|
|
Research on applications of piezoelectric materials in smart structures |
Jinhao QIU( ), Hongli JI |
Aeronautic Science Key Laboratory for Smart Materials and Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China |
|
|
Abstract Piezoelectric materials have become the most attractive functional materials for sensors and actuators in smart structures because they can directly convert mechanical energy to electrical energy and vise versa. They have excellent electromechanical coupling characteristics and excellent frequency response. In this article, some research activities on the applications of piezoelectric materials in smart structures, including semi-active vibration control based on synchronized switch damping using negative capacitance, energy harvesting using new electronic interfaces, structural health monitoring based on a new type of piezoelectric fibers with metal core, and active hysteresis control based on new modified Prandtl-Ishlinskii model at the Aeronautical Science Key Laboratory for Smart Materials and Structures, Nanjing University of Aeronautics and Astronautics are introduced.
|
Keywords
piezoelectric materials
vibration control
energy harvesting
structural health monitoring
piezoelectric hysteresis
|
Corresponding Author(s):
QIU Jinhao,Email:qiu@nuaa.edu.cn
|
Issue Date: 05 March 2011
|
|
1 |
Ji H L, Qiu J H, Zhu K J, Matsuta K. An improved system of active noise isolation using a self-sensing actuator and neural network. Journal of Vibration and Control , 2009, 15(12): 1853-1873 doi: 10.1177/1077546309102678
|
2 |
Guyomar D, Richard T, Richard C. Sound wave transmission reduction through a plate using piezoelectric synchronized switch damping technique. Journal of Intelligent Material Systems and Structures , 2007, 19(7): 791-803 doi: 10.1177/1045389X07081055
|
3 |
Lallart M, Harari S, Petit L, Guyomar D, Richard T, Richard C, Gaudiller L. Blind switch damping (BSD): A self-adaptive semi-active damping technique. Journal of Sound and Vibration , 2009, 328(1-2): 29-41 doi: 10.1016/j.jsv.2009.07.030
|
4 |
Badel A, Sebald G, Guyomar D, Lallart M, Lefeuvre E, Richard C, Qiu J H. Piezoelectric vibration control by synchronized switching on adaptive voltage sources: Towards wideband semi-active damping. Journal of the Acoustical Society of America , 2006, 119(5): 2815-2825 doi: 10.1121/1.2184149
|
5 |
Faiz A, Guyomar D, Petit L, Buttay C. Wave transmission reduction by a piezoelectric semi-passive technique. Sensors and Actuators , 2006, 128(2): 230-237 doi: 10.1016/j.sna.2006.02.021
|
6 |
Onoda J, Makihara K, Minesugi K. Energy-recycling semi-Active method for vibration suppression with piezoelectric transducers. AIAA Journal , 2003, 41(4): 711-719 doi: 10.2514/2.2002
|
7 |
Makihara K, Onoda J, Minesugi K. Behavior of piezoelectric transducer on energy-recycling semi-active vibration suppression. AIAA Journal , 2006, 44(2): 411-413 doi: 10.2514/1.9811
|
8 |
Lefeuvre E, Guyomar D, Petit L, Richard C, Badel A. Semi-passive structural damping by synchronized switching on voltage sources. Journal of Intelligent Material Systems and Structures , 2006, 17(8-9): 653-660 doi: 10.1177/1045389X06055810
|
9 |
Ji H L, Qiu J H, Badel A, Zhu K J. Semi-active vibration control of a composite beam using adaptive SSDV approach. Journal of Intelligent Material Systems and Structures , 2009, 20(3): 401-412
|
10 |
Ji H L, Qiu J H, Badel A, Chen Y S, Zhu K J. Semi-active vibration control of a composite beam by adaptive synchronized switching on voltage sources based on LMS algorithm. Journal of Intelligent Material Systems and Structures , 2009, 20(8): 939-947 doi: 10.1177/1045389X08099967
|
11 |
Behrens S, Fleming A J, Moheimani S O R. A broadband controller for shunt piezoelectric damping of structural vibration. Smart Materials and Structures , 2003, 12(1): 18-28 doi: 10.1088/0964-1726/12/1/303
|
12 |
Wu S Y, Calif A. U SPatent, 6,075,309
|
13 |
Lin Q R, Ermanni P. Semi-active damping of a clamped plate using PZT. International Journal of Solids and Structures , 2004, 41(7): 1741-1752 doi: 10.1016/j.ijsolstr.2003.11.023
|
14 |
Park C H, Park H C. Multiple-mode structural vibration control using negative capacitive shunt damping. KSME International Journal , 2003, 17(11): 1650-1658
|
15 |
Ji H L, Qiu J H, Chen J, Inman D. Application of a negative capacitance circuit in synchronized switch damping techniques for vibration suppression. Journal of Vibration and Acoustics, Transaction of the ASME, 2010 (in print)
|
16 |
Ji H L, Qiu J H, Badel A, Chen Y S, Zhu K J. Multimodal vibration control using a synchronized switch based on a displacement switching threshold. Smart Materials and Structures, 2009, 18(3): 035016 (9pp)
|
17 |
Ji H L, Qiu J H, Zhu K J, Badel A. Two-mode vibration control using nonlinear synchronized switching damping based on the maximization of converted energy. Journal of Sound and Vibration , 2010, 329(14): 2751-2767 doi: 10.1016/j.jsv.2010.01.012
|
18 |
Corr L R, Clark W W. A novel semi-active multi-modal vibration control law for a piezoceramic actuator. Journal of Vibration and Acoustics. Transactions of the ASME , 2003, 125(2): 214-222
|
19 |
Guyomar D, Badel A. Non-linear semi-passive multi-modal vibration damping: an efficient probabilistic approach. Journal of Sound and Vibration , 2006, 294(1-2): 249-268 doi: 10.1016/j.jsv.2005.11.010
|
20 |
Guyomar D, Richard C, Mohammadi S. Semi-passive random vibration control based on statistics. Journal of Sound and Vibration , 2007, 307(3-5): 818-833 doi: 10.1016/j.jsv.2007.07.008
|
21 |
Guyomar D, Badel A, Lefeuvre E, Richard C. Toward energy harvesting using active materials and conversion improvement by nonlinear processing. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control , 2005, 52(4): 584-595 doi: 10.1109/TUFFC.2005.1428041
|
22 |
Qiu J H, Jiang H, Ji H L, Zhu K J. A comparison between four piezoelectric energy harvesting circuits. Frontiers of Mechanical Engineering in China , 2009, 4(2): 153-159 doi: 10.1007/s11465-009-0031-z
|
23 |
Ji H L, Ma Y, Jiang H, Shen H, Qiu J H, Zhu K J. Modelling, simulation and optimization of high efficiency piezoelectric energy harvester. Optics and Precision Engineering , 2008, 16(12): 2346-2351
|
24 |
Lefeuvre E, Badel A, Richard C, Petit L, Guyomar D. A comparison between several vibration-powered piezoelectric generators for standalone systems. Sensors and Actuators. A, Physical , 2006, 126(2): 405-416 doi: 10.1016/j.sna.2005.10.043
|
25 |
Taylor G W, Burns J R, Kammann S M, Powers W B, Welsh T R. The energy harvesting eel: A small subsurface ocean/river power generator. IEEE Journal of Oceanic Engineering , 2001, 26(4): 539-547 doi: 10.1109/48.972090
|
26 |
Lallart M, Garbuio L, Petit L, Richard C, Guyomar D. Double synchronized switch harvesting (DSSH): a new energy harvesting scheme for efficient energy extraction. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control , 2008, 55(10): 2119-2130 doi: 10.1109/TUFFC.912
|
27 |
Shen H, Qiu J H, Ji H L, Zhu K J, Marco B. Enhanced synchronized switch harvesting: a new energy harvesting scheme for efficient energy extraction. Smart Materials and Structures, 2010, 19(11): 115017 (14pp)
|
28 |
Badel A, Qiu J H, Nakano T. Self-sensing force control of a piezoelectric actuator. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control , 2008, 55(12): 2571-2581 doi: 10.1109/TUFFC.2008.973
|
29 |
Jiang H, Ji H L, Qiu J H, Chen Y S. A modified prandtl-ishlinskii model for modeling asymmetric hysteresis of piezoelectric actuators. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control , 2010, 57(5): 1200-1210 doi: 10.1109/TUFFC.2010.1533
|
30 |
Chen Y S, Qiu J H, Ji H L, Zhu K J. Tracking control of piezoelectric actuator system using inverse hysteresis model. International Journal of Applied Electromagnetics and Mechanics , 2010, 33(3-4): 1555-1564
|
31 |
Brokate M, Kenmochi N. Hysteresis and Phase Transitions.Berlin, Germany: Springer-Verlag, 1996
|
32 |
Narendra K S, Annaswamy A M. Stable Adaptive Systems.Englewood Cliffs, NJ: Prentice-Hall, 1989
|
33 |
Qiu J H, Yamada N, Tani J, Takahashi H. Fabrication of piezoelectric fibers with metal core. In: Proc. SPIE Conference on Smart Structures and Materials, San Diego, CA, USA: SPIE, 2003, 475-483
|
34 |
Sato H, Sekiya T, Nagamine M. Design of the metal-core piezoelectric fiber. In: Proc. SPIE Conference on Smart Structures and Materials. Bellingham, WA: SPIE, 2004, 97-103
|
35 |
Liu J, Qiu J H, Chang W J, Ji H L, Zhu K J. Metal-core piezoelectric ceramic fiber rosettes for acousto-ultrasonic source localization in plate structures. International Journal of Applied Electromagnetics and Mechanics , 2010, 33(3-4): 865-873
|
36 |
Lemistre M, Balageas D. Structural health monitoring system based on diffracted Lamb wave analysis by multiresolution processing. Smart Materials and Structures , 2001, 10(3): 504-511 doi: 10.1088/0964-1726/10/3/312
|
37 |
Thursby G, Sorazu B, Betz D, Culshaw B. Novel methods of Lamb wave detection for material damage detection and location. In: Proceedings of the SPIE Smart Structures and Materials Conferences, San Diego, 2005, 5768: 313-322
|
38 |
Timoshenko S P, Goodier J N. Theory of Elasticity. Mc-Graw Hill, 1987
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|