Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2014, Vol. 9 Issue (3) : 281-294    https://doi.org/10.1007/s11465-014-0307-9
RESEARCH ARTICLE
Finite element analysis of stress concentrations and failure criteria in composite plates with circular holes
Abdelhak KHECHAI1,*(),Abdelouahab TATI2,Abdelhamid GUETTALA1
1. Laboratory of Civil Engineering, University of Biskra, Biskra 07000, Algeria
2. Laboratory of Energy Engineering and Materials, University of Biskra, Biskra 07000, Algeria
 Download: PDF(361 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this study, the stress concentration factors (SCF) in cross-and-angle-ply laminated composite plates as well as in isotropic plates with single circular holes subjected to uniaxial loading is studied. A quadrilateral finite element of four-node with 32 degrees of freedom at each node, previously developed for the bending and mechanical buckling of laminated composite plates, is used to evaluate the stress distribution in laminated composite plates with central circular holes. Based up on the classical plate theory, the present finite element is a combination of a linear isoparametric membrane element and a high precision rectangular Hermitian element. The numerical results obtained by the present element compare favorably with those obtained by the analytic approaches published in literature. It is observed that the obtained results are very close to the reference results, which demonstrates the accuracy of the present element. Additionally, to determine the first ply failure (FPF) of laminated plate, several failure criterions are employed. Finally, to show the effect of E1/E2 ratio on the failure of plates, a number of figures are given for different fiber orientation angles.

Keywords laminated composite plates      stress concentration      geometric singularity      anisotropic effect     
Corresponding Author(s): Abdelhak KHECHAI   
Online First Date: 09 September 2014    Issue Date: 10 October 2014
 Cite this article:   
Abdelhak KHECHAI,Abdelouahab TATI,Abdelhamid GUETTALA. Finite element analysis of stress concentrations and failure criteria in composite plates with circular holes[J]. Front. Mech. Eng., 2014, 9(3): 281-294.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-014-0307-9
https://academic.hep.com.cn/fme/EN/Y2014/V9/I3/281
Fig.1  Geometry and coordinate systems of rectangular laminated composite plate
Fig.2  An anisotropic plate subjected to uniaxial loading
PropertyIsotropicGlass-epoxy AGlass-epoxy BGraphite-epoxy
E1/MPa20047.454.9181
E2/MPa16.218.310.3
G12/MPa807.09.147.17
X/MPa1055.51500.0
Y/MPa28.140.0
X/MPa1055.51500.0
Y/MPa140.7246.0
S/MPa42.268
ν120.250.260.250.28
Tab.1  Material property
Fig.3  The meshed configuration of the quarter model with the boundary and loading conditions
Fig.4  Mesh refinement results
MaterialSCF of present elementKaltakci [10]Sharma [33]
(10×20)(12×24)(14×28)(16×32)(18×36)
Isotropic2.3882.6922.8512.9713.0003.0003.000
Glass-epoxy A2.7093.2383.5903.9193.9774.1104.110
Tab.2  Convergence of SCF
Fig.5  SCFs σα/σx versus α for two layered graphite-epoxy composite
Fig.6  SCFs σα/σx versus α for four layered composite plates glass-epoxy A
Fig.7  SCFs σα/σx versus α for four layered composite plates glass-epoxy B
Laminated platesFiber orienta. angle/(°)Kaltakci [10]Sharma [33]Present element
Max. tensile SCFMax. compres. SCFMax. tensile SCFMax. compres. SCFMax. tensile SCFMax. compres. SCF
IsotropicGraphite-epoxy03.0006.750-1.000-0.2383.0006.751-1.000-0.2383.0005.945-1.006-0.251
902.371-4.1912.372-4.1922.360-3.518
Glass-epoxy A04.110-0.5844.110-0.5853.977-0.589
303.537-0.8663.538-0.8663.301-0.835
602.660-1.4352.660-1.4362.666-1.323
902.818-1.7102.818-1.7112.792-1.634
Glass-epoxy B03.995-0.5773.888-0.583
453.191-1.0543.034-0.982
-453.191-1.0543.034-0.982
902.729-1.7322.710-1.663
Tab.3  SCFs for different laminated plates subjected to uniaxial tension
Fig.8  Effect of fiber orientation angle on SCF σα/σx for plates glass-epoxy A
Fig.9  Effect of fiber orientation angle on SCF σα/σx for plates glass-epoxy B
Fig.10  SCF for different orientation angles versus modulus ratio. (a) Maximum tensile SCF; (b) maximum compression SCF
Fig.11  Effect of circular hole and fiber orientation angle on the strength of glass-epoxy B composite plates. (a) For tension; (b) for compression
H-RT-HT-W
Fiber oriental angleMax. tensile SCFLocation of Max. tensile SCFMax. compres. SCFLocation of Max. compres. SCFFailure load in plates without holeFailure load in plates with holeFailure angleFailure load in plates without holeFailure load in plates with holeFailure angleFailure load in plates without holeFailure load in plates with holeFailure angle
03.99590.0-0.5770.09.65×10847.5567.31055.5047.4367.41055.5042.0267.3
53.98092.8-0.586177.1481.9040.4068.9439.2340.3469.0416.5035.7569.3
103.93595.6-0.613174.3229.1334.7370.1233.1834.7070.2213.3930.8670.9
153.86198.3-0.656171.7156.6030.1370.7155.2230.1270.8139.1226.9772.2
203.762100.9-0.713169.2115.2126.3470.0114.7526.3471.1101.8323.8273.1
253.641103.4-0.784167.190.2523.1971.190.0723.1971.279.8121.2373.7
303.501105.5-0.866165.473.6320.5671.373.5720.5771.365.4919.0774.2
353.349107.4-0.957164.361.8918.4071.861.8718.4071.855.5917.2874.7
403.192108.7-1.054163.953.2716.6171.853.2716.6172.548.4415.7975.3
453.037109.3-1.156164.146.7815.1573.546.7815.1573.543.1214.5576.1
502.894108.6-1.257164.841.8013.9574.841.8013.9574.839.0813.5277.1
552.780105.6-1.354165.937.9512.9876.337.9612.9876.335.9812.6878.3
602.711100.1-1.446167.434.9712.2077.934.9712.2077.933.5911.9979.7
652.68895.1-1.529169.132.6711.5879.832.6711.5879.831.7511.4481.2
702.69192.3-1.599171.130.9311.1081.730.9311.1081.730.3611.0182.8
752.70390.9-1.656173.229.6510.7483.729.6510.7483.729.3410.6984.5
802.71790.2-1.698175.428.7810.4985.828.7810.4985.828.6410.4786.3
852.72690.0-1.723177.728.2710.3487.928.2710.3487.928.2310.3388.1
902.72990.0-1.7320.028.1010.3090.028.1010.3090.028.1010.3090.0
Tab.4  Failure criteria in glass-epoxy B subjected to tensile stress
H-RT-HT-W
Fiber oriental angle/(°)Max. tensile SCFLocation of Max. tensile SCFMax. compres. SCFLocation of Max. compres. SCFFailure load in plates without hole/MPaFailure load in plates with hole/MPaFailure angle/(°)Failure load in plates without hole/MPaFailure load in plates with hole/MPaFailure angle/(°)Failure load in plates without hole/MPaFailure load in plates with hole/MPaFailure angle/(°)
00.5770.0-3.99590.0-9.65×108-54.5170.6-1055.50-54.2070.8-1055.50-63.4272.6
50.586177.1-3.98092.8-485.87-47.8773.6-442.23-46.7773.7-457.74-56.6575.9
100.613174.3-3.93495.6-246.42-42.8376.5-240.52-42.6976.6-261.27-51.5379.1
150.656171.7-3.86198.3-168.26-38.9579.3-166.56-38.8579.5-189.39-47.6582.3
200.713169.2-3.762100.9-130.53-35.9682.1-129.86-35.8982.2-154.11-44.7285.3
250.784167.1-3.641103.4-109.11-33.6684.7-108.81-33.6284.8-134.35-42.5688.3
300.866165.4-3.501105.5-96.03-31.9287.3-95.88-31.9087.4-122.71-41.0391.1
350.957164.3-3.349107.4-87.90-30.6589.8-87.83-30.6489.9-116.01-40.0393.7
401.054163.9-3.192108.7-83.11-29.7892.2-83.08-29.7892.3-112.64-39.5096.1
451.156164.1-3.037109.3-80.84-29.2794.6-80.84-29.2794.7-111.71-39.4098.4
501.257164.8-2.894108.6-80.70-29.1097.0-80.72-29.1097.0-112.69-39.68100.4
551.354165.9-2.780105.6-82.56-29.2499.3-82.59-29.2599.4-115.19-40.33102.1
601.446167.4-2.711100.1-86.48-29.72101.7-86.52-29.72101.7-118.88-41.33103.5
651.529169.1-2.68895.1-92.66-30.53104.0-92.70-30.54104.0-123.39-42.65104.6
701.599171.1-2.69192.3-101.33-31.71106.3-101.37-31.72106.3-128.29-44.29105.3
751.656173.2-2.70390.9-112.46-33.31108.5-112.50-33.32108.5-133.04-46.18105.4
801.698175.4-2.71790.2-125.06-35.39110.8-125.09-35.41110.8-137.06-48.24104.7
851.723177.7-2.72690.0-136.10-38.04113.0-136.11-38.05113.0-139.75-50.27102.2
901.7320.0-2.72990.0-140.70-41.36115.1-140.70-41.38115.1-140.70-51.5590.0
Tab.5  Failure criteria in glass-epoxy B subjected to compressive stress
H-RT-HT-W
Fiber oriental angleMax. tensile SCFLocation of Max. tensile SCFMax. compres. SCFLocation of Max. compres. SCFFailure load in plates without holeFailure load in plates with holeFailure angleFailure load in plates without holeFailure load in plates with holeFailure anglefailure load in plates without holefailure load in plates with holeFailure angle
06.75090.0-0.2390.01.55×10998.5478.51500.0096.3979.11500.0086.6278.4
56.71394.0-2.691166.7774.6783.8681.3689.9582.6781.8649.6773.5881.1
106.60298.1-3.585155.3380.8972.2883.1370.1771.6883.7334.8963.2883.0
156.421102.1-5.035147.3247.5262.5682.7244.8562.3383.3216.9754.8183.4
206.176106.0-7.011142.9179.9253.4977.3179.0553.4677.6157.4847.5381.7
255.873109.9-9.455141.3139.1245.2273.0138.8145.2273.0122.3341.1678.7
305.522113.7-1.229141.6112.0738.5471.4111.9638.5471.499.5035.8176.6
355.134117.3-1.543142.993.0933.3671.293.0533.3671.283.7131.5075.7
404.721120.8-1.877145.079.2729.3671.779.2629.3671.772.3328.0775.6
454.295124.0-2.221147.768.9526.2472.868.9526.2472.863.8725.3576.1
503.871126.9-2.565150.661.1223.8374.261.1323.8374.257.4523.1877.0
553.462129.2-2.897153.955.1221.8875.855.1221.8875.852.5221.4678.2
603.084130.7-3.209157.450.5020.3877.650.5020.3877.648.7220.1079.6
652.754130.5-3.490160.946.9619.2179.546.9719.2179.545.7919.0381.2
702.499125.2-3.733164.644.3018.3281.544.3018.3281.543.5818.2182.8
752.395103.1-3.929168.442.3517.6783.642.3517.6783.641.9617.6084.5
802.37796.1-4.074172.341.0217.2185.741.0217.2185.740.8617.1986.3
852.37292.6-4.162176.140.2516.9587.840.2516.9587.840.2116.9588.1
902.37290.0-4.1920.040.0016.8690.040.0016.8690.040.0016.8690.0
Tab.6  Failure criteria in graphite-epoxy subjected to tensile stress
H-RT-HT-W
Fiber oriental angle/(° )Max. tensile SCFLocation of Max. tensile SCFMax. compres. SCFLocation of Max. compres. SCFFailure load in plates without hole/MPaFailure load in plates with hole/MPaFailure angle/(° )Failure load in plates without hole/MPaFailure load in plates with hole/MPaFailure angle/(° )Failure load in plates without hole/MPaFailure load in plates with hole/MPaFailure angle/(° )
00.2390.0-6.75090.0-1.55×109-103.6379.4-1500.00-100.6680.0-1500.00-110.4280.9
52.691166.7-6.71394.0-782.96-89.7482.9-695.79-87.7983.4-724.52-97.8084.7
103.585155.3-6.60298.1-397.16-79.2886.2-385.06-77.9986.7-424.67-88.3388.4
155.035147.3-6.421102.1-271.25-71.3089.3-267.74-70.4389.8-311.85-81.2092.0
207.011142.9-6.176106.0-210.51-65.1392.2-209.13-64.5592.6-256.35-75.8795.5
259.455141.3-5.873109.9-176.07-60.3694.8-175.44-59.9695.1-225.47-71.9698.8
301.229141.6-5.522113.7-155.07-56.6897.1-154.77-56.4197.4-207.61-69.23101.9
351.543142.9-5.134117.3-142.09-53.9099.3-141.95-53.7299.6-197.70-67.49104.9
401.877145.0-4.721120.8-134.52-51.88101.3-134.47-51.75101.6-193.19-66.63107.6
452.221147.7-4.295124.0-131.08-50.53103.3-131.08-50.45103.5-192.68-66.56110.1
502.565150.6-3.871126.9-131.16-49.80105.4-131.20-49.75105.5-195.27-67.25112.4
552.897153.9-3.462129.2-134.61-49.66107.4-134.68-49.63107.5-200.35-68.68114.3
603.209157.4-3.084130.7-141.64-50.10109.5-141.72-50.08109.6-207.32-70.83115.9
653.490160.9-2.754130.5-152.71-51.14111.7-152.81-51.14111.7-215.56-73.73117.2
703.733164.6-2.499125.2-168.49-52.83113.9-168.59-52.83113.9-224.32-77.40118.2
753.929168.4-2.395103.1-189.31-55.22116.1-189.40-55.24116.1-232.70-81.86118.8
804.074172.3-2.37796.1-213.84-58.44118.3-213.91-58.46118.3-239.70-87.12119.0
854.162176.1-2.37292.6-236.32-62.62120.6-236.35-62.65120.6-244.36-93.15118.5
904.1920.0-2.37290.0-246.00-67.97122.8-246.00-68.01122.8-246.00-99.78116.7
Tab.7  Failure criteria in graphite-epoxy subjected to compressive stress
Fig.12  Effect of circular hole and fiber orientation angle on the strength of graphite-epoxy composite plates. (a) For tension; (b) for compression
1 Aluko O, Whitworth H. Analysis of stress distribution around pin loaded holes in orthotropic plates. Composite Structures, 2008, 86(4): 308–313
https://doi.org/10.1016/j.compstruct.2008.06.001
2 Topal U, Uzman ü. Frequency optimization of laminated composite angle-ply plates with circular hole. Materials & Design, 2008, 29(8): 1512–1517
https://doi.org/10.1016/j.matdes.2008.03.002
3 Sheng H, Ye J. A state space finite element for laminated composite plates. Computer Methods in Applied Mechanics and Engineering, 2002, 191(37–38): 4259–4276
https://doi.org/10.1016/S0045-7825(02)00379-1
4 Ukadgaonker V, Rao D. A general solution for moments around holes in symmetric laminates. Composite Structures, 2000, 49(1): 41–54
https://doi.org/10.1016/S0263-8223(99)00124-5
5 Ghezzo F, Giannini G, Cesari F, Caligiana G. Numerical and experimental analysis of the interaction between two notches in carbon fibre laminates. Composites Science and Technology, 2008, 68(3–4): 1057–1072
https://doi.org/10.1016/j.compscitech.2007.07.023
6 Louhghalam A, Igusa T, Park C, Choi S, Kim K. Analysis of stress concentrations in plates with rectangular openings by a combined conformal mapping—finite element approach. International Journal of Solids and Structures, 2011, 48(13): 1991–2004
https://doi.org/10.1016/j.ijsolstr.2011.03.005
7 Dharmin P, Khushbu P, Chetan J. A review on stress analysis of an infinite plate with cut-outs. International Journal of Scientific and Research Publications, 2012, 2(11): 1–7
8 Peterson R E, Plunkett R. Stress concentration factors. Journal of Applied Mechanics, 1975, 42(1): 248
https://doi.org/10.1115/1.3423544
9 Nagpal S, Jain N, Sanyal S. Stress concentration and its mitigation techniques in flat plate with singularities—a critical review. Engineering Journal, 2012, 16(1): 1–16
10 Kaltakci M Y. Stress concentrations and failure criteria in anisotropic plates with circular holes subjected to tension or compression. Computers & Structures, 1996, 61(1): 67–78
https://doi.org/10.1016/0045-7949(96)00009-0
11 Green A, Zerna W. Theoretical Elasticity. Oxford: The Clarendon Press, 1954
12 Hearmon R F S. An Introduction to Applied Anisotropic Elasticity. Oxford: The Clarendo Press, 1961
13 Lekhnitskii S G. Theory of Elasticity of an Anisotropic Elastic Body. San Francisco: Holden-Day, Inc., 1963
14 Savin G N. Stress Distribution around Holes. NASA TT-607. 1970
15 Arslan H M, Kaltakci M Y, Yerli H R. Effect of circular holes on cross-ply laminated composite plates. The Arabian Journal for Science & Engineering, 2009, 34(2B): 301–305
16 Yang Y, Liu J, Cai C W. Analytical solutions to stress concentration problem in plates containing rectangular hole under biaxial tensions. Acta Mechanica Solida Sinica, 2008, 21(5): 411–419
https://doi.org/10.1007/s10338-008-0850-1
17 Muskhelishvili N I. Some Basic Problems of the Mathematical Theory of Elasticity. New York: Springer Science & Business Media, 1977
18 England A H. Complex Variable Methods in Elasticity. New York: Wiley-Interscience, 1971
19 Milne-Thomson L M. Plane Elastic Systems. Vol 6. Berlin: Springer-Verlag, 1960
20 Savin G N. Stress Concentration around Holes. Vol 1. New York: Pergamon Press, 1961
21 Lekhnitskii S. Anisotropic Plates. Translated from the second Russian edition by Tsai S W, Cheron T. New York: Gordon and Breach Science Publishers Inc., 1968
22 Ukadgaonker V, Rao D. A general solution for stress resultants and moments around holes in unsymmetric laminates. Composite Structures, 2000, 49(1): 27–39
https://doi.org/10.1016/S0263-8223(99)00123-3
23 Xu X W, Sun L X, Fan X Q. Stress concentration of finite composite laminates with elliptical hole. Computers & Structures, 1995, 57(1): 29–34
https://doi.org/10.1016/0045-7949(94)00588-T
24 Wu X, Cheng S. A higher-order theory for plane stress conditions of laminates consisting of isotropic layers. Journal of Applied Mechanics, 1999, 66(1): 95–100
https://doi.org/10.1115/1.2789174
25 Chen C H, Hsu J. The stress intensity factors of slightly undulating interface cracks of bimaterials. International Journal of Fracture, 1996, 80(4): 277–293
https://doi.org/10.1007/BF00018508
26 Bryukhanova E N. Thermal stresses in a circular cylinder with regularly arranged circular cavities. International Applied Mechanics, 1969, 5(4): 380–384
27 Wang X F, Hasebe N. Bending of a thin plate containing a rigid inclusion and a crack. Engineering Analysis with Boundary Elements, 2000, 24(2): 145–153
https://doi.org/10.1016/S0955-7997(99)00062-4
28 Tsukrov I, Novak J. Effective elastic properties of solids with defects of irregular shapes. International Journal of Solids and Structures, 2002, 39(6): 1539–1555
https://doi.org/10.1016/S0020-7683(01)00285-2
29 Datsyshin A P, Marchenko G P. Interaction of curvilinear cracks with the boundary of an elastic half-plane. Soviet Materials Science, 1984, 20(5): 466–473
30 Vigdergauz S. Optimal stiffening of holes under equibiaxial tension. International Journal of Solids and Structures, 1993, 30(4): 569–577
https://doi.org/10.1016/0020-7683(93)90188-D
31 Exadaktylos G, Liolios P, Stavropoulou M. A semi-analytical elastic stress-displacement solution for notched circular openings in rocks. International Journal of Solids and Structures, 2003, 40(5): 1165–1187
https://doi.org/10.1016/S0020-7683(02)00646-7
32 Cherkaev A, Grabovsky Y, Movchan A B, Serkov S K. The cavity of the optimal shape under the shear stresses. International Journal of Solids and Structures, 1998, 35(33): 4391–4410
https://doi.org/10.1016/S0020-7683(97)00214-X
33 Sharma D S. Stress concentration around circular/elliptical/triangular cutouts in infinite composite plate. In: Proceedings of the World Congress onEngineering. London, 2011
34 Ounis H, Tati A, Benchabane A. Thermal buckling behavior of laminated composite plates: A finite-element study. Frontiers of Mechanical Engineering, 2014, 9(1): 41–49
https://doi.org/10.1007/s11465-014-0284-z
35 Nishioka T, Atluri S. Stress analysis of holes in angle-ply laminates: an efficient assumed stress “special-hole-element” approach and a simple estimation method. Computers & Structures, 1982, 15(2): 135–147
https://doi.org/10.1016/0045-7949(82)90061-X
36 Piltner R. Special finite elements with holes and internal cracks. International Journal for Numerical Methods in Engineering, 1985, 21(8): 1471–1485
https://doi.org/10.1002/nme.1620210809
37 Chen H C. Special finite elements including stress concentration effects of a hole. Finite Elements in Analysis and Design, 1993, 13(4): 249–258
https://doi.org/10.1016/0168-874X(93)90042-O
38 Pan E, Yang B, Cai G, Yuan F G. Stress analyses around holes in composite laminates using boundary element method. Engineering Analysis with Boundary Elements, 2001, 25(1): 31–40
https://doi.org/10.1016/S0955-7997(00)00066-7
39 Li F, He Y T, Fan C H, Li H P, Zhang H X. Investigation on three-dimensional stress concentration of LY12-CZ plate with two equal circular holes under tension. Materials Science and Engineering: A, 2008, 483–484: 474–476
https://doi.org/10.1016/j.msea.2006.08.146
40 Mittal N D, Jain N K. The optimize design of a square simply supported isotropic plate with central circular hole for reduction of stress concentration subjected to transverse static loading. In: Proceedings of International Conference on Theoretical, Applied, Computational and Experimental Mechanics. Kharagpur, 2007
41 Ukadgaonker V, Kakhandki V. Stress analysis for an orthotropic plate with an irregular shaped hole for different in-plane loading conditions—Part 1. Composite Structures, 2005, 70(3): 255–274
https://doi.org/10.1016/j.compstruct.2004.08.032
42 Tati A, Abibsi A. Un elementfini pour laflexion et leflambage des plaques minces stratifiees en materiaux composites. Revue des Composites et des Materiaux Avances, 2007, 17(3): 279–296 (in French)
43 Hashin Z. Failure criteria for unidirectional fiber composites. Journal of Applied Mechanics, 1980, 47(2): 329–334
https://doi.org/10.1115/1.3153664
44 Azzi V, Tsai S. Anisotropic strength of composites. Experimental Mechanics, 1965, 5(9): 283–288
https://doi.org/10.1007/BF02326292
45 Hahn H T, Tsai S W. Introduction to Composite Materials. Boca Raton: CRC Press, 1980
[1] Houdayfa OUNIS,Abdelouahab TATI,Adel BENCHABANE. Thermal buckling behavior of laminated composite plates: a finite-element study[J]. Front. Mech. Eng., 2014, 9(1): 41-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed