|
|
MEMS-based thermoelectric infrared sensors: A review |
Dehui XU( ), Yuelin WANG, Bin XIONG, Tie LI |
Science and Technology on Microsystem Laboratory, Shanghai Institute of Microsystem and Information Technology, CAS, Shanghai 200050, China |
|
|
Abstract In the past decade, micro-electromechanical systems (MEMS)-based thermoelectric infrared (IR) sensors have received considerable attention because of the advances in micromachining technology. This paper presents a review of MEMS-based thermoelectric IR sensors. The first part describes the physics of the device and discusses the figures of merit. The second part discusses the sensing materials, thermal isolation microstructures, absorber designs, and packaging methods for these sensors and provides examples. Moreover, the status of sensor implementation technology is examined from a historical perspective by presenting findings from the early years to the most recent findings.
|
Keywords
thermoelectric infrared sensor
CMOS-MEMS
thermopile
micromachining
wafer-level package
|
Corresponding Author(s):
Dehui XU
|
Just Accepted Date: 16 May 2017
Online First Date: 23 June 2017
Issue Date: 31 October 2017
|
|
1 |
Rogalski A. Infrared Detectors. New York: Gordon and Breach Science Publishers, 2000
|
2 |
Graf A, Arndt M, Sauer M, et al. Review of micromachined thermopiles for infrared detection. Measurement Science and Technology, 2007, 18(7): R59–R75
https://doi.org/10.1088/0957-0233/18/7/R01
|
3 |
Socher E, Bochobza-Degani O, Nemirovsky Y. Optimal performance of CMOS compatible IR thermoelectric sensors. Journal of Microelectromechanical Systems, 2000, 9(1): 38–46
https://doi.org/10.1109/84.825775
|
4 |
Du C H, Lee C. Characterization of thermopile based on complementary metal-oxide-semiconductor (CMOS) materials and post CMOS micromachining. Japanese Journal of Applied Physics, Part 1, Regular Papers & Short Notes, 2002, 41(6B): 4340–4345
https://doi.org/10.1143/JJAP.41.4340
|
5 |
Xu D, Xiong B, Wang Y. Modeling of front-etched micromachined thermopile IR detector by CMOS technology. Journal of Microelectromechanical Systems, 2010, 19(6): 1331–1340
https://doi.org/10.1109/JMEMS.2010.2076790
|
6 |
Socher E, Bochobza-Degani O, Nemirovsky Y. Optimal design and noise considerations of CMOS compatible IR thermoelectric sensors. Sensor and Actuators A: Physical, 1998, 71(1–2): 107–115
https://doi.org/10.1016/S0924-4247(98)00179-4
|
7 |
Socher E, Bochobza-Degani O, Nemirovsky Y. Optimal performance of CMOS compatible IR thermoelectric sensors. Journal of Microelectromechanical Systems, 2000, 9(1): 38–46
https://doi.org/10.1109/84.825775
|
8 |
Völklein F, Baltes H. Optimization tool for the performance parameters of thermoelectric microsensors. Sensors and Actuators A: Physical, 1993, 36(1): 65–71
https://doi.org/10.1016/0924-4247(93)80142-4
|
9 |
Kozlov A G. Optimization of thin-film thermoelectric radiation sensor with separate disposition of absorbing layer and comb thermoelectric transducer. Sensors and Actuators A: Physical, 2000, 84(3): 259–269
https://doi.org/10.1016/S0924-4247(00)00358-7
|
10 |
Kozlov A G. Analytical modelling of steady-state temperature distribution in thermal microsensors using Fourier method: Part 1. Theory. Sensors and Actuators A: Physical, 2002, 101(3): 283–298
https://doi.org/10.1016/S0924-4247(02)00209-1
|
11 |
Kozlov A G. Analytical modelling of steady-state temperature distribution in thermal microsensors using Fourier method: Part 2. Practical application. Sensors and Actuators A: Physical, 2002, 101(3): 299–310
https://doi.org/10.1016/S0924-4247(02)00210-8
|
12 |
Kozlov A G.Frequency response model for thermal radiation microsensors. Measurement Science and Technology, 2009, 20(4): 045204
https://doi.org/10.1088/0957-0233/20/4/045204
|
13 |
Escriba C, Campo E, Esteve D, et al. Complete analytical modeling and analysis of micromachined thermoelectric uncooled IR sensors. Sensors and Actuators A: Physical, 2005, 120(1): 267–276
https://doi.org/10.1016/j.sna.2004.11.027
|
14 |
Mattsson C G, Bertilsson K, Thungström G, et al. Thermal simulation and design optimization of a thermopile infrared detector with an SU-8 membrane. Journal of Micromechanics and Microengineering, 2009, 19(5): 055016
https://doi.org/https://doi.org/10.1088/0960-1317/19/5/055016
|
15 |
Levin A. A numerical simulation tool for infrared thermopile detectors. In: Proceedings of 24th International Conference on Thermoelectrics. IEEE, 2005, 476–479
https://doi.org/10.1109/ICT.2005.1519986
|
16 |
Elbel T, Lenggenhager R, Baltes H. Model of thermoelectric radiation sensors made by CMOS and micromachining. Sensors and Actuators A: Physical, 1992, 35(2): 101–106
https://doi.org/10.1016/0924-4247(92)80147-U
|
17 |
Lahiji G R, Wise K D. A monolithic thermopile detector fabricated using integrated-circuit technology. In: Proceedings of 1980 International Electron Devices Meeting. IEEE, 1980, 26: 676–679
https://doi.org/10.1109/IEDM.1980.189926
|
18 |
Roncaglia A, Ferri M. Thermoelectric materials in MEMS and NEMS: A review. Science of Advanced Materials, 2011, 3(3): 401–419
https://doi.org/10.1166/sam.2011.1168
|
19 |
Liao C N,Chen C, Tu K N. Thermoelectric characterization of Si thin films in silicon-on-insulator wafers. Journal of Applied Physics, 1999, 86(6): 3204–3208
https://doi.org/http://dx.doi.org/10.1063/1.371190
|
20 |
Haenschke F, Kessler E, Dillner U, et al. A new high detectivity room temperature linear thermopile array with a D* greater than 2×109 cmHz1/2/W based on organic membranes. Microsystem Technologies, 2013, 19(12): 1927–1933
https://doi.org/10.1007/s00542-013-1764-5
|
21 |
Lindeberg M, Yousef H, Rödjegård H, et al. A PCB-like process for vertically configured thermopiles. Journal of Micromechanics and Microengineering, 2008, 18(6): 065021
https://doi.org/10.1088/0960-1317/18/6/065021
|
22 |
Kasalynas I, Adam A J L, Klaassen T O, et al. Design and performance of a room-temperature terahertz detection array for real-time imaging. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(2): 363–369
https://doi.org/10.1109/JSTQE.2007.912629
|
23 |
Müller M, Budde W, Gottfried-Gottfried R, et al. A thermoelectric infrared radiation sensor with monolithically integrated amplifier stage and temperature sensor. Sensors and Actuators A: Physical, 1996, 54(1–3): 601–605
https://doi.org/10.1016/S0924-4247(97)80022-2
|
24 |
Sarro P M, Yashiro H, Herwaarden A W, et al. An integrated thermal infrared sensing array. Sensors and Actuators A: Physical, 1988, 14(2): 191–201
https://doi.org/10.1016/0250-6874(88)80065-9
|
25 |
Fonollosa J, Carmona M, Santander J, et al. Limits to the integration of filters and lenses on thermoelectric IR detectors by flip-chip techniques. Sensors and Actuators A: Physical, 2009, 149(1): 65–73
https://doi.org/10.1016/j.sna.2008.10.008
|
26 |
Fonollosa J, Halford B, Fonseca L, et al. Ethylene optical spectrometer for apple ripening monitoring in controlled atmosphere store-houses. Sensors and Actuators B: Chemical, 2009, 136(2): 546–554
https://doi.org/10.1016/j.snb.2008.12.015
|
27 |
Fonollosa J, Rubio R, Hartwig S, et al. Design and fabrication of silicon-based mid infrared multi-lenses for gas sensing applications. Sensors and Actuators B: Chemical, 2008, 132(2): 498–507
https://doi.org/10.1016/j.snb.2007.11.014
|
28 |
Schaufelbuhl A, Schneeberger N, Munch U, et al. Uncooled low-cost thermal imager based on micromachined CMOS integrated sensor array. Journal of Microelectromechanical Systems, 2001, 10(4): 503–510
https://doi.org/10.1109/84.967372
|
29 |
von Arx M, Paul O, Baltes H. Test structures to measure the heat capacity of CMOS layer sandwiches. IEEE Transactions on Semiconductor Manufacturing, 1998, 11(2): 217–224
https://doi.org/10.1109/66.670164
|
30 |
Baltes H, Paul O, Brand O. Micromachined thermally based CMOS microsensors. Proceedings of the IEEE, 1998, 86(8): 1660–1678
|
31 |
Lenggenhager R, Baltes H, Peer J, et al. Thermoelectric infrared sensors by CMOS technology. IEEE Electron Device Letters, 1992, 13(9): 454–456
https://doi.org/10.1109/55.192792
|
32 |
Eriguchi K, Ono K. Quantitative and comparative characterizations of plasma process-induced damage in advanced metal-oxide-semiconductor devices. Journal of Physics D: Applied Physics, 2008, 41(2): 024002
https://doi.org/10.1088/0022-3727/41/2/024002
|
33 |
Li T, Liu Y, Zhou P, et al. High yield front-etched structure for CMOS compatible IR detector. In: Proceedings of IEEE Sensors. IEEE, 2007, 500–502
https://doi.org/10.1109/ICSENS.2007.4388445
|
34 |
Xu D, Xiong B, Wang Y.Design, fabrication and characterization of front-etched micromachined thermopile for IR detection. Journal of Micromechanics and Microengineering, 2010, 20(11): 115004
https://doi.org/10.1088/0960-1317/20/11/115004
|
35 |
Xu D, Xiong B, Wu G, et al. Isotropic silicon etching with XeF2 gas for wafer-level micromachining applications. Journal of Microelectromechanical Systems, 2012, 21(6): 1436–1444
https://doi.org/10.1109/JMEMS.2012.2209403
|
36 |
Xu D, Xiong B, Wang Y, et al. Integrated micromachined thermopile IR detectors with an XeF2 dry-etching process. Journal of Micromechanics and Microengineering, 2009, 19(12): 125003
https://doi.org/https://doi.org/10.1088/0960-1317/19/12/125003
|
37 |
Xu D, Xiong B, Wu G, et al. Uncooled thermoelectric infrared sensor with advanced micromachining. IEEE Sensors Journal, 2012, 12(6): 2014–2023
https://doi.org/10.1109/JSEN.2011.2181497
|
38 |
Roncaglia A, Mancarella F, Cardinali G C. CMOS-compatible fabrication of thermopiles with high sensitivity in the 3–5 μm atmospheric window. Sensors and Actuators B: Chemical, 2007, 125(1): 214–223
https://doi.org/10.1016/j.snb.2007.02.018
|
39 |
Hirota M, Nakajima Y, Saito M, et al. 120×90 element thermoelectric infrared focal plane array with precisely patterned Au-black absorber. Sensors and Actuators A: Physical, 2007, 135(1): 146–151
https://doi.org/http://dx.doi.org/10.1016/j.sna.2006.06.058
|
40 |
Chen X, Tang J, Xu G, et al. Process development of a novel wafer level packaging with TSV applied in high-frequency range transmission. Microsystem Technologies, 2013, 19(4): 483–491
https://doi.org/10.1007/s00542-012-1712-9
|
41 |
Chen X, Xu G, Luo L. Development of seed layer deposition and fast copper electroplating into deep microvias for three-dimension integration. Micro & Nano Letters, 2013, 8(8): 191–192
https://doi.org/10.1049/mnl.2012.0801
|
42 |
Chen X, Yan P, Tang J, et al. Development of wafer level glass frit bonding by using barrier trench technology and precision screen printing. Microelectronic Engineering, 2012, 100(100): 6–11
https://doi.org/10.1016/j.mee.2012.07.116
|
43 |
Xu D, Jing E, Xiong B, et al.Wafer-level vacuum packaging of micromachined thermoelectric IR sensors. IEEE Transactions on Advanced Packaging, 2010, 33(4): 904–911
https://doi.org/10.1109/TADVP.2010.2072925
|
44 |
Xu D, Xiong B, Wang Y. Micromachined thermopile IR detector module with high performance. IEEE Photonics Technology Letters, 2011, 23(3): 149–151
https://doi.org/10.1109/LPT.2010.2095455
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|