Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2017, Vol. 12 Issue (3) : 333-347    https://doi.org/10.1007/s11465-017-0435-0
RESEARCH ARTICLE
Multiple fault separation and detection by joint subspace learning for the health assessment of wind turbine gearboxes
Zhaohui DU1, Xuefeng CHEN1(), Han ZHANG1, Yanyang ZI1, Ruqiang YAN2
1. State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
2. School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China
 Download: PDF(1034 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The gearbox of a wind turbine (WT) has dominant failure rates and highest downtime loss among all WT subsystems. Thus, gearbox health assessment for maintenance cost reduction is of paramount importance. The concurrence of multiple faults in gearbox components is a common phenomenon due to fault induction mechanism. This problem should be considered before planning to replace the components of the WT gearbox. Therefore, the key fault patterns should be reliably identified from noisy observation data for the development of an effective maintenance strategy. However, most of the existing studies focusing on multiple fault diagnosis always suffer from inappropriate division of fault information in order to satisfy various rigorous decomposition principles or statistical assumptions, such as the smooth envelope principle of ensemble empirical mode decomposition and the mutual independence assumption of independent component analysis. Thus, this paper presents a joint subspace learning-based multiple fault detection (JSL-MFD) technique to construct different subspaces adaptively for different fault patterns. Its main advantage is its capability to learn multiple fault subspaces directly from the observation signal itself. It can also sparsely concentrate the feature information into a few dominant subspace coefficients. Furthermore, it can eliminate noise by simply performing coefficient shrinkage operations. Consequently, multiple fault patterns are reliably identified by utilizing the maximum fault information criterion. The superiority of JSL-MFD in multiple fault separation and detection is comprehensively investigated and verified by the analysis of a data set of a 750 kW WT gearbox. Results show that JSL-MFD is superior to a state-of-the-art technique in detecting hidden fault patterns and enhancing detection accuracy.

Keywords joint subspace learning      multiple fault diagnosis      sparse decomposition theory      coupling feature separation      wind turbine gearbox     
Corresponding Author(s): Xuefeng CHEN   
Just Accepted Date: 07 April 2017   Online First Date: 04 May 2017    Issue Date: 04 August 2017
 Cite this article:   
Zhaohui DU,Xuefeng CHEN,Han ZHANG, et al. Multiple fault separation and detection by joint subspace learning for the health assessment of wind turbine gearboxes[J]. Front. Mech. Eng., 2017, 12(3): 333-347.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-017-0435-0
https://academic.hep.com.cn/fme/EN/Y2017/V12/I3/333
Fig.1  Growth of installed wind capacity in China and the world from 2005 to 2015 [2]
Fig.2  WT subassembly failure rates [7]
Fig.3  Schematic of a typical WT gearbox with one low-speed planetary stage and two parallel stages
Fig.4  Distribution of the failure rates for a WT gearbox. Bearing components account for 70% of the failures, and the gears account for 26%. The top gearbox failure modes are concentrated in the HSS bearing, HSS gear, and IMS bearing [7]
Fig.5  Diagram of the proposed JSL strategy
Fig.6  Joint subspace learning algorithm
Fig.7  Expert knowledge-based multiple fault detection
Fig.8  Flowchart of the proposed JSL-MFD technique
Gear elementNo. of teethMate teethRatio
Ring gear9939
Planet gear
Sun pinion
IMS gear
IMS pinion
HSS gear
HSS pinion
39
21
82
23
88
22
99
39
23
82
22
88
5.71
3.57
4
Tab.1  Gear teeth number and ratio
Bearing elementBPFOBSFFTFBPFI
HSS-M or N8.4906.2340.42511.510
ISS-K0.7281.5630.1452.457
Tab.2  Bearing damage characteristic frequencies
Fig.9  Vibration signal of the defective gearbox and its various spectra: (a) Original waveforms; (b) zoomed-in views indicated by the dashed rectangle in (a); (c) power spectral density; (d) frequency spectrum with main energy; (e) envelope spectrum with fault information of interest. The overlaid red curve in (b) is the smoothed envelope signal. LSMF, ISMF, and HSMF denote the meshing frequencies related to LSS, IMS, and HSS, respectively. HSRF is the rotational frequency of the output shaft. BPFI-IS is the characteristic frequency of the ISS bearing K and BPFI-HS is related to the HSS bearing M or N
Fig.10  Various fault information distribution over joint subspaces: (a) IMS bearing K; (b) output shaft or HSS gear pinion; (c) HSS bearing M or K. The energy ratio is calculated by Eq. (10) in the envelope spectrum. The numbers in (a), (b), and (c) indicate the subspace labels corresponding to different fault patterns, with the optimal subspace levels indicated by the arrows
Fig.11  Subspace 110 and its feature information: (a) Extracted waveforms; (b) zoomed-in views indicated by the dashed rectangle in (a); (c) power spectral density; (d) frequency spectrum with main energy; (e) envelope spectrum with the fault information of interest. The overlaid red curve in (b) is the smoothed envelope signal. BPFI has the same frequency bins as those of BPFI-IS
Fig.12  Subspace 75 and its feature information: (a) Extracted waveforms; (b) zoomed-in views indicated by the dashed rectangle in (a); (c) power spectral density; (d) frequency spectrum with main energy; (e) envelope spectrum with fault information of interest. The overlaid red curve in (b) is the smoothed envelope signal, and the green rectangles indicate the repetitive waveforms. ISRF is the rotational frequency of the intermediate shaft
Fig.13  Subspace 10 and its feature information: (a) Extracted waveforms; (b) zoomed-in views indicated by the dashed rectangle in (a); (c) power spectral density; (d) frequency spectrum with main energy; (e) envelope spectrum with fault information of interest. The overlaid red curve in (b) is the smoothed envelope signal. BPFI has the same frequency bins as those of BPFI-HS
Fig.14  Three types of fault patterns: (a) Inner race of IMS bearings; (b) HSS pinion; (c) inner race of HSS bearings
Fig.15  Evolution of various subspace center frequencies versus number of iterations
Fig.16  Distribution of the resulting subspace set in the frequency domain. The upper blue curve is the original power spectral density. The term “mode” in VMD is changed to “subspace” in the main text to avoid terminology confusion
Fig.17  Various fault information distribution over VMD subspaces: (a) IMS bearing K; (b) output shaft or HSS gear pinion; (c) HSS bearing M or K. The energy ratio is based on the same formula shown in Fig. 8. The numbers in (a), (b), and (c) indicate the subspace labels corresponding to different fault patterns, with the optimal subspaces indicated by the red arrows
Fig.18  Subspace 4 and its feature information: (a) Extracted waveforms; (b) zoomed-in views indicated by the dashed rectangle in (a); (c) power spectral density; (d) frequency spectrum with main energy; (e) envelope spectrum with fault information of interest. The overlaid red curve in (b) is the smoothed envelope signal. The BPFI has the same frequency bins as those of BPFI-IS
Fig.19  Subspace 2 and its feature information: (a) Extracted waveforms; (b) zoomed-in views indicated by the dashed rectangle in (a); (c) power spectral density; (d) frequency spectrum with main energy; (e) envelope spectrum with fault information of interest. The overlaid red curve in (b) is the smoothed envelope signal. The green rectangles indicate the repetitive waveforms
Fig.20  Subspace 6 and its feature information: (a) Extracted waveforms; (b) zoomed-in views indicated by the dashed rectangle in (a); (c) power spectral density; (d) frequency spectrum with main energy; (e) envelope spectrum with fault information of interest. The overlaid red curve in (b) is the smoothed envelope signal
1 IEA Wind. IEA wind annual report for 2015. 2015. Retrieved from 
2 Global Wind Energy Council. Global statistics. 2015. Retrieved from 
3 Chen X, Yan R, Liu Y. Wind turbine condition monitoring and fault diagnosis in China. IEEE Instrumentation & Measurement Magazine, 2016, 19(2): 22–28 
https://doi.org/10.1109/MIM.2016.7462789
4 Liu W, Tang B, Han J, et al. The structure healthy condition monitoring and fault diagnosis methods in wind turbines: A review. Renewable & Sustainable Energy Reviews, 2015, 44: 466–472
https://doi.org/10.1016/j.rser.2014.12.005
5 Dinwoodie I, McMillan D, Revie M, et al. Development of a combined operational and strategic decision support model for offshore wind. Energy Procedia, 2013, 35: 157–166 
https://doi.org/10.1016/j.egypro.2013.07.169
6 World Wind Energy Association. Wind turbine maintenance & condition monitoring. Retrieved from: .
7 Sheng S. Gearbox Reliability Collaborative Update. Technical Report PR-5000-60141. 2013
8 Igba J, Alemzadeh K, Durugbo C, et al. Performance assessment of wind turbine gearboxes using in-service data: Current approaches and future trends. Renewable & Sustainable Energy Reviews, 2015, 50(6): 144–159
https://doi.org/10.1016/j.rser.2015.04.139
9 Li J, Chen X, Du Z, et al. A new noise-controlled second-order enhanced stochastic resonance method with its application in wind turbine drivetrain fault diagnosis. Renewable Energy, 2013, 60(4): 7–19
https://doi.org/10.1016/j.renene.2013.04.005
10 Tang B, Song T, Li F, et al. Fault diagnosis for a wind turbine transmission system based on manifold learning and Shannon wavelet support vector machine. Renewable Energy, 2014, 62(3):  1–9 
https://doi.org/10.1016/j.renene.2013.06.025
11 He G, Ding K, Li W, et al. A novel order tracking method for wind turbine planetary gearbox vibration analysis based on discrete spectrum correction technique. Renewable Energy, 2016, 87(Part 1): 364–375
https://doi.org/10.1016/j.renene.2015.10.036
12 Hu A, Yan X, Xiang L. A new wind turbine fault diagnosis method based on ensemble intrinsic time-scale decomposition and WPT-fractal dimension. Renewable Energy, 2015, 83: 767–778 
https://doi.org/10.1016/j.renene.2015.04.063
13 Feng Z, Liang M. Fault diagnosis of wind turbine planetary gearbox under nonstationary conditions via adaptive optimal kernel time frequency analysis. Renewable Energy, 2014, 66(3): 468–477
https://doi.org/10.1016/j.renene.2013.12.047
14 Teng W, Ding X, Zhang X, et al. Multi-fault detection and failure analysis of wind turbine gearbox using complex wavelet transform. Renewable Energy, 2016, 93: 591–598
https://doi.org/10.1016/j.renene.2016.03.025
15 Du Z, Chen X, Zhang H, et al. Sparse feature identification based on union of redundant dictionary for wind turbine gearbox fault diagnosis. IEEE Transactions on Industrial Electronics, 2015, 62(10): 6594–6605
https://doi.org/10.1109/TIE.2015.2464297
16 Wang J, Gao R X, Yan R. Integration of EEMD and ICA for wind turbine gearbox diagnosis. Wind Energy (Chichester, England), 2014, 17(5): 757–773 
https://doi.org/10.1002/we.1653
17 Li Z, Jiang Y, Hu C, et al. Recent progress on decoupling diagnosis of hybrid failures in gear transmission systems using vibration sensor signal: A review. Measurement, 2016, 90: 4–19 
https://doi.org/10.1016/j.measurement.2016.04.036
18 Zhang H, Chen X, Du Z, et al. Sparsity-aware tight frame learning for rotary machine fault diagnosis. In: Proceedings of 2016 IEEE International Instrumentation and Measurement Technology Conference. IEEE, 2016, 1–6
https://doi.org/10.1109/I2MTC.2016.7520471
19 Cai J, Ji H, Shen Z, et al. Data-driven tight frame construction and image denoising. Applied and Computational Harmonic Analysis, 2014, 37(1): 89–105
https://doi.org/10.1016/j.acha.2013.10.001
20 Sheng S, Veers P. Wind turbine drivetrain condition monitoring—An overview. In: Proceedings of the Machinery Failure Prevention Technology (MFPT): The Applied Systems Health Management Conference. Dayton, 2011
21 Sheng S. Wind Turbine Gearbox Condition Monitoring Round Robin Study Vibration Analysis. Technical Report TP-5000-54530. 2012
22 Zappalá D, Tavner P J, Crabtree C J, et al. Side-band algorithm for automatic wind turbine gearbox fault detection and diagnosis. IET Renewable Power Generation, 2014, 8(4): 380–389 
https://doi.org/10.1049/iet-rpg.2013.0177
23 Errichello R, Muller J. Gearbox Reliability Collaborative Gearbox 1 Failure Analysis Report. Technical Report NREL/SR-5000-53062. 2012
24 Dragomiretskiy K, Zosso D. Variational mode decomposition. IEEE Transactions on Signal Processing, 2014, 62(3): 531–544
https://doi.org/10.1109/TSP.2013.2288675
25 Chen X, Du Z, Li J, et al. Compressed sensing based on dictionary learning for extracting impulse components. Signal Processing, 2014 , 96A: 94–109
https://doi.org/10.1016/j.sigpro.2013.04.018
26 Zhang H, Chen X, Du Z, et al. Kurtosis based weighted sparse model with convex optimization technique for bearing fault diagnosis. Mechanical Systems and Signal Processing, 2016, 80: 349–376
https://doi.org/10.1016/j.ymssp.2016.04.033
27 Zhang H, Chen X, Du Z, et al. Nonlocal sparse model with adaptive structural clustering for feature extraction of aero-engine bearings. Journal of Sound and Vibration, 2016, 368: 223–248
https://doi.org/10.1016/j.jsv.2016.01.017
28 Zhang H, Chen X, Du Z, et al. Sparsity-aware tight frame  learning with adaptive subspace recognition for multiple fault diagnosis. Mechanical Systems and Signal Processing, 2017, 94: 499–524 
https://doi.org/10.1016/j.ymssp.2017.02.043
[1] Lingli JIANG, Zhenyong DENG, Fengshou GU, Andrew D. BALL, Xuejun LI. Effect of friction coefficients on the dynamic response of gear systems[J]. Front. Mech. Eng., 2017, 12(3): 397-405.
[2] Pengxing YI,Peng HUANG,Tielin SHI. Numerical analysis and experimental investigation of modal properties for the gearbox in wind turbine[J]. Front. Mech. Eng., 2016, 11(4): 388-402.
[3] Pengxing YI,Lijian DONG,Tielin SHI. Multi-objective genetic algorithms based structural optimization and experimental investigation of the planet carrier in wind turbine gearbox[J]. Front. Mech. Eng., 2014, 9(4): 354-367.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed