Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2018, Vol. 13 Issue (1) : 66-73    https://doi.org/10.1007/s11465-018-0468-z
RESEARCH ARTICLE
Micro-hydromechanical deep drawing of metal cups with hydraulic pressure effects
Liang LUO1, Zhengyi JIANG1,3(), Dongbin WEI2, Xiaogang WANG3, Cunlong ZHOU3, Qingxue HUANG3
1. School of Mechanical, Materials, Mechatronic, and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
2. School of Electrical, Mechanical, and Mechatronic System, University of Technology, Sydney, NSW 2007, Australia
3. School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
 Download: PDF(594 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Micro-metal products have recently enjoyed high demand. In addition, metal microforming has drawn increasing attention due to its net-forming capability, batch manufacturing potential, high product quality, and relatively low equipment cost. Micro-hydromechanical deep drawing (MHDD), a typical microforming method, has been developed to take advantage of hydraulic force. With reduced dimensions, the hydraulic pressure development changes; accordingly, the lubrication condition changes from the macroscale to the microscale. A Voronoi-based finite element model is proposed in this paper to consider the change in lubrication in MHDD according to open and closed lubricant pocket theory. Simulation results agree with experimental results concerning drawing force. Changes in friction significantly affect the drawing process and the drawn cups. Moreover, defined wrinkle indexes have been shown to have a complex relationship with hydraulic pressure. High hydraulic pressure can increase the maximum drawing ratio (drawn cup height), whereas the surface finish represented by the wear is not linearly dependent on the hydraulic pressure due to the wrinkles.

Keywords micro-hydromechanical deep drawing      microforming      size effects      lubrication      Voronoi     
Corresponding Author(s): Zhengyi JIANG   
Just Accepted Date: 13 September 2017   Online First Date: 31 October 2017    Issue Date: 23 January 2018
 Cite this article:   
Liang LUO,Zhengyi JIANG,Dongbin WEI, et al. Micro-hydromechanical deep drawing of metal cups with hydraulic pressure effects[J]. Front. Mech. Eng., 2018, 13(1): 66-73.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-018-0468-z
https://academic.hep.com.cn/fme/EN/Y2018/V13/I1/66
Fig.1  Microstructures of the three groups of annealed sheets. (a) H975; (b) H1050; (c) H1100
Fig.2  (a) Sketch of the MHDD system; (b) the normal model
Fig.3  Voronoi models for different blanks. (a) H975; (b) H1050; (c) H1100
Fig.4  The open and closed lubricant pocket models under different hydraulic pressures: (a) 5–10 MPa; (b) 15–20 MPa; (c) 25–30 MPa; (d) ultra-high hydraulic pressures
Fig.5  Relationship between the hydraulic pressure and the critical radius
Friction pairs Open lubricant pocket area Closed lubricant pocket area
Blank-die/blank-blank holder 0.10 0.05
Blank-punch 0.25 0.25
Tab.1  Friction coefficients
Fig.6  Drawing forces of H975
Fig.7  Drawn cups with H975 sheets under different hydraulic pressures
Fig.8  Simulated drawn cups with H1100 sheets under different hydraulic pressures
Fig.9  Drawn cups with different blanks under 30 MPa hydraulic pressure
Fig.10  Wrinkle index values from simulation results. (a) Wrinkle index of Ra; (b) wrinkle index of Rt
Fig.11  Drawn cups with H975 sheets under (a) 30 MPa and (b) 200 MPa hydraulic pressures
Fig.12  Drawn cups with H975 sheets under different hydraulic pressures: (a) H975 10 MPa; (b) H975 30 MPa
Fig.13  The PV value differences of the drawing process with H975 sheets
1 Goel P. MEMS non-silicon fabrication technologies. Sensors and Transducers, 2012, 139(4): 1–23
https://doi.org/10.1605/01.301-0019658108.2012
2 Huff M. MEMS fabrication. Sensor Review, 2002, 22(1): 18–33
https://doi.org/10.1108/02602280210697087
3 Geiger M, Kleiner  M, Eckstein R, et al.. Microforming. CIRP Annals-Manufacturing Technology, 2001, 50(2): 445–462 
https://doi.org/10.1016/S0007-8506(07)62991-6
4 Tiesler N, Engel  U. Microforming—Effects of miniaturization. In: Proceedings of the 8th International Conference on Metal Forming. Rotterdam: A. A. Balkema, 2000, 355–360
5 Vollertsen F, Hu  Z, Niehoff H S, et al.. State of the art in micro forming and investigations into micro deep drawing. Journal of Materials Processing Technology, 2004, 151(1–3): 70–79 d
https://doi.org/10.1016/j.jmatprotec.2004.04.266
6 Deng J H, Fu  M W, Chan  W L. Size effect on material surface deformation behavior in micro-forming process. Materials Science and Engineering: A, 2011, 528(13–14): 4799–4806
https://doi.org/10.1016/j.msea.2011.03.005
7 Molotnikov A, Lapovok  R, Gu C F, et al.. Size effects in micro cup drawing. Materials Science and Engineering: A, 2012, 550: 312–319 
https://doi.org/10.1016/j.msea.2012.04.079
8 Vollertsen F. Size effects in micro forming. Key Engineering Materials, 2011, 473: 3–12
9 Sato H, Manabe  K, Furushima T, et al.. On the scale dependence of micro hydromechanical deep drawing. Key Engineering Materials, 2017, 725: 689–694
10 Wang C, Guo  B, Shan D, et al.. Tribological behaviors in microforming considering microscopically trapped lubricant at contact interface. International Journal of Advanced Manufacturing Technology, 2014, 71(9–12): 2083–2090 
https://doi.org/10.1007/s00170-014-5657-2
11 Sato H, Manabe  K, Wei D, et al.. Tribological behavior in micro-sheet hydroforming. Tribology International, 2016, 97: 302–312
https://doi.org/10.1016/j.triboint.2016.01.041
12 Wang X, Cao  J. On the prediction of side-wall wrinkling in sheet metal forming processes. International Journal of Mechanical Sciences, 2000, 42(12): 2369–2394 
https://doi.org/10.1016/S0020-7403(99)00078-8
13 Wang X, Cao  J. An analytical prediction of flange wrinkling in sheet metal forming. Journal of Manufacturing Processes, 2000, 2(2): 100–107 
https://doi.org/10.1016/S1526-6125(00)70017-X
[1] Vladimir A. GODLEVSKIY. Technological lubricating means: Evolution of materials and ideas[J]. Front. Mech. Eng., 2016, 11(1): 101-107.
[2] Jian LIU,Yuxue CHEN,Zhenzhi HE,Shunian YANG. A fast compound direct iterative algorithm for solving transient line contact elastohydrodynamic lubrication problems[J]. Front. Mech. Eng., 2014, 9(2): 156-167.
[3] WANG Xuefeng, GUO Feng, YANG Peiran. A measurement system for thin elastohydrodynamic lubrication films[J]. Front. Mech. Eng., 2007, 2(2): 193-196.
[4] WANG Xin-jie, BAI Shao-xian, HUANG Ping. Theoretical analysis and experimental study on the influence of electric double layer on thin film lubrication[J]. Front. Mech. Eng., 2006, 1(3): 370-373.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed