Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2014, Vol. 9 Issue (1) : 41-49    https://doi.org/10.1007/s11465-014-0284-z
RESEARCH ARTICLE
Thermal buckling behavior of laminated composite plates: a finite-element study
Houdayfa OUNIS(),Abdelouahab TATI(),Adel BENCHABANE()
Laboratoire de Génie Energétique et Matériaux (LGEM), Université de Biskra, B.P. 145, Biskra 07000, Algeria
 Download: PDF(349 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, the thermal buckling behavior of composite laminated plates under a uniform temperature distribution is studied. A finite element of four nodes and 32 degrees of freedom (DOF), previously developed for the bending and mechanical buckling of laminated composite plates, is extended to investigate the thermal buckling behavior of laminated composite plates. Based upon the classical plate theory, the present finite element is a combination of a linear isoparametric membrane element and a high precision rectangular Hermitian element. The numerical implementation of the present finite element allowed the comparison of the numerical obtained results with results obtained from the literature: 1) with element of the same order, 2) the first order shear deformation theory, 3) the high order shear deformation theory and 4) the three-dimensional solution. It was found that the obtained results were very close to the reference results and the proposed element offers a good convergence speed. Furthermore, a parametrical study was also conducted to investigate the effect of the anisotropy of composite materials on the critical buckling temperature of laminated plates. The study showed that: 1) the critical buckling temperature generally decreases with the increasing of the modulus ratio EL/ET and thermal expansion ratio αT/αL, and 2) the boundary conditions and the orientation angles significantly affect the critical buckling temperature of laminated plates.

Keywords thermal buckling      laminated composite plates      anisotropy      critical buckling temperature      finite-element method      high precision rectangular Hermitian element     
Corresponding Author(s): Adel BENCHABANE   
Issue Date: 16 May 2014
 Cite this article:   
Houdayfa OUNIS,Abdelouahab TATI,Adel BENCHABANE. Thermal buckling behavior of laminated composite plates: a finite-element study[J]. Front. Mech. Eng., 2014, 9(1): 41-49.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-014-0284-z
https://academic.hep.com.cn/fme/EN/Y2014/V9/I1/41
FEM theoryFE detailsNo. nodesDOFReferences
CPThigh-precision triangular354[29]
Semiloof shell432[30]
Hermitian448[31-33]
Lagrangian412[34]
FSDTshear locking free315[21]
plate bending440[20]
serendipity840[6,7]
Lagrangian840[22,23]
Lagrangian945[8,14,16,17]
penalty plate bending945[13,15]
Lagrangian1680[19]
mixed formulation-13[9-12]
HSDTglobal-local shear deformation theory3-[27]
-864[24,25]
without transverse normal deformation981[26]
with transverse normal deformation999[26]
Lagrangian16144[19]
LWTLagrangian--[35]
Hermitian4-[36]
Lagrangian--[37]
mixed interpolation of tensorial components (MITC)4-[38]
Tab.1  Finite elements used to study the thermal buckling behavior of laminated composite plates
Fig.1  Geometry and coordinate systems of rectangular laminated composite plate
boundary conditionsabbreviationsrestrained edges
simply supportedSSSSu=w=wy=0, x=±a2, v=w=wx=0, y=±b2
ClampedCCCCu=v=w=wx=wy=2wxy=2wx2=2wy2=0
clamped-simply supportedCSCSclamped at x=±a2, simply supported at y=±b2
clamped-freeCFCFclamped at x=±a2, free at y=±b2
simply supported-freeSFSFsimply supported at x=±a2, free at y=±b2
Tab.2  Boundary conditions used in this paper
Matsunaga [41]Noor and Burton [42]Zhao et al. [40](mesh-free,5)*Shiau et al. [29](3,6)*present(4,8)*
0.12640.12640.1284 (16 × 16)0.1266 (2 × 2)0.1272 (2 × 2)
0.1273 (18 × 18)0.1265 (4 × 4)0.1265 (4 × 4)
0.1271 (20 × 20)0.1265 (6 × 6)0.1265 (6 × 6)
Tab.3  Minimum critical temperature parameter αT × 10-3 of the simply supported isotropic plate (a/b = 1, a/h = 100, α0 = 1.0 × 10-6, E = 1.0 × 10-6, v = 0.3)
Shi et al. [39](4,6) *Shiau et al. [29](3,6) *present(4,8) *
[0/90/90/0]s--12.26 (12 × 12)12.2616 (4 × 4)12.2610 (8 × 8)12.2610 (12 × 12)12.2716 (4 × 4)12.2617 (8 × 8)12.2612 (12 × 12)
[0/45/-45/90]s--13.71 (12 × 12)13.7744 (4 × 4)13.7582 (8 × 8)13.7519 (12 × 12)13.7388 (4 × 4)13.7354 (8 × 8)13.7357 (12 × 12)
Tab.4  Critical buckling temperature of simply supported composite laminated plates
ΔTcr
15°30°45°
present0.7486 × 10-30.1133 × 10-20.1540 × 10-20.1720 × 10-2
Noor and Burton [42]0.7463 × 10-30.1115 × 10-20.1502 × 10-20.1674 × 10-2
err/%0,301,612,522,74
Tab.5  Minimum critical buckling temperature of simply supported angle-ply composite plates
Fig.2  Critical buckling temperature (∆Tcr) vs. modulus ratio EL/ET for (a) CCCC and (b) SSSS boundary conditions
Fig.3  Critical buckling temperature (∆Tcr) vs. modulus ratio EL/ET for (a) CSCS and (b) CFCF boundary conditions
Fig.4  Critical buckling temperature (∆Tcr) vs. modulus ratio EL/ET for SFSF boundary condition
Fig.5  Critical buckling temperature (∆Tcr) vs. thermal expansion ratio αT / αL for CCCC and SSSS boundary conditions
Fig.6  Critical buckling temperature (∆Tcr) vs. thermal expansion ratio αT/αL for (a) CSCS and (b) CFCF boundary conditions
Fig.7  Critical buckling temperature (∆Tcr) vs. thermal expansion ratio αTL for SFSF boundary condition
1 GillS, GuptaM, SatsangiP S. Prediction of cutting forces in machining of unidirectional glass fiber reinforced plastics composite. Frontiers of Mechanical Engineering, 2013, 8(2): 187-200
doi: 10.1007/s11465-013-0262-x
2 ThorntonE A. Thermal Structures for Aerospace Applications. Reston, VA: AIAA, 1996
3 JonesR M. Buckling of Bars, Plates, and Shells. Blacksburg Virginia: Bull Ridge Publishing, 2006
4 TatiA, AbibsiA. Un element fini pour la flexion et le flambage des plaques minces stratifiees en materiaux composites. Revue Des Composites Et Des Materiaux Avances, 2007, 17(3): 279-296
doi: 10.3166/rcma.17.279-296
5 ZhangY X, YangC H. Recent developments in finite element analysis for laminated composite plates. Composite Structures, 2009, 88(1): 147-157
doi: 10.1016/j.compstruct.2008.02.014
6 ChenW J, LinP D, ChenL W. Thermal buckling behavior of thick composite laminated plates under nonuniform temperature distribution. Computers & Structures, 1991, 41(4): 637-645
doi: 10.1016/0045-7949(91)90176-M
7 ChenW J, LinP D, ChenL W. Thermal buckling behaviour of composite laminated plates with a circular hole. Composite Structures, 1991, 18(4): 379-397
doi: 10.1016/0263-8223(91)90005-J
8 HuangN N, TauchertT R. Thermal buckling of clamped symmetric laminated plates. Thin-walled Structures, 1992, 13(4): 259-273
doi: 10.1016/0263-8231(92)90024-Q
9 NoorA K, PetersJ M. Thermomechanical buckling of multilayered composite plates. Journal of Engineering Mechanics, 1992, 118(2): 351-366
doi: 10.1061/(ASCE)0733-9399(1992)118:2(351)
10 NoorA K, PetersJ M. Finite element buckling and postbuckling solutions for multilayered composite panels. Finite Elements in Analysis and Design, 1994, 15(4): 343-367
doi: 10.1016/0168-874X(94)90026-4
11 NoorA K, StarnesJ H, PetersJ M. Thermomechanical buckling of multilayered composite panels with cutouts. AIAA Journal, 1994, 32(7): 1507-1519
doi: 10.2514/3.12222
12 NoorA K, StarnesJ H Jr, PetersJ M. Thermomechanical buckling and postbuckling of multilayered composite panels. Composite Structures, 1993, 23(3): 233-251
doi: 10.1016/0263-8223(93)90225-F
13 ChandrashekharaK. Thermal buckling of laminated plates using a shear flexible finite element. Finite Elements in Analysis and Design, 1992, 12(1): 51-61
doi: 10.1016/0168-874X(92)90006-X
14 PrabhuM R, DhanarajR. Thermal buckling of laminated composite plates. Computers & Structures, 1994, 53(5): 1193-1204
doi: 10.1016/0045-7949(94)90166-X
15 LeeY S, LeeY W, YangM S, ParkB S. Optimal design of thick laminated composite plates for maximum thermal buckling load. Journal of Thermal Stresses, 1999, 22(3): 259-273
doi: 10.1080/014957399280869
16 TopalU, UzmanÜ. Thermal buckling load optimization of laminated composite plates. Thin-walled Structures, 2008, 46(6): 667-675
doi: 10.1016/j.tws.2007.11.005
17 TopalU, UzmanÜ. Thermal buckling load optimization of laminated skew plates. Materials & Design, 2009, 30(7): 2569-2575
doi: 10.1016/j.matdes.2008.09.025
18 WalkerM, ReissT, AdaliS, VerijenkoV E. Optimal design of symmetrically laminated plates for maximum buckling temperature. Journal of Thermal Stresses, 1997, 20(1): 21-33
doi: 10.1080/01495739708956089
19 KantT, BabuC S. Thermal buckling analysis of skew fibre-reinforced composite and sandwich plates using shear deformable finite element models. Composite Structures, 2000, 49(1): 77-85
doi: 10.1016/S0263-8223(99)00127-0
20 SinghaM K, RamachandraL, BandyopadhyayJ. Stability and strength of composite skew plates under thermomechanical loads. AIAA Journal, 2001, 39(8): 1618-1623
doi: 10.2514/2.1489
21 KabirH R H, AskarH, ChaudhuriR A. Thermal buckling response of shear flexible laminated anisotropic plates using a three-node isoparametric element. Composite Structures, 2003, 59(2): 173-187
doi: 10.1016/S0263-8223(02)00237-4
22 ŞahinÖ S. Thermal buckling of hybrid angle-ply laminated composite plates with a hole. Composites Science and Technology, 2005, 65(11-12): 1780-1790
23 AvciA, KayaS, DaghanB. Thermal buckling of rectangular laminated plates with a hole. Journal of Reinforced Plastics and Composites, 2005, 24(3): 259-272
doi: 10.1177/1731684405043554
24 ChangJ S. FEM analysis of buckling and thermal buckling of antisymmetric angle-ply laminates according to transverse shear and normal deformable high order displacement theory. Computers & Structures, 1990, 37(6): 925-946
doi: 10.1016/0045-7949(90)90006-N
25 ChangJ S, ShiaoF J. Thermal buckling analysis of isotropic and composite plates with a hole. Journal of Thermal Stresses, 1990, 13(3): 315-332
doi: 10.1080/01495739008927040
26 BabuC S, KantT. Refined higher order finite element models for thermal buckling of laminated composite and sandwich plates. Journal of Thermal Stresses, 2000, 23(2): 111-130
doi: 10.1080/014957300280489
27 WuZ, ChenW. Thermomechanical buckling of laminated composite and sandwich plates using global–local higher order theory. International Journal of Mechanical Sciences, 2007, 49(6): 712-721
doi: 10.1016/j.ijmecsci.2006.10.006
28 LalA, SinghB N, KumarR. Effects of random system properties on the thermal buckling analysis of laminated composite plates. Computers & Structures, 2009, 87(17-18): 1119-1128
doi: 10.1016/j.compstruc.2009.06.004
29 ShiauL C, KuoS Y, ChenC Y. Thermal buckling behavior of composite laminated plates. Composite Structures, 2010, 92(2): 508-514
doi: 10.1016/j.compstruct.2009.08.035
30 ThangaratnamK R, Palaninathan, RamachandranJ.Thermal buckling of composite laminated plates. Computers & Structures, 1989, 32(5): 1117-1124
doi: 10.1016/0045-7949(89)90413-6
31 ChenL W, ChenL Y. Thermal buckling analysis of composite laminated plates by the finite-element method. Journal of Thermal Stresses, 1989, 12(1): 41-56
doi: 10.1080/01495738908961953
32 ChenL W, ChenL Y. Thermal buckling behavior of laminated composite plates with temperature-dependent properties. Composite Structures, 1989, 13(4): 275-287
doi: 10.1016/0263-8223(89)90012-3
33 ChenL W, ChenL Y. Thermal buckling analysis of laminated cylindrical plates by the finite element method. Computers & Structures, 1990, 34(1): 71-78
doi: 10.1016/0045-7949(90)90301-H
34 TopalU, UzmanÜ. Effect of rectangular/circular cutouts on thermal buckling load optimization of angle-ply laminated thin plates. Science and Engineering of Composite Materials, 2010, 17(2): 93-110
35 LeeJ. Thermally induced buckling of laminated composites by a layerwise theory. Computers & Structures, 1997, 65(6): 917-922
doi: 10.1016/S0045-7949(96)00232-5
36 ShariyatM. Thermal buckling analysis of rectangular composite plates with temperature-dependent properties based on a layerwise theory. Thin-walled Structures, 2007, 45(4): 439-452
doi: 10.1016/j.tws.2007.03.004
37 KumarS, SinghB. Thermal buckling analysis of sma fiber-reinforced composite plates using layerwise model. Journal of Aerospace Engineering, 2009, 22(4): 342-353
doi: 10.1061/(ASCE)0893-1321(2009)22:4(342)
38 NaliP, CarreraE. Accurate buckling analysis of composite layered plates with combined thermal and mechanical loadings. Journal of Thermal Stresses, 2013, 36(1): 1-18
doi: 10.1080/01495739.2012.663679
39 ShiY, LeeR Y Y, MeiC. Thermal postbuckling of composite plates using the finite element modal coordinate method. Journal of Thermal Stresses, 1999, 22(6): 595-614
doi: 10.1080/014957399280779
40 ZhaoX, LeeY Y, LiewK M. Mechanical and thermal buckling analysis of functionally graded plates. Composite Structures, 2009, 90(2): 161-171
doi: 10.1016/j.compstruct.2009.03.005
41 MatsunagaH. Thermal buckling of cross-ply laminated composite and sandwich plates according to a global higher-order deformation theory. Composite Structures, 2005, 68(4): 439-454
doi: 10.1016/j.compstruct.2004.04.010
42 NoorA, BurtonW. Three-dimensional solutions for thermal buckling of multilayered anisotropic plates. Journal of Engineering Mechanics, 1992, 118(4): 683-701
doi: 10.1061/(ASCE)0733-9399(1992)118:4(683)
43 DhattG, TouzotG.Une présentation de la méthode des éléments finis. France: Maloine, 1981
44 WhitneyJ M, AshtonJ E. Effect of environment on the elastic response of layered composite plates. AIAA Journal, 1971, 9(9): 1708-1713
doi: 10.2514/3.49976
45 ChenL W, ChenL Y. Thermal buckling of laminated composite plates. Journal of Thermal Stresses, 1987, 10(4): 345-356
doi: 10.1080/01495738708927017
46 ChenW C, LiuW H. Thermal buckling of antisymmetric angle-ply laminated plates— an analytical levy-type solution. Journal of Thermal Stresses, 1993, 16(4): 401-419
doi: 10.1080/01495739308946237
47 ChenL W, BrunelleE J, ChenL Y. Thermal buckling of initially stressed thick plates. Journal of Mechanical Design, 1982, 104(3): 557-564
doi: 10.1115/1.3256386
48 JonesR M. Thermal buckling of uniformly heated unidirectional and symmetric cross-ply laminated fiber-reinforced composite uniaxial in-plane restrained simply supported rectangular plates. Composites. Part A, Applied Science and Manufacturing, 2005, 36(10): 1355-1367
doi: 10.1016/j.compositesa.2005.01.028
[1] Abdelhak KHECHAI,Abdelouahab TATI,Abdelhamid GUETTALA. Finite element analysis of stress concentrations and failure criteria in composite plates with circular holes[J]. Front. Mech. Eng., 2014, 9(3): 281-294.
[2] Tsukasa KATSUMATA, Yoshihiro MIZUTANI, Akira TODOROKI, Ryosuke MATSUZAKI. Study of high-strength CFRP bolted joints with failure- monitoring cone washers[J]. Front Mech Eng, 2011, 6(3): 272-276.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed