Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2015, Vol. 10 Issue (3) : 306-310    https://doi.org/10.1007/s11465-015-0349-7
RESEARCH ARTICLE
Determination of energy dissipation of a spider silk structure under impulsive loading
Jorge ALENCASTRE(),Carlos MAGO,Richard RIVERA
Pontificia Universidad Católica del Perú, Lima, Perú
 Download: PDF(3186 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Various researches and studies have demonstrated that spider silk is much stronger and more deformable than a steel string of the same diameter from a mechanical approach. These excellent properties have caused many scientific disciplines to get involved, such as bio-mechanics, bio-materials and bio-mimetics, in order to create a material of similar properties and characteristics. It should be noted that the researches and studies have been oriented mainly as a quasi-static model. For this research, the analysis has taken a dynamic approach and determined the dissipation energy of a structure which is made of spider silk “Dragline” and produced by the Argiope-Argentata spider, through an analytical-experimental way, when being subjected to impulsive loading. Both experimental and analytical results, the latter obtained by using adjusted models, have given high levels of dissipation energy during the first cycle of vibration, which are consistent with the values suggested by other authors.

Keywords dissipation energy      impact      visco-elastic material      spider silk     
Corresponding Author(s): Jorge ALENCASTRE   
Online First Date: 14 September 2015    Issue Date: 28 September 2015
 Cite this article:   
Jorge ALENCASTRE,Carlos MAGO,Richard RIVERA. Determination of energy dissipation of a spider silk structure under impulsive loading[J]. Front. Mech. Eng., 2015, 10(3): 306-310.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-015-0349-7
https://academic.hep.com.cn/fme/EN/Y2015/V10/I3/306
Fig.1  Three-string structure of spider silk
Fig.2  Equipment and instruments used during the dynamic tests
Fig.3  Conceptual model of the structure
Fig.4  Comparison of analytical and experimental results
Fig.5  Comparison of adjusted analytical results and experimental results
Cycle T/s ?Wd/J ?WD/% ?WD/Cycle/%
1st 0.1172 4.614e-7 47.37 65.59
2nd 0.1172 1.686e-7 17.30 23.97
3rd 0.1172 7.350e-8 7.55 10.44
Total 0.1172 7.035e-7 72.22 100.00
Tab.1  Dissipated energy per cycle
1 Gosline  J M, Guerette  P A, Ortlepp  C S,  The mechanical design of spider silks: From fibroin sequence to mechanical function. The Journal of experimental biology, 1999, 202(Pt 23): 3295–3303
pmid: 10562512
2 Friedrichr  B. Vibration and spider behavior. In: Haupt  J, ed. XI Europäisches Arachnologisches Colloquium. Berline, 1988 (in German)
3 Agnarsson  I, Kuntner  M, Blackledge  T A. Bioprospecting finds the toughest biological material: Extraordinary silk from a giant riverine orb spider. Toughest Biomaterial, 2010, 5(9): e11234
https://doi.org/10.1371/journal.pone.0011234
4 Anita  H. The Wonderful World of arachnids. Mexico City: Fondo de Cultura Económica, 1993 (in Spanish)
5 Vollrath  F. Strength and structure of spiders’ silks. Review in Molecular Biotechnology, 2000, 74(2): 67–83
https://doi.org/10.1016/S1389-0352(00)00006-4 pmid: 11763504
6 Ko  F K, Jovicic  J. Modeling of mechanical properties and structural design of spider web. Biomacromolecules, 2004, 5(3): 780–785
https://doi.org/10.1021/bm0345099 pmid: 15132661
7 Lin  L H, Edmonds  D T, Vollrath  F. Structural engineering of an orb-spider’s web. Nature, 1995, 373(6510): 146–148
https://doi.org/10.1038/373146a0
8 Alencastre  J, Vera Mechan  J. Caracterización de los parámetros dinámicos de una estructura hecha de seda de araña. In: 11° Congreso Interamericano de Computación. 2013 (in Spanish)
9 Pérez Rigueiro  J M, Elicesy  G V. Strategies of Nature in the Design of Materials: Spider Silk. Online Library of Iberian Arachnology Group, 2002 (in Spanish)
10 Sensenig  A T, Lorentz  K A, Kelly  S P,  Spider orb webs rely on radial threads to absorb prey kinetic energy. Journal of the Royal Society, Interface, 2012, 9(73): 1880–1891
https://doi.org/10.1098/rsif.2011.0851 pmid: 22431738
11 Blamires  S J, Wu  C L, Blackledge  T A,  Post-secretion processing influences spider silk performance. Journal of the Royal Society, Interface, 2012, 9(75): 2479–2487
https://doi.org/10.1098/rsif.2012.0277 pmid: 22628213
[1] Xiaojun GU, Xiuzhong SU, Jun WANG, Yingjie XU, Jihong ZHU, Weihong ZHANG. Improvement of impact resistance of plain-woven composite by embedding superelastic shape memory alloy wires[J]. Front. Mech. Eng., 2020, 15(4): 547-557.
[2] Xumin GUO, Jin ZENG, Hui MA, Chenguang ZHAO, Lin QU, Bangchun WEN. Dynamic characteristics of a shrouded blade with impact and friction[J]. Front. Mech. Eng., 2020, 15(2): 209-226.
[3] K. SHANTHALA,T. N. SREENIVASA. Review on electromagnetic welding of dissimilar materials[J]. Front. Mech. Eng., 2016, 11(4): 363-373.
[4] Amir M. RAHMANI,Elizabeth K. ERVIN. Parameter studies on impact in a lap joint[J]. Front. Mech. Eng., 2015, 10(1): 64-77.
[5] Zhaomiao LIU, Huamin LIU, Xin LIU, . Dynamical analysis of droplet impact spreading on solid substrate[J]. Front. Mech. Eng., 2010, 5(3): 308-315.
[6] Xingjun WANG, Daniel GUYOMAR, Kaori YUSE, Mickaël LALLART, Lionel PETIT, . Impact force detection using an energy flow estimator with piezoelectric sensors[J]. Front. Mech. Eng., 2010, 5(2): 194-203.
[7] ZHANG Hongzhuang, ZENG Ping, HUA Shunming, CHENG Guangming, YANG Zhigang. Impact drive rotary precision actuator with piezoelectric bimorphs[J]. Front. Mech. Eng., 2008, 3(1): 71-75.
[8] MA Yan-yan, CHENG Xian-hua. The cavitation erosion damage process of dynamically loaded journal bearings[J]. Front. Mech. Eng., 2006, 1(4): 461-464.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed