Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2015, Vol. 10 Issue (1) : 78-88    https://doi.org/10.1007/s11465-015-0331-4
RESEARCH ARTICLE
Dynamic modeling of hydrostatic guideway considering compressibility and inertia effect
Yikang DU1,Kuanmin MAO1,*(),Yaming ZHU1,Fengyun WANG1,Xiaobo MAO1,Bin LI1,2
1. School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2. State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(1690 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Hydrostatic guideways are used as an alternative to contact bearings due to high stiffness and high damping in heavy machine tools. To improve the dynamic characteristic of bearing structure, the dynamic modeling of the hydrostatic guidway should be accurately known. This paper presents a “mass-spring-Maxwell” model considering the effects of inertia, squeeze, compressibility and static bearing. To determine the dynamic model coefficients, numerical simulation of different cases between displacement and dynamic force of oil film are performed with fluent code. Simulation results show that hydrostatic guidway can be taken as a linear system when it is subjected to a small oscillation amplitude. Based on a dynamic model and numerical simulation, every dynamic model’s parameters are calculated by the Levenberg-Marquardt algorithm. Identification results show that “mass-spring-damper” model is the most appropriate dynamic model of the hydrostatic guidway. This paper provides a reference and preparation for the analysis of the dynamic model of the similar hydrostatic bearings.

Keywords hydrostatic guidway      dynamic model      dynamic mesh technique      Levenberg-Marquardt      mass-spring-damper model     
Corresponding Author(s): Kuanmin MAO   
Online First Date: 09 March 2015    Issue Date: 01 April 2015
 Cite this article:   
Yikang DU,Kuanmin MAO,Yaming ZHU, et al. Dynamic modeling of hydrostatic guideway considering compressibility and inertia effect[J]. Front. Mech. Eng., 2015, 10(1): 78-88.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-015-0331-4
https://academic.hep.com.cn/fme/EN/Y2015/V10/I1/78
Fig.1  Oil film pad geometry
Fig.2  Hydrostatic guideway with single pad
Parameter Value
Length, b/mm 60
Width, a/mm 30
Initial oil film thickness, h0/μm 95
Length of supply groove, L/mm 9
Depth of oil cavity, d/mm 3
Width of oil cavity, w/mm 10
Length of oil cavity, L1/mm 40
Density of oil film, ρ /(kg·m-3) 870
Dynamic viscosity of oil film at 26°C, μ /(Pa·s) 0.0819
Mass flow of inlet, Q/(kg·s-1) 0.003
Viscosity index 95
Bulk modulus of the oil film, E/MPa 1440
Tab.1  Geometrical dimension of the bearing pad, lubricant properties
Fig.3  Massless spring-damper model
Fig.4  Mass-spring-damper model
Fig.5  Mass-spring-Maxwell of hydrostatic guidway
Fig.6  Pressure distribution of the pad at (a) t = 0 ; (b) t = 0.25 T ; (c) t = 0.5 T ; (d) t = 0.75 T
Fig.7  Variation of the dynamic force of bearing face vs excitation frequency of (a) 40 Hz; (b) 80 Hz
Fig.8  Amplitude-frequency curve of dynamic oil film force under the condition of h0=95 μm, f=40 Hz and the oscillation amplitude of (a) 1 μm; (b) 2 μm; (c) 3 μm
Fig.9  Comparison of hysteresis loop for h0=95 μm, A=1 μm and the oscillation frequency of 40, 60 and 80 Hz
Fig.10  Comparison of hysteresis loop for h0=95, 85 and 80 μm, A=1 μm and f = 40 Hz
h0/μm A/μm ω /(rad·s-1) | H ( ω ) | /(μm·N-1)
95 1 125.66 0.06579
251.33 0.03807
376.99 0.02680
502.65 0.02039
628.32 0.01628
95 2 125.66 0.06521
251.33 0.03864
376.99 0.02700
502.65 0.02068
628.32 0.01663
95 3 125.66 0.06258
251.33 0.03774
376.99 0.02648
502.65 0.02039
628.32 0.01660
85 1 125.66 0.04440
251.33 0.02800
376.99 0.01890
502.65 0.01470
628.32 0.01160
80 1 125.66 0.03764
251.33 0.02334
376.99 0.01669
502.65 0.01236
628.32 0.01002
Tab.2  Amplitude of the FRFs of different cases
Fig.11  FRF for h0=95 μm, A=1, 2 and 3 μm
Fig.12  Frequency-response function for h0=95, 85 and 80 μm, A=1 μm
Initial thickness/μm Perturbation amplitude/μm Frequency/Hz Results SSE
Bearing stiffness /(N·μm-1) Damping/(N·S·μm-1)
95 1 20-100 9.344847 0.096307 0.2517
95 2 20-100 9.873248 0.094441 0.0661
95 3 20-100 10.29212 0.095177 0.7567
85 1 20-100 14.23033 0.134135 2.4450
80 1 20-100 17.44079 0.155890 2.5047
Tab.3  Parameter identification of spring-damper model
Initial thickness/μm Perturbation amplitude/μm Frequency/Hz Results SSE
Bearing stiffness /(N·μm-1) Damping/(N·S·μm-1) Mass/kg
95 1 20-100 9.524588 0.097531 1.8550 × 10 - 5 0.2297
95 2 20-100 9.873248 0.094441 5.4880 × 10 - 13 0.0661
95 3 20-100 10.292130 0.095177 8.1280 × 10 - 13 0.7567
85 1 20-100 15.265686 0.136551 5.5220 × 10 - 5 1.5642
80 1 20-100 18.413335 0.144854 5.8547 × 10 - 5 1.6976
Tab.4  Parameter identification of mass-spring-damper model
Initial thickness/μm Perturbation amplitude/μm Frequency/Hz Results SSE
Bearing Stiffness/(N·μm-1) Compression stiffness/(N·μm-1) Damping/(N·S·μm-1) Mass/kg
95 1 20-100 9.048202 85.5569 0.115499 6.639 × 10 - 5 0.014405
95 2 20-100 9.329939 172.0962 0.103278 1.279 × 10 - 4 1.518 × 10 - 5
95 3 20-100 10.18806 221.3955 0.102786 9.322 × 10 - 5 3.987 × 10 - 5
85 1 20-100 14.92005 272.5540 0.143476 1.780 × 10 - 4 1.5121
80 1 20-100 18.43870 300.2889 0.168432 4.846 × 10 - 5 1.6868
Tab.5  Parameter identification of mass-spring-Maxwell model
Fig.13  Comparison of simulation curve and model curve
1 Brown G. The dynamic characteristics of a hydrostatic thrust bearing. International Journal of Machine Tool Design and Research, 1961, 1(1-2): 157–171(J)
https://doi.org/10.1016/0020-7357(61)90050-6
2 Dimond T W, Sheth P N, Allaire P E, Identification methods and test results for tilting pad and fixed geometry journal bearing dynamic coefficients-A review. Shock and vibration, 2009, 16(1): 13–43
https://doi.org/10.3233/SAV-2009-0452
3 Bouzidane A, Thomas M. Equivalent stiffness and damping investigation of a hydrostatic journal bearing. Tribology Transactions, 2007, 50(2): 257–267
https://doi.org/10.1080/10402000701309745
4 Jolly P, Hassini M A, Arghir M, . Identification of stiffness and damping coefficients of hydrostatic bearing with angled injection. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2013, 227(8): 905–911
https://doi.org/10.1177/1350650113482613
5 Jeon S Y, Kim K H. A fluid film model for finite element analysis of structures with linear hydrostatic bearings. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2004, 218(3): 309–316
https://doi.org/10.1243/095440604322900435
6 Wang Z W, Zhao W H, Lu B H. Influencing factors on dynamic response of hydrostatic guideways. Advanced Materials Research, 2011, 418-420: 2095–2101
https://doi.org/10.4028/www.scientific.net/AMR.418-420.2095
7 Gao D, Zheng D, Zhang Z. Theoretical analysis and numerical simulation of the static and dynamic characteristics of hydrostatic guides based on progressive mengen flow controller. Chinese Journal of Mechanical Engineering, 2010, 23(06): 709–716
https://doi.org/10.3901/CJME.2010.06.709
8 Zhao J H, gao D R. Dynamic characteristic comparison of open-type hydrostatic worktable both before and after linearization. Journal of Mechanical Engineering, 2012, 48(24): 158 (in Chinese)
https://doi.org/10.3901/JME.2012.24.158
9 9.Lee W J, Kim S I. Joint stiffness identification of an ultra-precision machine for machining large-surface micro-features. International Journal of Precision Engineering and Manufacturing, 2009, 10(5): 115–121
https://doi.org/10.1007/s12541-009-0102-4
10 Huang S, Borca-Tasciuc D A, Tichy J A. A simple expression for fluid inertia force acting on micro-plates undergoing squeeze film damping. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 2010, 467(2126): 522–536
https://doi.org/10.1098/rspa.2010.0216
11 Brecher C, Baum C, Winterschladen M, . Simulation of dynamic effects on hydrostatic bearings and membrane restrictors. Production Engineering, 2007, 1(4): 415–420
https://doi.org/10.1007/s11740-007-0051-7
12 Hashemi S, Roylance B. Analysis of an oscillatory oil squeeze film including effects of fluid inertia. Tribology Transactions, 1989, 32(4): 461–468
https://doi.org/10.1080/10402008908981914
13 Hashemi S, Roylance B. Steady-state behavior of squeeze film bearings subjected to harmonic excitation—Including fluid inertia and system effects. Tribology Transactions, 1989, 32(4): 431–438
https://doi.org/10.1080/10402008908981910
14 Tichy J A. Measurements of squeeze-film bearing forces and pressures, including the effect of fluid inertia. ASLE Transactions, 1985, 28(4): 520–526
https://doi.org/10.1080/05698198508981650
15 Andres S L. Transient response of externally pressurized fluid film bearings?. Tribology Transactions, 1997, 40(1): 147–155
https://doi.org/10.1080/10402009708983640
16 ANSYS-FLUENT. Documentations Solver Theory/Fluent [M/OL], 2013
17 Bevington P R, Robinson D K. Data Reduction and Error Analysis for the Physical Sciences. New York: McGraw-Hill, 1991, 151–153
18 Wang G, Luo C. Data Processing of Engineering. <PublisherLocation>Cha<?Pub Caret?>ngchun</PublisherLocation>: Jilin University Press, 1990, 202–204
[1] Gang HAN, Fugui XIE, Xin-Jun LIU. Evaluation of the power consumption of a high-speed parallel robot[J]. Front. Mech. Eng., 2018, 13(2): 167-178.
[2] Shaodan ZHI,Jianyong LI,A. M. ZAREMBSKI. Modelling of dynamic contact length in rail grinding process[J]. Front. Mech. Eng., 2014, 9(3): 242-248.
[3] Kejia LI, Xilun DING, Marco CECCARELL. A total torque index for dynamic performance evaluation of a radial symmetric six-legged robot[J]. Front Mech Eng, 2012, 7(2): 219-230.
[4] DU Zhaocai, YU Yueqing, YANG Jianxin. Analysis of the dynamic stress of planar flexible-links parallel robots[J]. Front. Mech. Eng., 2007, 2(2): 152-158.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed