Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front Mech Eng    2011, Vol. 6 Issue (1) : 99-117    https://doi.org/10.1007/s11465-011-0212-4
REVIEW ARTICLE
Research on applications of piezoelectric materials in smart structures
Jinhao QIU(), Hongli JI
Aeronautic Science Key Laboratory for Smart Materials and Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
 Download: PDF(915 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Piezoelectric materials have become the most attractive functional materials for sensors and actuators in smart structures because they can directly convert mechanical energy to electrical energy and vise versa. They have excellent electromechanical coupling characteristics and excellent frequency response. In this article, some research activities on the applications of piezoelectric materials in smart structures, including semi-active vibration control based on synchronized switch damping using negative capacitance, energy harvesting using new electronic interfaces, structural health monitoring based on a new type of piezoelectric fibers with metal core, and active hysteresis control based on new modified Prandtl-Ishlinskii model at the Aeronautical Science Key Laboratory for Smart Materials and Structures, Nanjing University of Aeronautics and Astronautics are introduced.

Keywords piezoelectric materials      vibration control      energy harvesting      structural health monitoring      piezoelectric hysteresis     
Corresponding Author(s): QIU Jinhao,Email:qiu@nuaa.edu.cn   
Issue Date: 05 March 2011
 Cite this article:   
Jinhao QIU,Hongli JI. Research on applications of piezoelectric materials in smart structures[J]. Front Mech Eng, 2011, 6(1): 99-117.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-011-0212-4
https://academic.hep.com.cn/fme/EN/Y2011/V6/I1/99
Fig.1  The principle of SSD technique
Fig.2  Principle of SSDNC technique. (a) Schematic of a SSDNC system; (b) equivalent circuit
Fig.3  The waveforms of the voltage on the PZT and the current in the circuit of SSDI and SSDNC
Fig.4  Beam with two piezoelectric patches
Fig.5  Control performance of first mode. (a) Time history of displacement using SSDNC; (b) time history of displacement using SSDI
Fig.6  Four electrical interfaces for energy harvesting. (a) Standard interface; (b) voltage double interface; (c) SECE interface; (d) SSHI interface
Fig.7  Energy extraction circuit for DSSH
Fig.8  Typical waveforms of the ESSH technique
Fig.9  Harvested energy normalized with respect to maximal harvested energy in the standard case for a constant vibration magnitude: a comparison with standard, DSSH and SECE technique (, , optimal value of ) for normalized resistor with respect to optimal resistor in the standard case
Fig.10  Normalized extracted energy in comparison with standard, DSSH and SECE technique (, optimal value of ) for a constant force magnitude
Fig.11  The typical hysteresis loop of a piezoelectric actuator
Fig.12  Transfer characteristic of an RSPO and LSPO
Fig.13  Experimental setup
Fig.14  Modeling error when = 9. (a)-(c) Displacement vs. time; (d)-(f) modeling error
Fig.15  Modeling error when = 19. (a)-(c) Displacement vs. time; (d)-(f) modeling error
Fig.16  MPF with geometrical reference for (a) full coated electrode and (b) half coated electrode
Fig.17  Lamb wave detection using an MPF together with the actuator signal and the signal received by a PZT
Fig.18  Configuration of experiment to evaluate directional sensitivity of the MPF
Fig.19  MPF directional characteristics
Fig.20  MPF signal for different orientation of the transducers with respect to fiber axis
Fig.21  Layout of MPF rosette
Fig.22  Layout of the sample and definition of a coordinate system
Fig.23  Experimental set-up
Fig.24  Actual and calculated acoustic source location
1 Ji H L, Qiu J H, Zhu K J, Matsuta K. An improved system of active noise isolation using a self-sensing actuator and neural network. Journal of Vibration and Control , 2009, 15(12): 1853-1873
doi: 10.1177/1077546309102678
2 Guyomar D, Richard T, Richard C. Sound wave transmission reduction through a plate using piezoelectric synchronized switch damping technique. Journal of Intelligent Material Systems and Structures , 2007, 19(7): 791-803
doi: 10.1177/1045389X07081055
3 Lallart M, Harari S, Petit L, Guyomar D, Richard T, Richard C, Gaudiller L. Blind switch damping (BSD): A self-adaptive semi-active damping technique. Journal of Sound and Vibration , 2009, 328(1-2): 29-41
doi: 10.1016/j.jsv.2009.07.030
4 Badel A, Sebald G, Guyomar D, Lallart M, Lefeuvre E, Richard C, Qiu J H. Piezoelectric vibration control by synchronized switching on adaptive voltage sources: Towards wideband semi-active damping. Journal of the Acoustical Society of America , 2006, 119(5): 2815-2825
doi: 10.1121/1.2184149
5 Faiz A, Guyomar D, Petit L, Buttay C. Wave transmission reduction by a piezoelectric semi-passive technique. Sensors and Actuators , 2006, 128(2): 230-237
doi: 10.1016/j.sna.2006.02.021
6 Onoda J, Makihara K, Minesugi K. Energy-recycling semi-Active method for vibration suppression with piezoelectric transducers. AIAA Journal , 2003, 41(4): 711-719
doi: 10.2514/2.2002
7 Makihara K, Onoda J, Minesugi K. Behavior of piezoelectric transducer on energy-recycling semi-active vibration suppression. AIAA Journal , 2006, 44(2): 411-413
doi: 10.2514/1.9811
8 Lefeuvre E, Guyomar D, Petit L, Richard C, Badel A. Semi-passive structural damping by synchronized switching on voltage sources. Journal of Intelligent Material Systems and Structures , 2006, 17(8-9): 653-660
doi: 10.1177/1045389X06055810
9 Ji H L, Qiu J H, Badel A, Zhu K J. Semi-active vibration control of a composite beam using adaptive SSDV approach. Journal of Intelligent Material Systems and Structures , 2009, 20(3): 401-412
10 Ji H L, Qiu J H, Badel A, Chen Y S, Zhu K J. Semi-active vibration control of a composite beam by adaptive synchronized switching on voltage sources based on LMS algorithm. Journal of Intelligent Material Systems and Structures , 2009, 20(8): 939-947
doi: 10.1177/1045389X08099967
11 Behrens S, Fleming A J, Moheimani S O R. A broadband controller for shunt piezoelectric damping of structural vibration. Smart Materials and Structures , 2003, 12(1): 18-28
doi: 10.1088/0964-1726/12/1/303
12 Wu S Y, Calif A. U SPatent, 6,075,309
13 Lin Q R, Ermanni P. Semi-active damping of a clamped plate using PZT. International Journal of Solids and Structures , 2004, 41(7): 1741-1752
doi: 10.1016/j.ijsolstr.2003.11.023
14 Park C H, Park H C. Multiple-mode structural vibration control using negative capacitive shunt damping. KSME International Journal , 2003, 17(11): 1650-1658
15 Ji H L, Qiu J H, Chen J, Inman D. Application of a negative capacitance circuit in synchronized switch damping techniques for vibration suppression. Journal of Vibration and Acoustics, Transaction of the ASME, 2010 (in print)
16 Ji H L, Qiu J H, Badel A, Chen Y S, Zhu K J. Multimodal vibration control using a synchronized switch based on a displacement switching threshold. Smart Materials and Structures, 2009, 18(3): 035016 (9pp)
17 Ji H L, Qiu J H, Zhu K J, Badel A. Two-mode vibration control using nonlinear synchronized switching damping based on the maximization of converted energy. Journal of Sound and Vibration , 2010, 329(14): 2751-2767
doi: 10.1016/j.jsv.2010.01.012
18 Corr L R, Clark W W. A novel semi-active multi-modal vibration control law for a piezoceramic actuator. Journal of Vibration and Acoustics. Transactions of the ASME , 2003, 125(2): 214-222
19 Guyomar D, Badel A. Non-linear semi-passive multi-modal vibration damping: an efficient probabilistic approach. Journal of Sound and Vibration , 2006, 294(1-2): 249-268
doi: 10.1016/j.jsv.2005.11.010
20 Guyomar D, Richard C, Mohammadi S. Semi-passive random vibration control based on statistics. Journal of Sound and Vibration , 2007, 307(3-5): 818-833
doi: 10.1016/j.jsv.2007.07.008
21 Guyomar D, Badel A, Lefeuvre E, Richard C. Toward energy harvesting using active materials and conversion improvement by nonlinear processing. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control , 2005, 52(4): 584-595
doi: 10.1109/TUFFC.2005.1428041
22 Qiu J H, Jiang H, Ji H L, Zhu K J. A comparison between four piezoelectric energy harvesting circuits. Frontiers of Mechanical Engineering in China , 2009, 4(2): 153-159
doi: 10.1007/s11465-009-0031-z
23 Ji H L, Ma Y, Jiang H, Shen H, Qiu J H, Zhu K J. Modelling, simulation and optimization of high efficiency piezoelectric energy harvester. Optics and Precision Engineering , 2008, 16(12): 2346-2351
24 Lefeuvre E, Badel A, Richard C, Petit L, Guyomar D. A comparison between several vibration-powered piezoelectric generators for standalone systems. Sensors and Actuators. A, Physical , 2006, 126(2): 405-416
doi: 10.1016/j.sna.2005.10.043
25 Taylor G W, Burns J R, Kammann S M, Powers W B, Welsh T R. The energy harvesting eel: A small subsurface ocean/river power generator. IEEE Journal of Oceanic Engineering , 2001, 26(4): 539-547
doi: 10.1109/48.972090
26 Lallart M, Garbuio L, Petit L, Richard C, Guyomar D. Double synchronized switch harvesting (DSSH): a new energy harvesting scheme for efficient energy extraction. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control , 2008, 55(10): 2119-2130
doi: 10.1109/TUFFC.912
27 Shen H, Qiu J H, Ji H L, Zhu K J, Marco B. Enhanced synchronized switch harvesting: a new energy harvesting scheme for efficient energy extraction. Smart Materials and Structures, 2010, 19(11): 115017 (14pp)
28 Badel A, Qiu J H, Nakano T. Self-sensing force control of a piezoelectric actuator. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control , 2008, 55(12): 2571-2581
doi: 10.1109/TUFFC.2008.973
29 Jiang H, Ji H L, Qiu J H, Chen Y S. A modified prandtl-ishlinskii model for modeling asymmetric hysteresis of piezoelectric actuators. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control , 2010, 57(5): 1200-1210
doi: 10.1109/TUFFC.2010.1533
30 Chen Y S, Qiu J H, Ji H L, Zhu K J. Tracking control of piezoelectric actuator system using inverse hysteresis model. International Journal of Applied Electromagnetics and Mechanics , 2010, 33(3-4): 1555-1564
31 Brokate M, Kenmochi N. Hysteresis and Phase Transitions.Berlin, Germany: Springer-Verlag, 1996
32 Narendra K S, Annaswamy A M. Stable Adaptive Systems.Englewood Cliffs, NJ: Prentice-Hall, 1989
33 Qiu J H, Yamada N, Tani J, Takahashi H. Fabrication of piezoelectric fibers with metal core. In: Proc. SPIE Conference on Smart Structures and Materials, San Diego, CA, USA: SPIE, 2003, 475-483
34 Sato H, Sekiya T, Nagamine M. Design of the metal-core piezoelectric fiber. In: Proc. SPIE Conference on Smart Structures and Materials. Bellingham, WA: SPIE, 2004, 97-103
35 Liu J, Qiu J H, Chang W J, Ji H L, Zhu K J. Metal-core piezoelectric ceramic fiber rosettes for acousto-ultrasonic source localization in plate structures. International Journal of Applied Electromagnetics and Mechanics , 2010, 33(3-4): 865-873
36 Lemistre M, Balageas D. Structural health monitoring system based on diffracted Lamb wave analysis by multiresolution processing. Smart Materials and Structures , 2001, 10(3): 504-511
doi: 10.1088/0964-1726/10/3/312
37 Thursby G, Sorazu B, Betz D, Culshaw B. Novel methods of Lamb wave detection for material damage detection and location. In: Proceedings of the SPIE Smart Structures and Materials Conferences, San Diego, 2005, 5768: 313-322
38 Timoshenko S P, Goodier J N. Theory of Elasticity. Mc-Graw Hill, 1987
[1] Tomoki SAKURAI, Shin MORISHITA. Seismic response reduction of a three-story building by an MR grease damper[J]. Front. Mech. Eng., 2017, 12(2): 224-233.
[2] Shinya SUGIYAMA, Tomoki SAKURAI, Shin MORISHITA. Vibration control of a structure using Magneto-Rheological grease damper[J]. Front Mech Eng, 2013, 8(3): 261-267.
[3] Jinxin LIU, Xuefeng CHEN, Zhengjia HE. Frequency domain active vibration control of a flexible plate based on neural networks[J]. Front Mech Eng, 2013, 8(2): 109-117.
[4] Junhong GUO, Zixing LU. Fracture behavior of two non-symmetrical collinear cracks emanating from an elliptical hole in a piezoelectric material[J]. Front Mech Eng, 2011, 6(3): 296-300.
[5] Kaori YUSE, Michael LALLART, Lionel PETIT, Claude RICHARD, Thomas MONNIER, Daniel GUYOMAR, . Self-powered structural health monitoring with nonlinear energy harvesting system[J]. Front. Mech. Eng., 2010, 5(1): 61-66.
[6] Dan WU, Zhichun YANG, Hao SUN, . Vibration control efficiency of piezoelectric shunt damping system[J]. Front. Mech. Eng., 2009, 4(4): 441-446.
[7] Lei QIU, Shenfang YUAN, . Low crosstalk switch unit for dense piezoelectric sensor networks[J]. Front. Mech. Eng., 2009, 4(4): 401-406.
[8] Jinhao QIU, Hongli JI, Kongjun ZHU. Semi-active vibration control using piezoelectric actuators in smart structures[J]. Front Mech Eng Chin, 2009, 4(3): 242-251.
[9] Jinhao Qiu, Hao Jiang, Hongli Ji, Kongjun ZHU. Comparison between four piezoelectric energy harvesting circuits[J]. Front Mech Eng Chin, 2009, 4(2): 153-159.
[10] F. ANSARI. Structural health monitoring with fiber optic sensors[J]. Front Mech Eng Chin, 2009, 4(2): 103-110.
[11] TANG Kehong, KAN Junwu, YANG Zhigang, CHENG Guangming, PENG Taijiang. Power performance of circular piezoelectric diaphragm generators[J]. Front. Mech. Eng., 2008, 3(4): 434-440.
[12] KAN Junwu, TANG Kehong, ZHAO Hongwei, SHAO Chenghui, ZHU Guoren. Performance analysis of piezoelectric bimorph generator[J]. Front. Mech. Eng., 2008, 3(2): 151-157.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed