Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2017, Vol. 12 Issue (4) : 574-580    https://doi.org/10.1007/s11465-017-0485-3
RESEARCH ARTICLE
Shrink-induced graphene sensor for alpha-fetoprotein detection with low-cost self-assembly and label-free assay
Shota SANDO, Bo ZHANG, Tianhong CUI()
Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
 Download: PDF(297 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Combination of shrink induced nano-composites technique and layer-by-layer (LbL) self-assembled graphene challenges controlling surface morphology. Adjusting shrink temperature achieves tunability on graphene surface morphology on shape memory polymers, and it promises to be an alternative in fields of high-surface-area conductors and molecular detection. In this study, self-assembled graphene on a shrink polymer substrate exhibits nanowrinkles after heating. Induced nanowrinkles on graphene with different shrink temperature shows distinct surface roughness and wettability. As a result, it becomes more hydrophilic with higher shrink temperatures. The tunable wettability promises to be utilized in, for example, microfluidic devices. The graphene on shrink polymer also exhibits capability of being used in sensing applications for pH and alpha-fetoprotein (AFP) detection with advantages of label free and low cost, due to self-assembly technique, easy functionalization, and antigen-antibody reaction on graphene surface. The detection limit of AFP detection is down to 1 pg/mL, and therefore the sensor also has a significant potential for biosensing as it relies on low-cost self-assembly and label-free assay.

Keywords graphene      self-assembly      shrink polymer      AFP      label-free      biosensor     
Corresponding Author(s): Tianhong CUI   
Just Accepted Date: 08 September 2017   Online First Date: 28 September 2017    Issue Date: 31 October 2017
 Cite this article:   
Shota SANDO,Bo ZHANG,Tianhong CUI. Shrink-induced graphene sensor for alpha-fetoprotein detection with low-cost self-assembly and label-free assay[J]. Front. Mech. Eng., 2017, 12(4): 574-580.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-017-0485-3
https://academic.hep.com.cn/fme/EN/Y2017/V12/I4/574
Fig.1  Optical image of 1 cm × 1 cm polystyrene (PS) substrates with and without LbL self-assembled graphene and graphene on a PS substrate after heating at 120 ºC and 140 ºC, showing shrinkage and transparency change
Fig.2  (a) Schematic of LbL self-assembled graphene sensor; (b), (c) SEM image of graphene on a PS substrate before heating; (d), (e) SEM image of graphene on a PS substrate heated at 120 ºC; (f), (g) SEM image of graphene on a PS substrate heated at 140 ºC; magnification for (b) and (d), and (f) is × 5000; magnification for (c), (e), and (g) is × 60000
Fig.3  Shrink rate of PS substrates with different temperature (n=5)
Fig.4  (a) Wettability of graphene on PS substrates after heating (n=5); (b)–(d) Optical images of droplet of DI water for contact angle measurement with different shrink temperature
Fig.5  Response of the sensor to pH (PBS, pH: 5.31, 7.1, 8.0) by resistance shift
Fig.6  Dilution rate of DPBS vs. Debye length (solid line) and Dilution rate of DPBS vs. Ionic strength (dashed line)
Fig.7  AFP detection result in which Normalized resistance is represented as ?R/R0 (n=4)
Fig.8  Comparison of normalized resistance for the response to different concentration of AFP antigens between diluted DPBS and as-prepared DPBS
1 Schwierz F. Graphene transistors. Nature Nanotechnology, 2010, 5(7): 487–496
https://doi.org/10.1038/nnano.2010.89
2 Chen D, Tang L, Li J. Graphene-based materials in electrochemistry. Chemical Society Reviews, 2010, 39(8): 3157–3180
https://doi.org/10.1039/b923596e
3 Yang W, Ratinac K R, Ringer S P, et al.Carbon nanomaterials in biosensors: Should you use nanotubes or graphene? Angewandte Chemie International Edition, 2010, 49(12): 2114–2138
https://doi.org/10.1002/anie.200903463
4 Novoselov K S, Geim A K, Morozov S V, et al.Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669
https://doi.org/10.1126/science.1102896
5 Blake P, Hill E W, Castro Neto A H, et al.Making graphene visible. Applied Physics Letters, 2007, 91(6): 063124
https://doi.org/10.1063/1.2768624
6 Li X, Cai W, An J, et al.Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009, 324(5932): 1312–1314
https://doi.org/10.1126/science.1171245
7 Mattevi C, Kim H, Chhowalla M. A review of chemical vapour deposition of graphene on copper. Journal of Materials Chemistry, 2011, 21(10): 3324–3334
https://doi.org/10.1039/C0JM02126A
8 Yu Q, Jauregui L A, Wu W, et al.Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nature Materials, 2011, 10(6): 443–449
https://doi.org/10.1038/nmat3010
9 Sutter P. Epitaxial graphene: How silicon leaves the scene. Nature Materials, 2009, 8(3): 171–172
https://doi.org/10.1038/nmat2392
10 Kosynkin D V, Higginbotham A L, Sinitskii A, et al.Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature, 2009, 458(7240): 872–876
https://doi.org/10.1038/nature07872
11 Biswas A, Bayer I S, Biris A S, et al.Advances in top–down and bottom–up surface nanofabrication: Techniques, applications & future prospects. Advances in Colloid and Interface Science, 2012, 170(1–2): 2–27
https://doi.org/10.1016/j.cis.2011.11.001
12 Wei W, Song Y, Wang L, et al.An implantable microelectrode array for simultaneous L-glutamate and electrophysiological recordings in vivo. Microsystems & Nanoengineering, 2015, 1: 15002
https://doi.org/10.1038/micronano.2015.2
13 Sando S, Zhang B, Cui T A. Low-cost and label-free alpha-fetoprotein sensor based on self-assembled graphene on shrink polymer. In: Proceedings of 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS). Estoril: IEEE, 2015, 324–327
https://doi.org/10.1109/MEMSYS.2015.7050954
14 Fu C, Grimes A, Long M, et al.Tunable nanowrinkles on shape memory polymer sheets. Advanced Materials, 2009, 21(44): 4472–4476
https://doi.org/10.1002/adma.200902294
15 Sohn I Y, Kim D J, Jung J H, et al.pH sensing characteristics and biosensing application of solution-gated reduced graphene oxide field-effect transistors. Biosensors & Bioelectronics, 2013, 45: 70–76
https://doi.org/10.1016/j.bios.2013.01.051
16 Anan H, Kamahori M, Ishige Y, et al.Redox-potential sensor array based on extended-gate field-effect transistors with  w-ferrocenylalkanethiol-modified gold electrodes. Sensors and Actuators B, Chemical, 2013, 187: 254–261
https://doi.org/10.1016/j.snb.2012.11.016
17 Patolsky F, Zheng G, Lieber C M. Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nature Protocols, 2006, 1(4): 1711–1724
https://doi.org/10.1038/nprot.2006.227
18 Chen X, Jia X, Han J, et al.Electrochemical immunosensor for simultaneous detection of multiplex cancer biomarkers based on graphene nanocomposites. Biosensors & Bioelectronics, 2013, 50: 356–361
https://doi.org/10.1016/j.bios.2013.06.054
19 Li X, Zhao C, Liu X. A paper-based microfluidic biosensor integrating zinc oxide nanowires for electrochemical glucose detection. Microsystems & Nanoengineering, 2015, 1: 15014
https://doi.org/10.1038/micronano.2015.14
20 Hideshima S, Sato R, Inoue S, et al.Detection of tumor marker in blood serum using antibody-modified field effect transistor with optimized BSA blocking. Sensors and Actuators B, Chemical, 2012, 161(1): 146–150
https://doi.org/10.1016/j.snb.2011.10.001
21 Cole D J, Ang P K, Loh K P. Ion adsorption at the graphene/electrolyte interface. Journal of Physical Chemistry Letters, 2011, 2(14): 1799–1803
https://doi.org/10.1021/jz200765z
22 Nagashio K, Toriumi A. Density-of-states limited contact resistance in graphene field-effect transistors. Japanese Journal of Applied Physics, 2011, 50(7R): 070108
https://doi.org/10.7567/JJAP.50.070108
23 van Hal R E G, Eijkel J C T, Bergveld P. A novel description of ISFET sensitivity with the buffer capacity and double-layer capacitance as key parameters. Sensors and Actuators B, Chemical, 1995, 24(1–3): 201–205
https://doi.org/10.1016/0925-4005(95)85043-0
24 Israelachvili J N. Intermolecular and Surface Forces. 3rd ed. Amsterdam: Elsevier, 2011
25 Vacic A, Criscione J M, Rajan N K, et al.Determination of molecular configuration by Debye length modulation. Journal of the American Chemical Society, 2011, 133(35): 13886–13889
https://doi.org/10.1021/ja205684a
26 Park C W, Ah C S, Ahn C G, et al.Analysis of configuration of surface-immobilized proteins by Si nanochannel field effect transistor biosensor. Procedia Chemistry, 2009, 1(1): 674–677
https://doi.org/10.1016/j.proche.2009.07.168
27 Kim A, Ah C S, Park C W, et al.Direct label-free electrical immunodetection in human serum using a flow-through-apparatus approach with integrated field-effect transistors. Biosensors & Bioelectronics, 2010, 25(7): 1767–1773
https://doi.org/10.1016/j.bios.2009.12.026
28 Stern E, Wagner R, Sigworth F J, et al.Importance of the Debye screening length on nanowire field effect transistor sensors. Nano Letters, 2007, 7(11): 3405–3409
https://doi.org/10.1021/nl071792z
[1] Amir ALLAHBAKHSHI,Masih ALLAHBAKHSHI. Vibration analysis of nano-structure multilayered graphene sheets using modified strain gradient theory[J]. Front. Mech. Eng., 2015, 10(2): 187-197.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed