling and Control. New York: John Wiley & Sons, Inc, 2006
[1] Jianyong YAO. Model-based nonlinear control of hydraulic servo systems: Challenges, developments and perspectives[J]. Front. Mech. Eng., 2018, 13(2): 179-210.
[2] Dan ZHANG,Bin WEI. Convergence performance comparisons of PID, MRAC, and PID+MRAC hybrid controller[J]. Front. Mech. Eng., 2016, 11(2): 213-217.
[3] Syed Ali AJWAD,Jamshed IQBAL,Muhammad Imran ULLAH,Adeel MEHMOOD. A systematic review of current and emergent manipulator control approaches[J]. Front. Mech. Eng., 2015, 10(2): 198-210.
[4] ZHU Yu, JIA Songtao, CHEN Yaying, LI Guang. Electrorheological damper for the ultra-precision air bearing stage[J]. Front. Mech. Eng., 2008, 3(2): 158-163.
[5] FEI Yue-nong, Wu Qing-hua. Tracking control of robot manipulators via output feedback linearization[J]. Front. Mech. Eng., 2006, 1(3): 329-335.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed