Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2017, Vol. 12 Issue (3) : 397-405    https://doi.org/10.1007/s11465-017-0415-4
RESEARCH ARTICLE
Effect of friction coefficients on the dynamic response of gear systems
Lingli JIANG1,2(), Zhenyong DENG1, Fengshou GU2, Andrew D. BALL2, Xuejun LI1
1. Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment, Hunan University of Science and Technology, Xiangtan 411201, China
2. Centre for Efficiency and Performance Engineering, University of Huddersfield, Huddersfield HD1 3DH, UK
 Download: PDF(524 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The inevitable deterioration of the lubrication conditions in a gearbox in service can change the tribological properties of the meshing teeth. In turn, such changes can significantly affect the dynamic responses and running status of gear systems. This paper investigates such an effect by utilizing virtual prototype technology to model and simulate the dynamics of a wind turbine gearbox system. The change in the lubrication conditions is modeled by the changes in the friction coefficients, thereby indicating that poor lubrication causes not only increased frictional losses but also significant changes in the dynamic responses. These results are further demonstrated by the mean and root mean square values calculated by the simulated responses under different friction coefficients. In addition, the spectrum exhibits significant changes in the first, second, and third harmonics of the meshing components. The findings and simulation method of this study provide theoretical bases for the development of accurate diagnostic techniques.

Keywords dynamic response      friction coefficient      wind loads      wind turbine gearbox     
Corresponding Author(s): Lingli JIANG   
Just Accepted Date: 23 December 2016   Online First Date: 12 January 2017    Issue Date: 04 August 2017
 Cite this article:   
Lingli JIANG,Zhenyong DENG,Fengshou GU, et al. Effect of friction coefficients on the dynamic response of gear systems[J]. Front. Mech. Eng., 2017, 12(3): 397-405.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-017-0415-4
https://academic.hep.com.cn/fme/EN/Y2017/V12/I3/397
Fig.1  3D gears model
Gear typeModule/mmNumber of teethPressure angle/(° )Addendum coefficientClearance coefficientTooth width/mm
Driving gear10962010.25200
Driven gear10272010.25200
Tab.1  Gears parameters
Fig.2  Gear dynamic model
Fig.3  Drive settings
Fig.4  Load settings
Fig.5  Angular velocity of the driven gear
Fig.6  Total meshing force. (a) Time domain; (b) frequency domain
ItemSimulationTheoreticalRelative error
Angular velocity, (º )/s769076800.130%
Total meshing force, N126530132252.34.330%
First frequency, Hz576.15760.017%
Tab.2  Comparisons of the simulated and theoretical calculations
Fig.7  Meshing force in the X direction when m=0.1. (a) Time domain; (b) frequency domain
Fig.8  Meshing force in the Y direction when m=0.1. (a) Time domain; (b) frequency domain
Fig.9  Mean values of meshing force under different friction coefficients. (a) X direction; (b) Y direction
Fig.10  RMS values of meshing force under different friction coefficients. (a) X direction; (b) Y direction
Fig.11  Amplitudes at meshing harmonic frequencies in the X direction under different friction coefficients. (a) First-order frequency; (b) second-order frequency; (c) third-order frequency
Fig.12  Amplitudes at meshing harmonic frequencies in the Y direction under different friction coefficients. (a) First-order frequency; (b) second-order frequency; (c) third-order frequency
Fig.13  Angular acceleration of a driven gear in Z direction when m=0.1. (a) Time domain; (b) frequency domain
Fig.14  Mean and RMS values of angular acceleration in Z direction under different friction coefficients. (a) Average value; (b) RMS
Fig.15  Amplitudes of angular acceleration at meshing harmonic frequencies in Z direction under different friction coefficients. (a) First-order frequency; (b) second-order frequency; (c) third-order frequency
Fig.16  Mean values of the meshing force under different friction coefficients and different loads. (a) X direction; (b) Y direction
Fig.17  RMS values of meshing force under different friction coefficients and different loads. (a) X direction; (b) Y direction
Fig.18  Amplitudes of the meshing harmonic frequencies in the X direction under different friction coefficients and different loads. (a) First-order frequency; (b) second-order frequency; (c) third-order frequency
Fig.19  Amplitudes of the meshing harmonic frequencies in the Y direction under different friction coefficients and different loads. (a) First-order frequency; (b) second-order frequency; (c) third-order frequency
Fig.20  (a) Mean and (b) RMS values of angular acceleration in the Z direction under different friction coefficients and different loads
Fig.21  Amplitudes of the meshing harmonic frequencies in the Z direction under different friction coefficients and different loads. (a) First-order frequency; (b) second-order frequency; (c) third-order frequency
1 Facing up to the Gearbox Challenge: A survey of gearbox failure and collected industry Knowledge. Windpower Monthly, 2005, 21 (11)
2 Antoni J, Randall R B. Differential diagnosis of gear and bearing faults. Journal of Vibration and Acoustics, 2002, 124(2): 165–171 
https://doi.org/10.1115/1.1456906
3 Gao X. Finite element contact analysis of meshing gears in gearbox of wind turbine generator. Dissertation for the Doctoral Degree. Dalian: Dalian University of Technology, 2008 (in Chinese)
4 Shan G. Research on condition monitoring and fault diagnosis of MW wind turbine. Dissertation for the Doctoral Degree. Shenyang: Shenyang University of Technology, 2011 (in Chinese)
5 Velex P, Cahouet V. Experimental and numerical investigations on the influence of tooth friction in spur and helical gear dynamics. Journal of Mechanical Design, 2000, 122(4): 515–522
https://doi.org/10.1115/1.1320821
6 Vaishya M, Houser R. Modeling and analysis of sliding friction in gear dynamics. In: Proceedings of the ASME Design Engineering Technical Conferences. Baltemore, 2000, 200, 601–610
7 Houser D R, Vaishya M, Sorenson J D. Vibro-Acoustic Effects of Friction in Gears: An Experimental Investigation. SAE Technical Paper 2001-01-1516. 2001
8 He S, Gunda R, Singh R. Effect of sliding friction on the dynamics of spur gear pair with realistic time-varying stiffness. Journal of Sound and Vibration, 2007, 301(3–5): 927–949
https://doi.org/10.1016/j.jsv.2006.10.043
9 Blankenship G W, Singh R. A comparative study of selected gear mesh force interface dynamic models. In: Proceedings of the 6th ASME International Power Transmission and Gearing Conference. Phoenix, 1992
10 Chen L. Dynamic Analysis of Mechanical System and ADAMS Application. Beijing: Tsinghua University Press, 2005 (in Chinese)
11 Yin S. Study on mechanical properties locomotive traction gear based on tribology. Dissertation for the Doctoral Degree. Dalian: Dalian Jiaotong University, 2013 (in Chinese)
12 Xu H. Development of a generalized mechanical efficiency prediction methodology for gear pairs. Dissertation for the Doctoral Degree. Ohio: The Ohio State University, 2005
13 Velex P, Cahouet V. Experimental and numerical investigations on the influence of tooth friction in spur and helical gear dynamics. Journal of Mechanical Design, 2000, 122(4): 515–522
https://doi.org/10.1115/1.1320821
14 Rebbechi B, Oswald F B, Townsend D P. Measurement of Gear Tooth Dynamic Friction. NASA Technical Report ARL-TR-1165. 1996
15 Liu G. Nonlinear dynamics of multi-mesh gear systems. Dissertation for the Doctoral Degree. Ohio: The Ohio State University, 2007
16 Liang X. Dynamic characteristics research based on load spectrum of megawatt level wind turbine gearbox. Dissertation for the Doctoral Degree. Chongqing: Chongqing University, 2013 (in Chinese)
[1] Zhaohui DU, Xuefeng CHEN, Han ZHANG, Yanyang ZI, Ruqiang YAN. Multiple fault separation and detection by joint subspace learning for the health assessment of wind turbine gearboxes[J]. Front. Mech. Eng., 2017, 12(3): 333-347.
[2] Pengxing YI,Peng HUANG,Tielin SHI. Numerical analysis and experimental investigation of modal properties for the gearbox in wind turbine[J]. Front. Mech. Eng., 2016, 11(4): 388-402.
[3] Pengxing YI,Lijian DONG,Tielin SHI. Multi-objective genetic algorithms based structural optimization and experimental investigation of the planet carrier in wind turbine gearbox[J]. Front. Mech. Eng., 2014, 9(4): 354-367.
[4] Fakher CHAARI, Mohamed Slim ABBES, Fernando Viadero RUEDA, Alfonso Fernandez del RINCON, Mohamed HADDAR. Analysis of planetary gear transmission in non-stationary operations[J]. Front Mech Eng, 2013, 8(1): 88-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed