|
|
Hierarchical parameter estimation of DFIG and drive train system in a wind turbine generator |
Xueping PAN, Ping JU( ), Feng WU, Yuqing JIN |
College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China |
|
|
Abstract A new hierarchical parameter estimation method for doubly fed induction generator (DFIG) and drive train system in a wind turbine generator (WTG) is proposed in this paper. Firstly, the parameters of the DFIG and the drive train are estimated locally under different types of disturbances. Secondly, a coordination estimation method is further applied to identify the parameters of the DFIG and the drive train simultaneously with the purpose of attaining the global optimal estimation results. The main benefit of the proposed scheme is the improved estimation accuracy. Estimation results confirm the applicability of the proposed estimation technique.
|
Keywords
wind turbine generator
DFIG
drive train system
hierarchical parameter estimation method
trajectory sensitivity technique
|
Corresponding Author(s):
Ping JU
|
Just Accepted Date: 16 March 2017
Online First Date: 30 March 2017
Issue Date: 04 August 2017
|
|
1 |
Rose J, Hiskens I A. Estimating wind turbine parameters and qualifying their effects on dynamic behavior. In: Proceedings of 2008 IEEE Power and Energy Society General Meeting Conversion and Delivery of Electrical Energy in the 21st Century. Pennsylvania, 2008, 1–7
https://doi.org/10.1109/PES.2008.4596862
|
2 |
Pan X, Ju P, Xu Q , et al.. A two-step method for estimating DFIG parameters in a wind turbine and the measurement selection. Proceedings of the CSEE, 2013, 33(13): 116–126 (in Chinese)
|
3 |
IEEE Guide: Test Procedures for Synchronous Machines. IEEE Standard 115-2009, 2010
|
4 |
IEEE Guide: Identification, Testing, and Evaluation of the Dynamic Performance of Excitation Control Systems. IEEE Standard 421.2-1990, 1990
|
5 |
Asmine M, Brochu J, Fortmann J , et al.. Model validation for wind turbine generator models. IEEE Transactions on Power Systems, 2011, 26(3): 1769–1782
https://doi.org/10.1109/TPWRS.2010.2092794
|
6 |
Marvik J I, Endegnanew A G. Wind turbine model validation with measure. Energy Procedia, 2012, 24: 143–150
https://doi.org/10.1016/j.egypro.2012.06.095
|
7 |
Jiménez F, Vigueras-Rodriguez A, Gómez-Lázaro E, et al.. Validation of a mechanical model for fault ride-through: Application to a Gamesa G52 commercial wind turbine. IEEE Transactions on Energy Conversion, 2013, 28(3): 707–715 doi:10.1109/TEC.2013.2267493
|
8 |
Jiménez F, Gómez-Lázaro E, Fuentes J A , et al.. Validation of a double fed induction generator wind turbine model and wind farm verification following the Spanish grid code. Wind Energy (Chichester, England), 2012, 15(4): 645–659 doi:10.1002/we.498
|
9 |
Jiménez F, Gómez-Lázaro E, Fuentes J A , et al.. Validation of a DFIG wind turbine model submitted to two-phase voltage dips following the Spanish grid code. Renewable Energy, 2013, 57: 27–34 doi:10.1016/j.renene.2012.12.032
|
10 |
Trilla L, Gomis-Bellmunt O, Junyent-Ferré A, et al.. Modeling and validation of DFIG 3-MW wind turbine using field test data of balanced and unbalanced voltage sags. IEEE Transactions on Power Systems, 2011, 2(4): 509–519
https://doi.org/10.1109/TSTE.2011.2155685
|
11 |
Brochu J, Larose C, Gagnon R . Validation of single- and multiple-machine equivalents for modeling wind power plants. IEEE Transactions on Energy Conversion, 2010, 26(2): 532–541
https://doi.org/10.1109/TEC.2010.2087337
|
12 |
Pedersen J K, Helgelsen-Pedersen K O, Kjølstad Poulsen N, et al.. Contribution to a dynamic wind turbine model validation from a wind farm islanding experiment. Electric Power Systems Research, 2003, 64(1): 41–51 doi:10.1016/S0378-7796(02)00144-X
|
13 |
van der Veen G J , van Wingerden J W , Fleming P A , et al.. Global data-driven modelling of wind turbines in the presence of turbulence. Control Engineering Practice, 2013, 21(4): 441–454 doi:10.1016/j.conengprac.2012.12.008
|
14 |
Kennedy J M, Fox B, Littler T , et al.. Validation of fixed speed induction generator models for inertial response using wind farm measurements. IEEE Transactions on Power Systems, 2011, 26(3): 1454–1461
https://doi.org/10.1109/TPWRS.2010.2081385
|
15 |
González-Longatt F , Regulski P , Wall P, et al.. Fixed speed wind generator model parameter estimation using improved particle swarm optimization and system frequency disturbances. In: Proceedings of IET Conference on Renewable Power Generation. Edinburgh: IEEE, 2011, 1–6
https://doi.org/10.1049/cp.2011.0162
|
16 |
Bekker J C, Vermeulen H J. Parameter estimation of a doubly-fed induction generator in a wind generation topology. In: Proceedings of 47th International Universities Power Engineering Conference (UPEC). London: IEEE, 2012, 1–6
https://doi.org/10.1109/UPEC.2012.6398607
|
17 |
Wu F, Zhang X, Godfrey K , et al.. Small signal stability analysis and optimal control of a wind turbine with doubly fed induction generator. IET Generation, Transmission & Distribution, 2007, 1(5): 751–760 doi:10.1049/iet-gtd:20060395
|
18 |
Mei F, Pal B C. Modal analysis of grid-connected doubly-fed induction generators. IEEE Transactions on Energy Conversion, 2007, 22(3): 728–736
https://doi.org/10.1109/TEC.2006.881080
|
19 |
Ju P, Wu F, Jin Y , et al.. Modelling and Control of Renewable Power Generation System. Beijing: Science Press, 2014 (in Chinese)
|
20 |
Trelea I. The particle swarm optimization algorithm: Convergence analysis and parameter selection. Information Processing Letters, 2003, 85(6): 317–325
https://doi.org/10.1016/S0020-0190(02)00447-7
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|