|
|
Fault diagnosis of spur gearbox based on random forest and wavelet packet decomposition |
Diego CABRERA1,2,*( ),Fernando SANCHO2,René-Vinicio SÁNCHEZ1,Grover ZURITA1,3,Mariela CERRADA1,4,Chuan LI1,5,Rafael E. VÁSQUEZ6 |
1. Departamento de Ingeniería Mecánica, Universidad Politécnica Salesiana, Cuenca, Ecuador 2. Departamento de Ciencias de la Computación e Inteligencia Artificial, Universidad de Sevilla, España 3. Departamento de Ingeniería Electro-Mecánica, Universidad Privada Boliviana, Cochabamba, Bolivia 4. Departamento de Sistemas de Control, Universidad de Los Andes, Mérida, Venezuela 5. Research Center of System Health Maintenance, Chongqing Technology and Business University, Chongqing 400067, China 6. Facultad de Ingeniería Mecánica, Universidad Pontificia Bolivariana, Medellín, Colombia |
|
|
Abstract This paper addresses the development of a random forest classifier for the multi-class fault diagnosis in spur gearboxes. The vibration signal’s condition parameters are first extracted by applying the wavelet packet decomposition with multiple mother wavelets, and the coefficients’ energy content for terminal nodes is used as the input feature for the classification problem. Then, a study through the parameters’ space to find the best values for the number of trees and the number of random features is performed. In this way, the best set of mother wavelets for the application is identified and the best features are selected through the internal ranking of the random forest classifier. The results show that the proposed method reached 98.68% in classification accuracy, and high efficiency and robustness in the models.
|
Keywords
fault diagnosis
spur gearbox
wavelet packet decomposition
random forest
|
Corresponding Author(s):
Diego CABRERA
|
Online First Date: 09 September 2015
Issue Date: 23 September 2015
|
|
1 |
Walha L, Fakhfakh T, Haddar M. Backlash effect on dynamic analysis of a two-stage spur gear system. Journal of Failure Analysis and Prevention, 2006, 6(3): 60–68
https://doi.org/10.1007/BF02692330
|
2 |
Abbes M S, Fakhfakh T, Haddar M, Effect of transmission error on the dynamic behaviour of gearbox housing. International Journal of Advanced Manufacturing Technology, 2007, 34(3–4): 211–218
https://doi.org/10.1007/s00170-006-0582-7
|
3 |
Tian Z, Zuo M, Wu S. Crack propagation assessment for spur gears using model-based analysis and simulation. Journal of Intelligent Manufacturing, 2012, 23(2): 239–253
https://doi.org/10.1007/s10845-009-0357-8
|
4 |
Ebersbach S, Peng Z. Fault diagnosis of gearbox based on monitoring of lubricants, wear debris, and vibration. In: Wang Q, Chung Y W, eds. Encyclopedia of Tribology. New York: Springer, 2013, 1059–1064
|
5 |
Rgeai M, Gu F, Ball A, Gearbox fault detection using spectrum analysis of the drive motor current signal. In: Kiritsis D, Emmanouilidis C, Koronios A, , eds. Engineering Asset Lifecycle Management. London: Springer, 2010, 758–769
https://doi.org/10.1007/978-0-85729-320-6_88
|
6 |
Hong L, Dhupia J S. A time domain approach to diagnose gearbox fault based on measured vibration signals. Journal of Sound and Vibration, 2014, 333(7): 2164–2180
https://doi.org/10.1016/j.jsv.2013.11.033
|
7 |
Rafiee J, Arvani F, Harifi A, Intelligent condition monitoring of a gearbox using artificial neural network. Mechanical Systems and Signal Processing, 2007, 21(4): 1746–1754
https://doi.org/10.1016/j.ymssp.2006.08.005
|
8 |
Sanchez R, Arpi A, Minchala L. Fault identification and classification of spur gearbox with feed forward back propagation artificial neural network. In: Proceedings of the 2012 Andean Region International Conference. Washington, D.C.: IEEE, 2012, 215
https://doi.org/10.1109/Andescon.2012.63
|
9 |
Barakat M, Lefebvre D, Khalil M, Parameter selection algorithm with self-adaptive growing neural network classifier for diagnosis issues. International Journal of Machine Learning and Cybernetics, 2013, 4(3): 217–233
https://doi.org/10.1007/s13042-012-0089-5
|
10 |
Yang B S, Han T, An J L. ART-KOHONEN neural network for fault diagnosis of rotating machinery. Mechanical Systems and Signal Processing, 2004, 18(3): 645–657
https://doi.org/10.1016/S0888-3270(03)00073-6
|
11 |
Jiang Z, Fu H, Li L. Support vector machine for mechanical faults classification. Journal of Zhejiang University SCIENCE A, 2005, 6(5): 433–439
https://doi.org/10.1631/jzus.2005.A0433
|
12 |
Jiao B, Xu Z. Multi-classification LSSVM application in fault diagnosis of wind power gearbox. In: Zhang T, ed. Mechanical Engineering and Technology. Berlin: Springer, 2012, 125: 277–283
|
13 |
Kang Y, Wang C, Chang Y. Gear fault diagnosis in time domains by using Bayesian networks. In: Melin P, Castillo O, Ramirez E, , eds. Analysis and Design of Intelligent Systems using Soft Computing Techniques. Berlin: Springer, 2007, 41: 618–627
|
14 |
Breiman L, Friedman J, Olshen R, Classification and regression trees. The Wadsworth and Brooks-Cole statistics-probability series. Boca Raton: Chapman & Hall, 1984
|
15 |
Breiman L. Random forests. Machine Learning, 2001, 45(1): 5–32
https://doi.org/10.1023/A:1010933404324
|
16 |
Criminisi A, Shotton J. Classification forests. In: Criminisi A, Shotton J, eds. Decision Forests for Computer Vision and Medical Image Analysis. London: Springer, 2013, 25–45
https://doi.org/10.1007/978-1-4471-4929-3_4
|
17 |
Han X, Yang B S, Lee S J. Application of random forest algorithm in machine fault diagnosis. In: Mathew J, Kennedy J, Ma L, , eds. Engineering Asset Management. London: Springer, 2006, 779–784
https://doi.org/10.1007/978-1-84628-814-2_82
|
18 |
Yang B S, Di X, Han T. Random forests classifier for machine fault diagnosis. Journal of Mechanical Science and Technology, 2008, 22(9): 1716–1725
https://doi.org/10.1007/s12206-008-0603-6
|
19 |
Karabadji N, Khelf I, Seridi H, Genetic optimization of decision tree choice for fault diagnosis in an industrial ventilator. In: Fakhfakh T, Bartelmus W, Chaari F, , eds. Condition Monitoring of Machinery in Non-Stationary Operations. Berlin: Springer, 2012, 277–283
https://doi.org/10.1007/978-3-642-28768-8_29
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|