Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2017, Vol. 12 Issue (2) : 224-233    https://doi.org/10.1007/s11465-017-0413-6
RESEARCH ARTICLE
Seismic response reduction of a three-story building by an MR grease damper
Tomoki SAKURAI1, Shin MORISHITA2()
1. Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama 240-8501, Japan
2. Environment and Information Sciences, Yokohama National University, Yokohama 240-8501, Japan
 Download: PDF(579 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper describes an application of magneto-rheological (MR) grease dampers as seismic dampers for a three-story steel structure. MR fluid is widely known as a smart material with rheological properties that can be varied by magnetic field strength. This material has been applied to various types of devices, such as dampers, clutches, and engine mounts. However, the ferromagnetic particles dispersed in MR fluid settle out of the suspension after a certain interval because of the density difference between the particles and their carrier fluid. To overcome this defect, we developed a new type of controllable working fluid using grease as the carrier of magnetic particles. MR grease was introduced into a cylindrical damper, and the seismic performance of the damper was subsequently studied via numerical analysis. The analysis results of the MR grease damper were compared with those of other seismic dampers. We confirmed that the MR grease damper is an effective seismic damper.

Keywords MR grease damper      seismic damper      vibration control      structural response      FEM analysis     
Corresponding Author(s): Shin MORISHITA   
Just Accepted Date: 14 December 2016   Online First Date: 09 January 2017    Issue Date: 19 June 2017
 Cite this article:   
Tomoki SAKURAI,Shin MORISHITA. Seismic response reduction of a three-story building by an MR grease damper[J]. Front. Mech. Eng., 2017, 12(2): 224-233.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-017-0413-6
https://academic.hep.com.cn/fme/EN/Y2017/V12/I2/224
Fig.1  Image of fibrous structure in grease taken with a phase contrast microscope [18]
Fig.2  Model of MR grease
Fig.3  Shear stress variation of MR grease under magnetic field
Fig.4  Schematic view of MR grease damper
ParameterValue
Stroke±24 mm
Capacity (force)6 N
Diameter of piston rod3 mm
Inner diameter of cylinder10 mm
Tab.1  Specification of MR grease damper (experimental model)
Fig.5  Force-displacement diagram of MR grease damper
Fig.6  FEM analysis model. (a) Model without MR grease damper; (b) model with MR grease damper
ParameterValue
Length (X-direction)6.0 m
Width (Y-direction)14.5 m
Height (Z-direction)19.5 m (2nd floor: 7.1 m, 3rd floor: 14.6 m)
Weight100 t
Tab.2  Specification of model structure (a three-story building)
ParameterValue
Stroke±150 mm
Capacity (force)100 kN
Diameter of piston rod50 mm
Inner diameter of cylinder200 mm
Tab.3  Specification of MR grease dampers (numerical model)
Fig.7  Modeled force-displacement diagram of MR grease dampers
Fig.8  JMA Kobe seismic wave (NS-direction)
Brace conditionNatural frequency/Hz
X-directionY-directionZ-direction
2F-side3F-sideCenter
No braces0.610.54?0.8314.64
With normal braces3.432.901.961.4815.40
With UB braces3.783.021.661.9015.62
With MR grease damper4.303.351.651.5915.40
Tab.4  Natural frequencies of typical mode
Fig.9  Mode shapes in the X-direction in the case with normal braces. (a) 2F-side mode (3.43 Hz); (b) 3F-side mode (2.90 Hz); (c) center mode (1.96 Hz)
Fig.10  Interlayer deformation angle (FEM analysis). (a) X-direction; (b) Y-direction
Fig.11  Damage situation in the X-direction. (a) Without braces; (b) with normal braces; (c) with UB braces; (d) with MR grease damper
Fig.12  Damage situation in the Y-direction. (a) Without braces; (b) with normal braces; (c) with UB braces; (d) with MR grease damper
Fig.13  Acceleration response spectrum of JMA Kobe (z=2%) in the X-direction
Fig.14  Acceleration response spectrum of JMA Kobe (z=2%) in the Y-direction
StoryBrace condition
X-directionY-direction
First storyMR grease damperMR grease damper
Second storyMR grease damperUB brace
Third storyNo braceNo brace
Tab.5  Types of braces or dampers in each story of the chosen application
Fig.15  Interlayer deformation angle (case of multiple devices). (a) X-direction; (b) Y-direction
1 Takahashi O. Development and construction of three-dimensional seismic isolation building. In: Proceedings of 13th Japan Earthquake Engineering Symposium. 2010, 442–449 (in Japanese)
2 Kato R, Fujita S, Minagawa K, et al.Vibration damping of thermal power plant boiler due to earthquake by using viscous-friction hybrid dampers. In: Proceedings of Japan Society of Mechanical Engineers, Dynamics and Design Conference. 2015, 310 (in Japanese)
3 Yamano S, Matsuoka T, Hiramoto K, et al.Fluid inertia damper using MR fluid that has a long spiral by-pass pipe. In: Proceedings of Japan Society of Mechanical Engineers, Dynamics and Design Conference. 2015, 339 (in Japanese)
4 Komatsuzaki T, Iwata Y. Design of a real-time adaptively tuned dynamic vibration absorber with a variable stiffness property using magnetorheological elastomer. Shock and Vibration, 2015,  2015(568): 1–11
5 Rabinow J.The magnetic fluid clutch. Transactions of American Institute of Electrical Engineers,  1948, 67(2): 1308–1315
https://doi.org/10.1109/EE.1948.6444497
6 Carlson J D, Catanzarite D M, St. Clair K A. Commercial magneto-rheological fluid devices. International Journal of Modern Physics B, 1996, 10(23n24): 2857–2865
https://doi.org/10.1142/S0217979296001306
7 Ahn Y K, Ahmadian M,Morishita S.On the design and development of a magneto-rheological mount. Vehicle System Dynamics,  1999, 32(2–3): 199–216
8 Sodeyama H, Suzuki K, Iwata N, et al.A study on design method of the bypass type MR damper. Transactions of the Japan Society of Mechanical Engineers, Series A, 2004, 70(691): 625–632 (in Japanese) 
https://doi.org/10.1299/kikaic.70.625
9 Ahn Y K, Ha J H, Kim Y H, et al.Dynamic properties of a squeeze-type mount using magnetorheological fluid. Proceedings of the Institution of Mechanical Engineers, Part K. Journal of Multi-Body Dynamics, 2005, 219(1): 27–34
10 Lee C H, Lee D W, Choi J Y, et al.Tribological characteristics modification of magnetorheological fluid.  Journal of Tribology, 2011, 133(3): 031801
11 Shiraishi T, Miida Y, Sugiyama S, et al.Typical characteristics of magnetorheological grease and its application to a controllable damper. Transactions of the Japan Society of Mechanical Engineers, Series A, 2011, 77(778): 2193–2200 (in Japanese) 
https://doi.org/10.1299/kikaic.77.2193
12 Jiang Z,Christenson R E.A fully dynamic magneto-rheological fluid damper model. Smart Materials and Structures, 2012, 21(6): 65002–65013
https://doi.org/10.1088/0964-1726/21/6/065002
13 Cha Y J, Agrawal A K,Dyke S J.Time delay effects on large-scale MR damper based semi-active control strategies. Smart Materials and Structures, 2013, 22(1): 015011
https://doi.org/10.1088/0964-1726/22/1/015011
14 Nagano Y,Nakagawa T, Suzuki K. A basic study for an elevator emergency stop device utilizing M.R. Fluid. In: Proceedings of the 15th International Conference on Electrical Machines and Systems. 2012, 1–4
15 Rahman M, Mahbubur Rashid M, Muthalif A G A, et al.Evaluation of different control policies of semi-active MR fluid damper of a quarter-car model, applied. Mechanics of Materials, 2012, 165: 310–315
https://doi.org/10.4028/www.scientific.net/AMM.165.310
16 Sugiyama S, Sakurai T, Morishita S. Vibration control of a structure using magneto-rheological grease damper. Frontiers of Mechanical Engineering, 2013, 8(3): 261–267
https://doi.org/10.1007/s11465-013-0268-4
17 Japan Society of Tribologist. Basic Knowledge of Grease and its Applications. Yokendo, 2007 (in Japanese)
18 Ohya Y, Miyamoto S, Morishita S, et al.Experimental study on visualization of grease flow. Journal of Japanese Society of Tribologists,  2011, 56(4): 248–255
[1] Shinya SUGIYAMA, Tomoki SAKURAI, Shin MORISHITA. Vibration control of a structure using Magneto-Rheological grease damper[J]. Front Mech Eng, 2013, 8(3): 261-267.
[2] Jinxin LIU, Xuefeng CHEN, Zhengjia HE. Frequency domain active vibration control of a flexible plate based on neural networks[J]. Front Mech Eng, 2013, 8(2): 109-117.
[3] Jinhao QIU, Hongli JI. Research on applications of piezoelectric materials in smart structures[J]. Front Mech Eng, 2011, 6(1): 99-117.
[4] Dan WU, Zhichun YANG, Hao SUN, . Vibration control efficiency of piezoelectric shunt damping system[J]. Front. Mech. Eng., 2009, 4(4): 441-446.
[5] Jinhao QIU, Hongli JI, Kongjun ZHU. Semi-active vibration control using piezoelectric actuators in smart structures[J]. Front Mech Eng Chin, 2009, 4(3): 242-251.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed