Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2017, Vol. 12 Issue (4) : 557-566    https://doi.org/10.1007/s11465-017-0441-2
REVIEW ARTICLE
MEMS-based thermoelectric infrared sensors: A review
Dehui XU(), Yuelin WANG, Bin XIONG, Tie LI
Science and Technology on Microsystem Laboratory, Shanghai Institute of Microsystem and Information Technology, CAS, Shanghai 200050, China
 Download: PDF(467 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In the past decade, micro-electromechanical systems (MEMS)-based thermoelectric infrared (IR) sensors have received considerable attention because of the advances in micromachining technology. This paper presents a review of MEMS-based thermoelectric IR sensors. The first part describes the physics of the device and discusses the figures of merit. The second part discusses the sensing materials, thermal isolation microstructures, absorber designs, and packaging methods for these sensors and provides examples. Moreover, the status of sensor implementation technology is examined from a historical perspective by presenting findings from the early years to the most recent findings.

Keywords thermoelectric infrared sensor      CMOS-MEMS      thermopile      micromachining      wafer-level package     
Corresponding Author(s): Dehui XU   
Just Accepted Date: 16 May 2017   Online First Date: 23 June 2017    Issue Date: 31 October 2017
 Cite this article:   
Dehui XU,Yuelin WANG,Bin XIONG, et al. MEMS-based thermoelectric infrared sensors: A review[J]. Front. Mech. Eng., 2017, 12(4): 557-566.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-017-0441-2
https://academic.hep.com.cn/fme/EN/Y2017/V12/I4/557
Fig.1  Working principle of a MEMS-based thermoelectric IR sensor: An output voltage, Vout, is generated when an IR radiation flux, Frad, irradiates on the sensor
Fig.2  Cross-sectional view of a MEMS-based thermoelectric IR sensor (solid thermal conduction, gas convection, and thermal radiation are the thermal transport mechanisms of this IR sensor)
MaterialDoping typeSeebeck coefficient/(μV·K–1)Electrical resistivity/(μW·m)Thermal conductivity/(W·m–1K–1)Figure of merit/(10−3 K-1)Doping concentration/(1020 cm3)
Bi2Te3n−240102.022.890.23
Bi2Te3p1625.52.062.322.55
PolySiGen−13610.14.450.3281?3
PolySiGep14413.24.800.4132?4
PolySin−1208.5240.0713.4
PolySip19058170.0371.6
Si (SOI)n−2397.1///
Si (SOI)n−1922.6///
Si (SOI)n−2362.5///
Si (SOI)n−1985.5///
Tab.1  Properties of thermoelectric materials for MEMS-based thermoelectric IR sensor [18,19]
Fig.3  Two reported thermal isolation structures: (a) Back-etched thermal isolation structure; (b) front-etched thermal isolation structure
Fig.4  FEM-simulated temperature distribution in the IR sensor microstructure with different etching window placement designs. The inset picture presents the temperature distribution in the absorber area, in which the white etching window design is clearly shown. The hot junction temperature is also indicated with an arrow. (a) The etching windows cut off the heat transfer path from the absorber to the hot junctions; (b) the etching windows avoid cutting off the heat transfer path from the absorber to the hot junctions
Fig.5  (a) Layout design of the etching windows of a thermoelectric IR sensor released by XeF2 etching. The last etched silicon by XeF2 etching is predicted from the layout design: The optical micrograph of the etching window design after (b) 40 and (c) 90 cycles of XeF2 etching. (d) SEM picture shows the structure of the thermoelectric IR sensor and etching window design [36]
Fig.6  Cross-section of the thermoelectric IR sensor fabricated by combining back-side etching and front-side etching
Fig.7  Comparison of component-level and wafer-level vacuum packaging methods for MEMS-based thermoelectric IR sensors. (a) Component-level packaging; (b) wafer-level packaging
Fig.8  (a) SEM of wafer-level packaged IR sensor; (b) optical graphic of the wafer-level packaged thermoelectric IR sensor compared with its TO transistor packaged counterpart, with the upper-left figure showing the magnified top view of the wafer-level packaged IR sensor
1 Rogalski A. Infrared Detectors. New York: Gordon and Breach Science Publishers, 2000
2 Graf A, Arndt M, Sauer M, et al. Review of micromachined thermopiles for infrared detection. Measurement Science and Technology, 2007, 18(7): R59–R75
https://doi.org/10.1088/0957-0233/18/7/R01
3 Socher E, Bochobza-Degani O, Nemirovsky Y. Optimal performance of CMOS compatible IR thermoelectric sensors. Journal of Microelectromechanical Systems, 2000, 9(1): 38–46
https://doi.org/10.1109/84.825775
4 Du C H, Lee C. Characterization of thermopile based on complementary metal-oxide-semiconductor (CMOS) materials and post CMOS micromachining. Japanese Journal of Applied Physics, Part 1, Regular Papers & Short Notes, 2002, 41(6B): 4340–4345
https://doi.org/10.1143/JJAP.41.4340
5 Xu D, Xiong B, Wang Y. Modeling of front-etched micromachined thermopile IR detector by CMOS technology. Journal of Microelectromechanical Systems, 2010, 19(6): 1331–1340
https://doi.org/10.1109/JMEMS.2010.2076790
6 Socher E, Bochobza-Degani O, Nemirovsky Y. Optimal design and noise considerations of CMOS compatible IR thermoelectric sensors. Sensor and Actuators A: Physical, 1998, 71(1–2): 107–115 
https://doi.org/10.1016/S0924-4247(98)00179-4
7 Socher E, Bochobza-Degani O, Nemirovsky Y. Optimal performance of CMOS compatible IR thermoelectric sensors. Journal of Microelectromechanical Systems, 2000, 9(1): 38–46 
https://doi.org/10.1109/84.825775
8 Völklein F, Baltes H. Optimization tool for the performance parameters of thermoelectric microsensors. Sensors and Actuators A: Physical, 1993, 36(1): 65–71 
https://doi.org/10.1016/0924-4247(93)80142-4
9 Kozlov A G. Optimization of thin-film thermoelectric radiation sensor with separate disposition of absorbing layer and comb thermoelectric transducer. Sensors and Actuators A: Physical, 2000, 84(3): 259–269
https://doi.org/10.1016/S0924-4247(00)00358-7
10 Kozlov A G. Analytical modelling of steady-state temperature distribution in thermal microsensors using Fourier method: Part 1. Theory. Sensors and Actuators A: Physical, 2002, 101(3): 283–298
https://doi.org/10.1016/S0924-4247(02)00209-1
11 Kozlov A G. Analytical modelling of steady-state temperature distribution in thermal microsensors using Fourier method: Part 2. Practical application. Sensors and Actuators A: Physical, 2002, 101(3): 299–310
https://doi.org/10.1016/S0924-4247(02)00210-8
12 Kozlov A G.Frequency response model for thermal radiation microsensors. Measurement Science and Technology, 2009, 20(4): 045204
https://doi.org/10.1088/0957-0233/20/4/045204
13 Escriba C, Campo E, Esteve D, et al. Complete analytical modeling and analysis of micromachined thermoelectric uncooled IR sensors. Sensors and Actuators A: Physical, 2005, 120(1): 267–276
https://doi.org/10.1016/j.sna.2004.11.027
14 Mattsson C G, Bertilsson K, Thungström G, et al. Thermal simulation and design optimization of a thermopile infrared detector with an SU-8 membrane. Journal of Micromechanics and Microengineering, 2009, 19(5): 055016 
https://doi.org/https://doi.org/10.1088/0960-1317/19/5/055016
15 Levin A. A numerical simulation tool for infrared thermopile detectors. In: Proceedings of 24th International Conference on Thermoelectrics. IEEE, 2005, 476–479
https://doi.org/10.1109/ICT.2005.1519986
16 Elbel T, Lenggenhager R, Baltes H. Model of thermoelectric radiation sensors made by CMOS and micromachining. Sensors and Actuators A: Physical, 1992, 35(2): 101–106
https://doi.org/10.1016/0924-4247(92)80147-U
17 Lahiji G R, Wise K D. A monolithic thermopile detector fabricated using integrated-circuit technology. In: Proceedings of 1980 International Electron Devices Meeting. IEEE, 1980, 26: 676–679
https://doi.org/10.1109/IEDM.1980.189926
18 Roncaglia A, Ferri M. Thermoelectric materials in MEMS and NEMS: A review. Science of Advanced Materials, 2011, 3(3): 401–419
https://doi.org/10.1166/sam.2011.1168
19 Liao C N,Chen C, Tu K N. Thermoelectric characterization of Si thin films in silicon-on-insulator wafers. Journal of Applied Physics, 1999, 86(6): 3204–3208 
https://doi.org/http://dx.doi.org/10.1063/1.371190
20 Haenschke F, Kessler E, Dillner U, et al. A new high detectivity room temperature linear thermopile array with a D* greater than 2×109 cmHz1/2/W based on organic membranes. Microsystem Technologies, 2013, 19(12): 1927–1933
https://doi.org/10.1007/s00542-013-1764-5
21 Lindeberg M, Yousef H, Rödjegård H, et al. A PCB-like process for vertically configured thermopiles. Journal of Micromechanics and Microengineering, 2008, 18(6): 065021 
https://doi.org/10.1088/0960-1317/18/6/065021
22 Kasalynas I, Adam A J L, Klaassen T O, et al. Design and performance of a room-temperature terahertz detection array for real-time imaging. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(2): 363–369
https://doi.org/10.1109/JSTQE.2007.912629
23 Müller M, Budde W, Gottfried-Gottfried R, et al. A thermoelectric infrared radiation sensor with monolithically integrated amplifier stage and temperature sensor. Sensors and Actuators A: Physical, 1996, 54(1–3): 601–605 
https://doi.org/10.1016/S0924-4247(97)80022-2
24 Sarro P M, Yashiro H, Herwaarden A W, et al. An integrated thermal infrared sensing array. Sensors and Actuators A: Physical, 1988, 14(2): 191–201
https://doi.org/10.1016/0250-6874(88)80065-9
25 Fonollosa J, Carmona M, Santander J, et al. Limits to the integration of filters and lenses on thermoelectric IR detectors by flip-chip techniques. Sensors and Actuators A: Physical, 2009, 149(1): 65–73
https://doi.org/10.1016/j.sna.2008.10.008
26 Fonollosa J, Halford B, Fonseca L, et al. Ethylene optical spectrometer for apple ripening monitoring in controlled atmosphere store-houses. Sensors and Actuators B: Chemical, 2009, 136(2): 546–554
https://doi.org/10.1016/j.snb.2008.12.015
27 Fonollosa J, Rubio R, Hartwig S, et al. Design and fabrication of silicon-based mid infrared multi-lenses for gas sensing applications. Sensors and Actuators B: Chemical, 2008, 132(2): 498–507
https://doi.org/10.1016/j.snb.2007.11.014
28 Schaufelbuhl A, Schneeberger N, Munch U, et al. Uncooled low-cost thermal imager based on micromachined CMOS integrated sensor array. Journal of Microelectromechanical Systems, 2001, 10(4): 503–510
https://doi.org/10.1109/84.967372
29 von Arx M, Paul O, Baltes H. Test structures to measure the heat capacity of CMOS layer sandwiches.  IEEE Transactions on Semiconductor Manufacturing, 1998, 11(2): 217–224
https://doi.org/10.1109/66.670164
30 Baltes H, Paul O, Brand O. Micromachined thermally based CMOS microsensors. Proceedings of the IEEE, 1998, 86(8): 1660–1678
31 Lenggenhager R, Baltes H, Peer J, et al. Thermoelectric infrared sensors by CMOS technology. IEEE Electron Device Letters, 1992, 13(9): 454–456
https://doi.org/10.1109/55.192792
32 Eriguchi K, Ono K. Quantitative and comparative characterizations of plasma process-induced damage in advanced metal-oxide-semiconductor devices. Journal of Physics D: Applied Physics, 2008, 41(2): 024002
https://doi.org/10.1088/0022-3727/41/2/024002
33 Li T, Liu Y, Zhou P, et al. High yield front-etched structure for CMOS compatible IR detector. In: Proceedings of IEEE Sensors. IEEE, 2007, 500–502 
https://doi.org/10.1109/ICSENS.2007.4388445
34 Xu D, Xiong B, Wang Y.Design, fabrication and characterization of front-etched micromachined thermopile for IR detection. Journal of Micromechanics and Microengineering, 2010, 20(11): 115004
https://doi.org/10.1088/0960-1317/20/11/115004
35 Xu D, Xiong B, Wu G, et al. Isotropic silicon etching with XeF2 gas for wafer-level micromachining applications. Journal of Microelectromechanical Systems, 2012, 21(6): 1436–1444 
https://doi.org/10.1109/JMEMS.2012.2209403
36 Xu D, Xiong B, Wang Y, et al. Integrated micromachined thermopile IR detectors with an XeF2 dry-etching process. Journal of Micromechanics and Microengineering, 2009, 19(12): 125003 
https://doi.org/https://doi.org/10.1088/0960-1317/19/12/125003
37 Xu D, Xiong B, Wu G, et al. Uncooled thermoelectric infrared sensor with advanced micromachining. IEEE Sensors Journal, 2012, 12(6): 2014–2023
https://doi.org/10.1109/JSEN.2011.2181497
38 Roncaglia A, Mancarella F, Cardinali G C. CMOS-compatible fabrication of thermopiles with high sensitivity in the 3–5 μm atmospheric window. Sensors and Actuators B: Chemical, 2007, 125(1): 214–223
https://doi.org/10.1016/j.snb.2007.02.018
39 Hirota M, Nakajima Y, Saito M, et al. 120×90 element thermoelectric infrared focal plane array with precisely patterned Au-black absorber. Sensors and Actuators A: Physical, 2007, 135(1): 146–151 
https://doi.org/http://dx.doi.org/10.1016/j.sna.2006.06.058
40 Chen X, Tang J, Xu G, et al. Process development of a novel wafer level packaging with TSV applied in high-frequency range transmission. Microsystem Technologies, 2013, 19(4): 483–491
https://doi.org/10.1007/s00542-012-1712-9
41 Chen X, Xu G, Luo L. Development of seed layer deposition and fast copper electroplating into deep microvias for three-dimension integration. Micro & Nano Letters, 2013, 8(8): 191–192
https://doi.org/10.1049/mnl.2012.0801
42 Chen X, Yan P, Tang J, et al. Development of wafer level glass frit bonding by using barrier trench technology and precision screen printing. Microelectronic Engineering, 2012, 100(100): 6–11
https://doi.org/10.1016/j.mee.2012.07.116
43 Xu D, Jing E, Xiong B, et al.Wafer-level vacuum packaging of micromachined thermoelectric IR sensors. IEEE Transactions on Advanced Packaging, 2010, 33(4): 904–911
https://doi.org/10.1109/TADVP.2010.2072925
44 Xu D, Xiong B, Wang Y. Micromachined thermopile IR detector module with high performance. IEEE Photonics Technology Letters, 2011, 23(3): 149–151
https://doi.org/10.1109/LPT.2010.2095455
[1] LI De-sheng, LIU Ben-dong. Research on Microelectromagnetic Relays[J]. Front. Mech. Eng., 2006, 1(1): 111-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed