Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2015, Vol. 10 Issue (2) : 187-197    https://doi.org/10.1007/s11465-015-0339-9
RESEARCH ARTICLE
Vibration analysis of nano-structure multilayered graphene sheets using modified strain gradient theory
Amir ALLAHBAKHSHI1,Masih ALLAHBAKHSHI2,*()
1. Department of Mechanical Engineering, Science and Research Branch, Islamic Azad University, Arak, Iran
2. Department of Civil Engineering, Mazandaran University of Technolo- gy, Babol, Iran
 Download: PDF(2223 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, for the first time, the modified strain gradient theory is used as a new size-dependent Kirchhoff micro-plate model to study the effect of interlayer van der Waals (vdW) force for the vibration analysis of multilayered graphene sheets (MLGSs). The model contains three material length scale parameters, which may effectively capture the size effect. The model can also degenerate into the modified couple stress plate model or the classical plate model, if two or all of the material length scale parameters are taken to be zero. After obtaining the governing equations based on modified strain gradient theory via principle of minimum potential energy, as only infinitesimal vibration is considered, the net pressure due to the vdW interaction is assumed to be linearly proportional to the deflection between two layers. To solve the governing equation subjected to the boundary conditions, the Fourier series is assumed for w=w(x, y). To show the accuracy of the formulations, present results in specific cases are compared with available results in literature and a good agreement can be seen. The results indicate that the present model can predict prominent natural frequency with the reduction of structural size, especially when the plate thickness is on the same order of the material length scale parameter.

Keywords graphene      van der Waals (vdW) force      modi- fied strain gradient elasticity theory      size effect parameter     
Corresponding Author(s): Masih ALLAHBAKHSHI   
Online First Date: 30 June 2015    Issue Date: 14 July 2015
 Cite this article:   
Amir ALLAHBAKHSHI,Masih ALLAHBAKHSHI. Vibration analysis of nano-structure multilayered graphene sheets using modified strain gradient theory[J]. Front. Mech. Eng., 2015, 10(2): 187-197.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-015-0339-9
https://academic.hep.com.cn/fme/EN/Y2015/V10/I2/187
Fig.1  Rectangular multilayered nano-graphene sheet
m n ω 1 M S G T /THz ω 2 M S G T /THz ω 1 M C S T /THz ω 2 M C S T /THz ω 1 CPT /THz ω 2 CPT /THz
1 1 0.1895 2.6888 0.1165 2.6846 0.0690 2.6830
1 2 0.4742 2.7237 0.2911 2.6979 0.1725 2.6877
1 3 0.9499 2.8454 0.5823 2.7446 0.3450 2.7042
2 1 0.4742 2.7237 0.2911 2.6979 0.1725 2.6877
2 2 0.7594 2.7876 0.4658 2.7223 0.2760 2.6963
2 3 1.2361 2.9532 0.7570 2.7869 0.4485 2.7194
3 1 0.9499 2.8454 0.5823 2.7446 0.3450 2.7042
3 2 1.2361 2.9532 0.7570 2.7869 0.4485 2.7194
3 3 1.7143 3.1832 1.0481 2.8796 0.6210 2.7531
Tab.1  Classical natural frequencies and resonant natural frequencies for l / h = 0.1 of a square double-layered GS with width b = 10 nm for the MSGT, MCST and CPT in the first nine modes
m n ω 1 /THz ω 2 /THz ω 3 /THz ω 4 /THz ω 5 /THz
1 1 0.1895 1.1486 2.2001 3.0571 3.6083
1 2 0.4742 1.2281 2.2426 3.0878 3.6344
1 3 0.9499 1.4784 2.3889 3.1957 3.7264
2 1 0.4742 1.2281 2.2426 3.0878 3.6344
2 2 0.7594 1.3639 2.3197 3.1443 3.6825
2 3 1.2361 1.6767 2.5164 3.2921 3.8095
3 1 0.9499 1.4784 2.3889 3.1957 3.7264
3 2 1.2361 1.6767 2.5164 3.2921 3.8095
3 3 1.7143 2.0548 2.7827 3.4998 3.9903
Tab.2  Classical natural frequencies and resonant frequencies for l = 0.1 h of a square five-layered GS with width b =10nm for MSGT
m n ω 1 /THz ω 2 /THz ω 3 /THz ω 4 /THz ω 5 /THz
1 1 0.1165 1.1389 2.1950 3.0534 3.6052
1 2 0.2911 1.1697 2.2112 3.0651 3.6151
1 3 0.5823 1.2738 2.2679 3.1063 3.6501
2 1 0.2911 1.1697 2.2112 3.0651 3.6151
2 2 0.4658 1.2249 2.2409 3.0866 3.6333
2 3 0.7570 1.3625 2.3189 3.1437 3.6820
3 1 0.5823 1.2738 2.2679 3.1063 3.6501
3 2 0.7570 1.3625 2.3189 3.1437 3.6820
3 3 1.0481 1.5434 2.4296 3.2262 3.7527
Tab.3  Classical natural frequencies and resonant frequencies for l = 0.1 h of a square five-layered GS with width b =10 nm for the MCST
Fig.2   ω 1 of m = n = 1 with a variable size scale h / l for the three models of MSGT, MCST and CPT
Fig.3   ω 2 of m = n = 1 with a variable size scale h / l for the three models of MSGT, MCST and CPT
Fig.4   ω 1 and ω 2 of a square double-layered GS with m = 1 and different n of MSGT for l = 0.1 h
Fig.5   ω 1 , ω 2 , ω 3 , ω 4 and ω 5 of a square five-layered GS with m = 1 and different n of MSGT for l = 0.1 h
1 Geim A K, Novoselov K S. The rise of graphene. Nature Materials, 2007, 6(3): 183–191
https://doi.org/10.1038/nmat1849
2 Reddy C D, Rajendran S, Liew K M. Equilibrium con?guration and continuum elastic properties of ?nite sized graphene. Nanotechnology, 2006, 17(3): 864–870
https://doi.org/10.1088/0957-4484/17/3/042
3 Poot M, van der Zant H S J. Nanomechanical properties of few-layer graphene membranes. Applied Physics Letters, 2008, 92(6): 063111
https://doi.org/10.1063/1.2857472
4 Cranford S W, Buehler M J. Mechanical properties of graphyne. Carbon, 2011, 49(13): 4111–4121
https://doi.org/10.1016/j.carbon.2011.05.024
5 Stankovich S, Dikin D A, Dommett G H B, . Graphene-based composite materials. Nature, 2006, 442(7100): 282–286
https://doi.org/10.1038/nature04969
6 Montazeri A, Ra?i-Tabar H. Multiscale modeling of graphene- and nanotube-based reinforced polymer nanocomposites. Physics Letters. [Part A], 2011, 375(45): 4034–4040
https://doi.org/10.1016/j.physleta.2011.08.073
7 Bunch J S, van der Zande A M, Verbridge S S, . Electromechanical resonators from graphene sheets. Science, 2007, 315(5811): 490–493
https://doi.org/10.1126/science.1136836
8 Sun T, Wang Z, Shi Z, . Multilayered graphene used as anode of organic light emitting devices. Applied Physics Letters, 2010, 96(13): 133301
https://doi.org/10.1063/1.3373855
9 Yuan C, Hou L, Yang L, . Interface-hydrothermal synthesis of Sn3S4/graphene sheet composites and their application in electrochemical capacitors. Materials Letters, 2011, 65(2): 374–377
https://doi.org/10.1016/j.matlet.2010.10.045
10 Arsat R, Breedon M, Sha?ei M, . Graphene-like nano-sheets for surface acoustic wave gas sensor applications. Chemical Physics Letters, 2009, 467(4-6): 344–347
https://doi.org/10.1016/j.cplett.2008.11.039
11 Lian P, Zhu X, Liang S, . Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochimica Acta, 2010, 55(12): 3909–3914
https://doi.org/10.1016/j.electacta.2010.02.025
12 Mishra A K, Ramaprabhu S. Functionalized graphene sheets for arsenic removal and desalination of sea water. Desalination, 2011, 282: 39–45
https://doi.org/10.1016/j.desal.2011.01.038
13 Choi S M, Seo M H, Kim H J, . Synthesis of surface-functionalized graphene nanosheets with high Pt-loadings and their applications to methanol electrooxidation. Carbon, 2011, 49(3): 904–909
https://doi.org/10.1016/j.carbon.2010.10.055
14 Yang M, Javadi A, Gong S. Sensitive electrochemical immunosensor for the detection of cancer biomarker using quantum dot functionalized graphene sheets as labels. Sensors and Actuators. B, Chemical, 2011, 155(1): 357–360
https://doi.org/10.1016/j.snb.2010.11.055
15 Feng L, Chen Y, Ren J, . A graphene functionalized electrochemical aptasensor for selective label-free detection of cancer cells. Biomaterials, 2011, 32(11): 2930–2937
https://doi.org/10.1016/j.biomaterials.2011.01.002
16 Soldano C, Mahmood A, Dujardin E. Production, properties and potential of graphene. Carbon, 2010, 48(8): 2127–2150
https://doi.org/10.1016/j.carbon.2010.01.058
17 Terrones M, Botello-Méndez A R, Campos-Delgado J,. Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications. Nano Today, 2010, 5(4): 351–372
https://doi.org/10.1016/j.nantod.2010.06.010
18 He L, Lim C W, Wu B. A continuum model for size-dependent deformation of elastic ?lms of nano-scale thickness. International Journal of Solids and Structures, 2004, 41(3-4): 847–857
https://doi.org/10.1016/j.ijsolstr.2003.10.001
19 Kitipornchai S, He X, Liew K M. Continuum model for the vibration of multilayered graphene sheets. Physical Review B: Condensed Matter and Materials Physics, 2005, 72(7): 075443
https://doi.org/10.1103/PhysRevB.72.075443
20 Caillerie D,Mourad A, Raoult A. Discrete homogenization in graphene sheet modeling. Journal of Elasticity, 2006, 84(1): 33–68
https://doi.org/10.1007/s10659-006-9053-5
21 Hemmasizadeh A, Mahzoon M, Hadi E, . A method for developing the equivalent continuum model of a single layer graphene sheet. Thin Solid Films, 2008, 516(21): 7636–7640
https://doi.org/10.1016/j.tsf.2008.05.040
22 Arash B, Wang Q. A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes. Computational Materials Science, 2012, 51(1): 303–313
https://doi.org/10.1016/j.commatsci.2011.07.040
23 Chang T, Gao H. Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. Journal of the Mechanics and Physics of Solids, 2003, 51(6): 1059–1074
https://doi.org/10.1016/S0022-5096(03)00006-1
24 Sun C, Zhang H. Size-dependent elastic moduli of platelike nanomaterials. Journal of Applied Physics, 2003, 93(2): 1212–1218
https://doi.org/10.1063/1.1530365
25 Ni Z, Bu H, Zou M, . Anisotropic mechanical properties of graphene sheets from molecular dynamics. Physica B, Condensed Matter, 2010, 405(5): 1301–1306
https://doi.org/10.1016/j.physb.2009.11.071
26 Edelen D G B, Laws N. On the thermodynamics of systems with nonlocality. Archive for Rational Mechanics and Analysis, 1971, 43(1): 24–35
https://doi.org/10.1007/BF00251543
27 Eringen A C. Linear theory of nonlocal elasticity and dispersion of plane waves. International Journal of Engineering Science, 1972, 10(5): 425–435
https://doi.org/10.1016/0020-7225(72)90050-X
28 Eringen A C. Nonlocal polar elastic continua. International Journal of Engineering Science, 1972, 10(1): 1–16
https://doi.org/10.1016/0020-7225(72)90070-5
29 Eringen A C. Nonlocal Continuum Field Theories. New York: Springer, 2002
30 Murmu T, Pradhan S C. Vibration analysis of nano-single-layered graphene sheets embedded in elastic medium based on nonlocal elasticity theory. Journal of Applied Physics, 2009, 105(6): 064319
https://doi.org/10.1063/1.3091292
31 Shen L, Shen H, Zhang C. Nonlocal plate model for nonlinear vibration of single layer graphene sheets in thermal environments. Computational Materials Science, 2010, 48(3): 680–685
https://doi.org/10.1016/j.commatsci.2010.03.006
32 Narendar S, Gopalakrishnan S. Strong nonlocalization induced by small scale parameter on terahertz ?exural wave dispersion characteristics of a monolayer graphene. Physica E, Low-Dimensional Systems and Nanostructures, 2010, 43(1): 423–430
https://doi.org/10.1016/j.physe.2010.08.036
33 He X, Kitipornchai S, Liew K M. Resonance analysis of multi-layered graphene sheets used as nanoscale resonators. Nanotechnology, 2005, 16(10): 2086–2091
https://doi.org/10.1088/0957-4484/16/10/018
34 Behfar K, Naghdabadi R. Nanoscale vibrational analysis of a multi-layered graphene sheet embedded in an elastic medium. Composites Science and Technology, 2005, 65(7-8): 1159–1164
https://doi.org/10.1016/j.compscitech.2004.11.011
35 Liew K M, He X, Kitipornchai S. Predicting nano vibration of multi-layered graphene sheets embedded in an elastic matrix. Acta Materialia, 2006, 54(16): 4229–4236
https://doi.org/10.1016/j.actamat.2006.05.016
36 Jomehzadeh E, Saidi A R. A study on large amplitude vibration of multilayered graphene sheets. Computational Materials Science, 2011, 50(3): 1043–1051
https://doi.org/10.1016/j.commatsci.2010.10.045
37 Shi J, Ni Q, Lei X, . Nonlocal elasticity theory for the buckling of double-layer graphene nanoribbons based on a continuum model. Computational Materials Science, 2011, 50(11): 3085–3090
https://doi.org/10.1016/j.commatsci.2011.05.031
38 Pradhan S C, Phadikar J K. Scale effect and buckling analysis of multilayered graphene sheets based on nonlocal continuum mechanics. Journal of Computational and Theoretical Nanoscience, 2010, 7(10): 1948–1954
https://doi.org/10.1166/jctn.2010.1565
39 Arash B, Wang Q. Vibration of single- and double-layered graphene sheets. Journal of Nanotechnology in Engineering and Medicine, 2011, 2(1): 011012.1–011012.7
40 Pradhan S C, Phadikar J K. Small scale effect on vibration of embedded multilayered graphene sheets based on nonlocal continuum models. Physics Letters A, 2009, 373(11): 1062–1069
https://doi.org/10.1016/j.physleta.2009.01.030
41 Pradhan S C, Kumar A. Vibration analysis of orthotropic graphene sheets embedded in Pasternak elastic medium using nonlocal elasticity theory and differential quadrature method. Computational Materials Science, 2010, 50(1): 239–245
https://doi.org/10.1016/j.commatsci.2010.08.009
42 Ansari R, Rajabiehfard R, Arash B. Nonlocal ?nite element model for vibrations of embedded multi-layered graphene sheets. Computational Materials Science, 2010, 49(4): 831–838
https://doi.org/10.1016/j.commatsci.2010.06.032
43 Pradhan S C, Kumar A. Vibration analysis of orthotropic graphene sheets using nonlocal elasticity theory and differential quadrature method. Composite Structures, 2011, 93(2): 774–779
https://doi.org/10.1016/j.compstruct.2010.08.004
44 Wang L, He X. Vibration of a multilayered graphene sheet with initial stress. Journal of Nanotechnology in Engineering and Medicine, 2010, 1(4): 041004
https://doi.org/10.1115/1.4002402
45 Lam D C C, Yang F, Chong A C M, . Experiments and theory in strain gradient elasticity. Journal of the Mechanics and Physics of Solids, 2003, 51(8): 1477–1508
https://doi.org/10.1016/S0022-5096(03)00053-X
46 Kong S, Zhou S, Nie Z, . Static and dynamic analysis of micro beams based on strain gradient elasticity theory. International Journal of Engineering Science, 2009, 47(4): 487–498
https://doi.org/10.1016/j.ijengsci.2008.08.008
47 Wang B, Zhao J, Zhou S. A micro scale Timoshenko beam model based on strain gradient elasticity theory. European Journal of Mechanics-A/Solids, 2010, 29(4): 591–599
https://doi.org/10.1016/j.euromechsol.2009.12.005
48 Yang F, Chong ACM, Lam DCC, . Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures, 2002, 39(10): 2731–2743
https://doi.org/10.1016/S0020-7683(02)00152-X
49 Dym C L, Shames I H, Solid Mechanics: A Variational Approach. New York: Springer, 2013<?Pub Caret?>
50 Lennard-Jones J, Pople J A. The molecular orbital theory of chemical valency.IV. The significance of equivalent orbitals. Mathematical Physical &Engineering and Science, 1950, 202(1069): 166–180
51 Girifalco L A, Lad R A. Energy of cohesion, compressibility, and the potential energy functions of the graphite system, chemical physics. The Journal of Chemical Physics, 1956, 25(4): 693–697
https://doi.org/10.1063/1.1743030
[1] Shota SANDO, Bo ZHANG, Tianhong CUI. Shrink-induced graphene sensor for alpha-fetoprotein detection with low-cost self-assembly and label-free assay[J]. Front. Mech. Eng., 2017, 12(4): 574-580.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed