Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front Mech Eng    0, Vol. Issue () : 182-196    https://doi.org/10.1007/s11465-011-0221-3
RESEARCH ARTICLE
Stiffness analysis and experimental validation of robotic systems
Giuseppe CARBONE()
Laboratory of Robotics and Mechatronics, University of Cassino, 03043 Cassino (Fr), Italy
 Download: PDF(529 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Stiffness can be considered of primary importance in order to guarantee the successful use of any robotic system for a given task. Therefore, this paper proposes procedures for carrying out both numerical and experimental estimations of stiffness performance for multibody robotic systems. The proposed numerical procedure is based on models with lumped parameters for deriving the Cartesian stiffness matrix. Stiffness performance indices are also proposed for comparing stiffness performance. Then, an experimental procedure for the evaluation stiffness performance is proposed as based on a new measuring system named as Milli-CATRASYS (Milli Cassino Tracking System) and on a trilateration technique. Cases of study are reported to show the soundness and engineering feasibility of both the proposed numerical formulation for stiffness analysis and experimental validation of stiffness performance.

Keywords robotics      stiffness performance      numerical and experimental estimations     
Corresponding Author(s): CARBONE Giuseppe,Email:carbone@unicas.it   
Issue Date: 05 June 2011
 Cite this article:   
Giuseppe CARBONE. Stiffness analysis and experimental validation of robotic systems[J]. Front Mech Eng, 0, (): 182-196.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-011-0221-3
https://academic.hep.com.cn/fme/EN/Y0/V/I/182
Fig.1  Schemes of elastically compliant multibody robotic systems. (a) 2R serial manipulator; (b) planar parallel manipulator with three RPR legs
Fig.2  A flow-chart for the proposed numerical computation of stiffness performance
Fig.3  Scheme of Milli-CaTraSys. (a) With the reference frame, LVDTs and masses as applied to the wires (=1,…,6); (b) orientation of the end-effector through the angles , and
ak=ck/mmbk=dk/mmhk/mmrp=rf/mmαk/(o)
100100506545 : 135
Tab.1  Sizes of design parameters for CaPaMan 2bis
Fig.4  The CaPaMan 2bis. (a) Kinematic scheme; (b) prototype with Milli-CaTraSys set up at LARM in Cassino
Fig.5  A simplified stiffness model with lumped parameters of one leg of CaPaMan 2bis
Fig.6  Plots of the determinant of . (a) As function of ==; (b) parametrically as function of design parameters = (=1,2,3) when ===60o
ΔBoldItalicCaPaManBoldItalic=(1.0;1.0;1.0; 0.0;0.0;0.0)T (forces/N and torques/(N·m))
Δx/mm-0.0181×10-3
Δy/mm0.0132×10-3
Δz/mm0.0606×10-3
Δ?/(o)2.3084×10-3
Δψ/(o)0.0000×10-3
Δθ /(o)0.8613×10-3
Tab.2  Compliant displacements when ===45o
ΔBoldItalicCaPaManBoldItalic=(1.0;1.0;1.0; 0.0;0.0;0.0)T (forces/N and torques/(N·m))
Δx/mm-0.0982
Δy/mm0.0309
Δz/mm0.0357
Δ?/(o)5.7932
Δψ/(o)0.0000
Δθ/(o)1.8620
Tab.3  Maximum compliant displacements
Fig.7  Measured compliant displacements for a wrench given by m = m=m=m=m=m=0.03 kg when CaPaMan2bis is in its vertical configuration. (a) Δ; (b) Δ; (c) Δ; (d) Δ; (e) Δ; (f) Δ
Fig.8  WL-16RV biped locomotor. (a) Simplified kinematic scheme; (b) built prototype ascending stairs by carrying a human at Waseda University
Fig.9  Simplified stiffness model of WL-16RV
Fig.10  Displacements of point on right foot of WL-16RII (continuous line theoretical; continuous dotted line no load experiment; dotted line with waist locked). (a) -component; (b) -component; (c) -component
Fig.11  (a) Determinat of the stiffness matrix for WL-16RII biped locomotor versus time during a three steps forward walking motion; (b) a zoomed view
1 Rivin E I. Stiffness and Damping in Mechanical Design. New York: Marcel Dekker Inc., 1999
2 Nof S Y, ed. Handbook of Industrial Robotics, New York: John Wiley & Sons, 1985
3 Ceccarelli M. Fundamentals of Mechanics of Robotic Manipulation. Dordrecht: Kluwer Academic Publishers, 2004
4 Wikipedia, 2011. Stiffness. Available on-line at http://en.wikipedia.org/wiki/Stiffness
5 Pratt G A, Williamson M M, Dillworth P, Pratt J, Ulland K, Wright A. Stiffness isn’t everything. Preprints of the 4th International Symposium on Experimental Robotics ISER’95 , Stanford, 1995. Available on line at http://www.ai.mit.edu/projects/leglab/publications/ sitffness_isnt_everything.pdf
6 Tsumugiwa T, Yokogawa R, Hara K. Variable impedance control with virtual stiffness for human-robot cooperative peg-in-hole task. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots ans Systems IROS’02 , Lausanne, 2002, 1075-1081
7 Schimmels J M. Multidirectional compliance and constraint for improved robotic deburring. Part 1: Improved Positioning. Robotics and Computer-integrated Manufacturing , 2001, 17(4): 277-286
doi: 10.1016/S0736-5845(00)00059-4
8 English C E, Russell D. Mechanics and stiffness limitations of a variable stiffness actuator for use in prosthetic limbs. Mechanism and Machine Theory , 1999, 34(1): 7-25
doi: 10.1016/S0094-114X(98)00026-3
9 Gosselin C. Stiffness mapping for parallel manipulators. IEEE Transactions on Robotics and Automation , 1990, 6(3): 377-382
doi: 10.1109/70.56657
10 Tahmasebi F, Tsai L W. Jacobian and stiffness analysis of a novel class of six-DOF parallel minimanipulators. In: Proceedings of the ASME 22nd Biennial Mechanism Conference, Scottsdale , 1992, 47: 95-102
11 Kim H Y, Streit D A. Configuration dependent stiffness of the Puma 560 manipulator: analytical and experimental results. Mechanism and Machine Theory , 1995, 30(8): 1269-1277
doi: 10.1016/0094-114X(95)00017-S
12 Duffy J. Statics and Kinematics with Applications to Robotics. Cambridge: Cambridge University Press, 1996, 153-169 .
13 Pigoski T, Griffis M, Duffy J. Stiffness mappings employing different frames of reference. Mechanism and Machine Theory , 1998, 33(6): 825-838
doi: 10.1016/S0094-114X(97)00083-9
14 Tsai L W. Robot Analysis: the Mechanics of Serial and Parallel Manipulators. New York: John Wiley & Sons, 1999, 260-297
15 Ceccarelli M, Carbone G. A stiffness analysis for CaPaMan (Cassino Parallel Manipulator). Mechanism and Machine Theory , 2002, 37(5): 427-439
doi: 10.1016/S0094-114X(02)00006-X
16 Gosselin C M, Zhang D. Stiffness analysis of parallel mechanisms using a lumped model. International Journal of Robotics and Automation , 2002, 17(1): 17-27
17 Yoon W K, Suehiro T, Tsumaki Y, Uchiyama M. A method for analyzing parallel mechanism stiffness including elastic deformations in the structure. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems IROS’02, Lausanne , 2002, 2875-2880
18 Alici G, Shirinzadeh B. (2003). Exact stiffness analysis and mapping for a 3-SPS+S parallel manipulator. In: Proceedings of the 7th International Conference on Automation Technology AUTOMATION 2003, F120
19 Simaan N, Shoham M. Stiffness synthesis of a variable geometry six-degrees-of-freedom double planar parallel robot. International Journal of Robotics Research , 2003, 22(9): 757-775
doi: 10.1177/02783649030229005
20 Carbone G, Ceccarelli M. A stiffness analysis for a hybrid parallel-serial manipulator. Robotica. International Journal (Toronto, Ont.) , 2004, 22: 567-576
21 Ceccarelli M, Carbone G. Numerical and experimental analysis of the stiffness performance of parallel manipulators. 2nd International Colloquium Collaborative Research Centre 562, Braunschweig , 2005, 21-35
22 Lim H O, Setiawan S A, Takanishi A. Balance and impedance control for biped humanoid robot locomotion. In: Proceedings of IEEE 7RSJ International Conference on Intelligent Robots and Systems IROS 2001, Maui , 2001, 494-499
23 Svinin M M, Hosoe S, Uchiyama M, Luo Z W. On the stiffness and stiffness control of redundant manipulators. In: Proceedings of IEEE International Conference on Robotics & Automation ICRA 2002, Washington DC , 2002, 2393-2399
24 Chakarov D. Optimization synthesis of parallel manipulators with desired stiffness. Journal of Theoretical and Applied Mechanics , 1998, 28(4). Avaliable on-line at http://www.imbm.bas.bg/IMBM/LMS/Chakarov/TPM98.pdf
25 Liu X J, Jin Z L, Gao F. Optimum design of 3-DOF spherical parallel manipulators with respect to the conditioning and stiffness indices. Mechanism and Machine Theory , 2000, 35(9): 1257-1267
doi: 10.1016/S0094-114X(99)00072-5
26 Carbone G, Ceccarelli M, Ogura Y, Lim H O, Takanishi A. Numerical simulation for an optimum design of a humanoid leg through stiffness analysis. 3rd IEEE International Conference on Humanoid Robots HUMANOIDS, München and Karlsruhe , 2003, 3bWalking03
27 Carbone G, Ottaviano E, Ceccarelli M. An optimum design procedure for both serial and parallel manipulators. Journal of Mechanical Engineering Science , 2007, 221(7): 829-843
28 Huang S, Schimmels J M. The bounds and realization of spatial compliances achieved with simple springs connected in parallel. IEEE Transactions on Robotics and Automation , 2000, 14(3): 466-475
doi: 10.1109/70.678455
29 Zefran M, Kumar V. Affine connections for the cartesian stiffness matrix. In: Proceedings of the IEEE International Conference on Robotics and Automation ICRA’97, Albuquerque , 1997, 2:1376-1381
30 Howard S, Zefran M, Kumar V. On the 6×6 cartesian stiffness matrix for three-dimensional motions. Mechanism and Machine Theory , 1998, 33(4): 389-408
doi: 10.1016/S0094-114X(97)00040-2
31 Chen S F, Kao I. Geometrical method for modeling of asymmetric 6×6 cartesian stiffness matrix. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems IROS2000, Takamatsu , 2000, 1217-1222
32 Vaishnav R N, Magrab E B. A general procedure to evaluate robot positioning errors. International Journal of Robotics Research , 1987, 6(1): 59-74
doi: 10.1177/027836498700600105
33 American National Standards Institute. American National Standard for Industrial Robots and Robot Systems: Point-to-Point and Static Performance Characteristics - Evaluation. New York, 1990, 15.05-1-1990
34 UNI, Italian National Institute for Standards. Manipulating Industrial Robots: Performance Criteria and Related Test Methods. Milan, UNI EN , 1995, 29283 (= ISO 9283)
35 Kardestuncer H. Elementary Matrix Analysis of Structures. Tokyo: McGraw-Hill Kogakusha, 1974
36 Carbone G, Ceccarelli M. A comparison of indices for stiffness performance evaluation. Frontiers of Mechanical Engineering in China , 2010, 5(3): 270-278
doi: 10.1007/s11465-010-0023-z
37 Merlet J P. Parallel Robots. Dordrecht: Springer Verlag, 2006
38 Patterson T, Lipkin H. A classification of robot compliance. ASME Journal of Mechanical Design. , 1993, 115(3): 581-584
doi: 10.1115/1.2919229
39 Gosselin C, Angeles J. A global performance index for the kinematic optimization of robotic manipulators. Transaction of the ASME Journal of Mechanical Design. , 1991, 113(3): 220-226
doi: 10.1115/1.2912772
[1] Wuxiang ZHANG, Zhi WANG, Ke MA, Fei LIU, Pengzhi CHENG, Xilun DING. State of the art in movement around a remote point: a review of remote center of motion in robotics[J]. Front. Mech. Eng., 2024, 19(2): 14-.
[2] Giuseppe QUAGLIA,Zhe YIN. Static balancing of planar articulated robots[J]. Front. Mech. Eng., 2015, 10(4): 326-343.
[3] Yang LIU, Jing LIU. Surgical robotics: A look-back of latest advancement and bio-inspired ways to tackle existing challenges[J]. Front Mech Eng, 2012, 7(4): 376-384.
[4] Fabrizio SERGI, Dino ACCOTO, Nevio L. TAGLIAMONTE, Giorgio CARPINO, Eugenio GUGLIELMELLI. A systematic graph-based method for the kinematic synthesis of non-anthropomorphic wearable robots for the lower limbs[J]. Front Mech Eng, 2011, 6(1): 61-70.
[5] Giuseppe CARBONE, Marco CECCARELLI, . Comparison of indices for stiffness performance evaluation[J]. Front. Mech. Eng., 2010, 5(3): 270-278.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed