Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2015, Vol. 10 Issue (4) : 418-423    https://doi.org/10.1007/s11465-015-0362-x
RESEARCH ARTICLE
LCF behavior and life prediction method of a single crystal nickel-based superalloy at high temperature
Zhihua ZHANG,Huichen YU(),Chengli DONG
Beijing Key Laboratory of Aeronautical Materials Testing and Evaluation, Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095, China
 Download: PDF(508 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Low cycle fatigue tests were conducted on the single crystal nickel-based superalloy, DD6, with different crystallographic orientations (i.e., [001], [011], and [111]) and strain dwell types (i.e., tensile, compressive, and balanced types) at a certain high temperature. Given the material anisotropy and mean stress, both orientation factor and stress range were introduced to the Smith, Watson, and Topper (SWT) stress model to predict the fatigue life. Experimental results indicated that the fatigue properties of DD6 depend on both crystallographic orientation and loading types. The fatigue life of the tensile, compressive, and balanced strain dwell tests are shorter than those of continuous cycling tests without strain dwell because of the important creep effect. The predicted results of the proposed modified SWT stress method agree well with the experimental data.

Keywords life prediction      single crystal superalloy      low cycle fatigue (LCF)      crystallographic orientation      strain dwell     
Corresponding Author(s): Huichen YU   
Online First Date: 23 November 2015    Issue Date: 03 December 2015
 Cite this article:   
Zhihua ZHANG,Huichen YU,Chengli DONG. LCF behavior and life prediction method of a single crystal nickel-based superalloy at high temperature[J]. Front. Mech. Eng., 2015, 10(4): 418-423.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-015-0362-x
https://academic.hep.com.cn/fme/EN/Y2015/V10/I4/418
Fig.1  Representative microstructure of the superalloy
Orientation Dwell type/s Strain range/%
[001] 0/0 1.0, 1.2, 1.4, 1.6, 2.0, 2.4
[011] 0/0 0.6, 0.8, 1.0, 1.2, 1.6
[111] 0/0 0.4, 0.6, 0.8, 1.2, 1.6
[001] 60/0 1.0, 1.2, 1.4, 1.6, 2.0, 2.4
[001] 0/60 1.0, 1.2, 1.4, 1.6, 2.0, 2.4
[001] 30/30 1.0, 1.2, 1.4, 1.6, 2.0, 2.4
Tab.1  High-temperature LCF test matrix of the superalloy at 980 °C under the strain ratio of –1/s
Fig.2  Cyclic stress-strain response of the DD6 superalloy at 980 °C
Orientation E/GPa K n
[001] 80.5 2004.7 0.113
[011] 145.0 1993.6 0.138
[111] 217.5 1541.6 0.142
Tab.2  Cyclic strength coefficient and cyclic strain hardening index of the DD6 superalloy at 980 °C
Fig.3  Cyclic stress response of the DD6 superalloy with [001] orientation at 980 °C
Fig.4  Fatigue life on a strain amplitude basis in different orientations at 980 °C
Fig.5  Fatigue life on a stress amplitude basis in different orientations at 980 °C
Fig.6  Fatigue life on a strain amplitude basis in different strain dwells at 980 °C
Fig.7  Fatigue life on a stress amplitude basis in different strain dwells at 980 °C
Fig.8  Experimental data vs. prediction results from the modified SWT model at 980 °C. (a) Li’s modified SWT model; (b) present modified SWT model
Model A/MPa2 a B/MPa b
Li’s 2103194.225 −0.2487 2.1319 −0.2845
Present study 2010505.950 −0.2463 2.1404 −0.3024
Tab.3  Material constants of the modified SWT model
1 Li  S, Smith  D J. High temperature fatigue-creep behaviour of single crystal SRR99 nickel base superalloys: Part 1—Cyclic mechanical response. Fatigue & Fracture of Engineering Materials & Structure, 1995, 18(5): 617–629
https://doi.org/10.1111/j.1460-2695.1995.tb01422.x
2 Versnyder  F L, Shank  M E. Development of columnar grain and single crystal high temperature materials through directional solidification. Materials Science and Engineering, 1970, 6(4): 213–247
https://doi.org/10.1016/0025-5416(70)90050-9
3 Ma  X, Shi  H, Gu  J, . Temperature effect on low-cycle fatigue behavior of nickel-based single crystalline superalloy. Acta Mechanica Solida Sinica, 2008, 21(4): 289–297
4 Li  S, Smith  D J. Development of anisotropic constitutive model for single-crystal superalloy for combined fatigue and creep loading. International Journal of Mechanical Sciences, 1998, 40(10): 937–948
https://doi.org/10.1016/S0020-7403(97)00136-7
5 Yue  Z, Yang  Z, Lu  Z. Life prediction model for a nickel-base single crystal superalloy DD3. Chinese Journal of Aeronautics, 2002, 15(4): 239–243
https://doi.org/10.1016/S1000-9361(11)60159-3
6 Li  S, Ellison  E G, Smith  D J. The influence of orientation on the elastic and low cycle fatigue properties of several single crystal nickel base superalloys. The Journal of Strain Analysis for Engineering Design, 1994, 29(2): 147–153
https://doi.org/10.1243/03093247V292147
7 Yu  H, Li  Y, Zhang  S, . LCF behavior and life evaluation of a single crystal nickel base superalloy under different dwell conditions. In: Proceedings of 28th International congress of the Aeronautical Sciences. 2012, 1–8
8 Dong  C, Yu  H, Li  Y, . Life modeling of anisotropic fatigue behavior of a single crystal nickel-base superalloy. International Journal of Fatigue, 2014, 61: 21–27
https://doi.org/10.1016/j.ijfatigue.2013.11.026
9 Li  S, Smith  D J. High temperature fatigue-creep behaviour of single crystal SRR99 nickel base superalloys: Part 2—Fatigue-creep life behaviour. Fatigue & Fracture of Engineering Materials & Structure, 1995, 18(5): 631–643
https://doi.org/10.1111/j.1460-2695.1995.tb01423.x
10 Smith  K N, Watson  P, Topper  T H. A stress-strain function for the fatigue of metals. Journal of Materials, 1970, 5: 767–778
11 Ince  A, Glinka  G. A modification of Morrow and Smith-Watson-Topper mean stress correction models. Fatigue & Fracture of Engineering Materials & Structure, 2011, 34(11): 854–867
https://doi.org/10.1111/j.1460-2695.2011.01577.x
[1] Wenkun XIE, Fengzhou FANG. Crystallographic orientation effect on cutting-based single atomic layer removal[J]. Front. Mech. Eng., 2020, 15(4): 631-644.
[2] Jorge Alberto Rodriguez DURAN,Ronney Mancebo BOLOY,Rafael Raider LEONI. Some remarks on the engineering application of the fatigue crack growth approach under nonzero mean loads[J]. Front. Mech. Eng., 2015, 10(3): 255-262.
[3] Tahir MAHMOOD, Sangarapillai KANAPATHIPILLAI, Mahiuddin CHOWDHURY. A model for creep life prediction of thin tube using strain energy density as a function of stress triaxiality under quasi-static loading employing elastic-creep & elastic-plastic-creep deformation[J]. Front Mech Eng, 2013, 8(2): 181-186.
[4] SHANG De-guang, SUN Guo-qin, DENG Jing, YAN Chu-liang. Nonlinear cumulative damage model for multiaxial fatigue[J]. Front. Mech. Eng., 2006, 1(3): 265-269.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed