Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2018, Vol. 13 Issue (1) : 48-52    https://doi.org/10.1007/s11465-018-0493-y
RESEARCH ARTICLE
Determining casting defects in near-net shape casting aluminum parts by computed tomography
Jiehua LI1(), Bernd OBERDORFER2, Daniel HABE2, Peter SCHUMACHER1,2
1. Institute of Casting Research, Montanuniversität Leoben, Leoben A-8700, Austria
2. Austrian Foundry Research Institute, Leoben A-8700, Austria
 Download: PDF(339 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Three types of near-net shape casting aluminum parts were investigated by computed tomography to determine casting defects and evaluate quality. The first, second, and third parts were produced by low-pressure die casting (Al-12Si-0.8Cu-0.5Fe-0.9Mg-0.7Ni-0.2Zn alloy), die casting (A356, Al-7Si-0.3Mg), and semi-solid casting (A356, Al-7Si-0.3Mg), respectively. Unlike die casting (second part), low-pressure die casting (first part) significantly reduced the formation of casting defects (i.e., porosity) due to its smooth filling and solidification under pressure. No significant casting defect was observed in the third part, and this absence of defects indicates that semi-solid casting could produce high-quality near-net shape casting aluminum parts. Moreover, casting defects were mostly distributed along the eutectic grain boundaries. This finding reveals that refinement of eutectic grains is necessary to optimize the distribution of casting defects and reduce their size. This investigation demonstrated that computed tomography is an efficient method to determine casting defects in near-net shape casting aluminum parts.

Keywords near-net shape casting      aluminum parts      casting defects      low pressure die casting      die casting      semi-solid casting      computed tomography     
Corresponding Author(s): Jiehua LI   
Just Accepted Date: 07 December 2017   Online First Date: 09 January 2018    Issue Date: 23 January 2018
 Cite this article:   
Jiehua LI,Bernd OBERDORFER,Daniel HABE, et al. Determining casting defects in near-net shape casting aluminum parts by computed tomography[J]. Front. Mech. Eng., 2018, 13(1): 48-52.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-018-0493-y
https://academic.hep.com.cn/fme/EN/Y2018/V13/I1/48
Fig.1  3D image of porosities and a quantitative analysis of porosities in (a, c) the first part produced by low-pressure die casting (Al-12Si-0.8Cu-0.5Fe-0.9Mg-0.7Ni-0.2Zn alloy) and (b, d) in the second part produced by die casting (A356, Al-7Si-0.3Mg)
Fig.2  Optical microscopy images of (a) the first part produced by low-pressure die casting (Al-12Si-0.8Cu-0.5Fe-0.9Mg-0.7Ni-0.2Zn alloy) and (b) the second part produced by die casting (A356, Al-7Si-0.3Mg)
Fig.3  Solidification path prediction of (a, b) the first part produced by low-pressure die casting (Al-12Si-0.8Cu-0.5Fe-0.9Mg-0.7Ni-0.2Zn alloy) and (b, d) the second part produced by die casting (A356, Al-7Si-0.3Mg); (b, d) is an enlargement of (a, c)
Fig.4  Room temperature mechanical properties of (a) the first part produced by low-pressure die casting (Al-12Si-0.8Cu-0.5Fe-0.9Mg-0.7Ni-0.2Zn alloy) and (b) the second part produced by die casting (A356, Al-7Si-0.3Mg)
Fig.5  (a) 3D image of porosities and (b) a quantitative analysis of porosities in the third part produced by semi-solid casting (A356, Al-7Si-0.3Mg)
Fig.6  (a) Optical microscopy image and SEM image (b) of the third part produced by SSC (A356, Al-7Si-0.3Mg)
1 Guo S J, Xu  Y, Han Y, et al.Near net shape casting process for producing high strength 6xxx aluminum alloy automobile suspension parts. Transactions of Nonferrous Metals Society of China, 2014, 24(7): 2393–2400 
https://doi.org/10.1016/S1003-6326(14)63362-8
2 Kamat G R. Low pressure counter gravity casting of aluminium alloys. Transactions of the Indian Institute of Metals (India), 1992, 45(3): 177–180
3 Chandley G D. Counter gravity casting of aluminum in investment and sand molds. American Foundrymen’s Society, 1986, 94: 209–214
4 Jie W Q, Li  X L, Hao  Q T. Counter-gravity casting equipment and technologies for thin-walled al-alloy parts in resin sand molds. Materials Science Forum, 2009, 618-619: 585–589
https://doi.org/10.4028/www.scientific.net/MSF.618-619.585
5 Chandley G D. Use of vacuum for counter-gravity casting of metals. Materials Research Innovations, 1999, 3(1): 14–23
https://doi.org/10.1007/s100190050120
6 Rosc J, Pabel  T, Geier G F, et al.Method for the estimation of porosity analysis of CT-data. Giesserei-rundschau, 2010, 57: 244–246
7 Mayo S C, Stevenson  A W, Wilkins  S W. In-line phase-contrast X-ray imaging and tomography for materials science. Materials (Basel), 2012, 5(12): 937–965
https://doi.org/10.3390/ma5050937
8 Withers P J. Fracture mechanics by three-dimensional crack-tip synchrotron X-ray microscopy. Philosophical Transactions of the Royal Society A, 2015, 373(2036): 20130157
https://doi.org/10.1098/rsta.2013.0157
9 Samavedam S, Sakri  S B, Hanumantha Rao  D, et al.Estimation of porosity and shrinkage in a cast eutectic Al-Si alloy. Canadian Metallurgical Quarterly, 2014, 53(1): 55–64
https://doi.org/10.1179/1879139513Y.0000000097
10 Nicoletto G, Konečná  R, Fintova S. Characterization of microshrinkage casting defects of Al-Si alloys by X-ray computed tomography and metallography. International Journal of Fatigue, 2012, 41: 39–46
https://doi.org/10.1016/j.ijfatigue.2012.01.006
11 Cabeza S, Mishurova  T, Garcés G, et al.Stress-induced damage evolution in cast AlSi12CuMgNi alloy with one- and two-ceramic reinforcements. Journal of Materials Science, 2017, 52(17): 10198–10216
https://doi.org/10.1007/s10853-017-1182-7
[1] Kirsten BOBZIN, Nazlim BAGCIVAN, Lidong ZHAO, Ivica PETKOVIC, Jochen SCHEIN, Karsten HARTZ-BEHREND, Stefan KIRNER, José-Luis MARQUéS, Günter FORSTER. Modelling and diagnostics of multiple cathodes plasma torch system for plasma spraying[J]. Front Mech Eng, 2011, 6(3): 324-331.
[2] GUO Zhipeng, XIONG Shoumei, CHO SangHyun, CHOI JeongKil. Interfacial heat transfer coefficient between metal and die during high pressure die casting process of aluminum alloy[J]. Front. Mech. Eng., 2007, 2(3): 283-287.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed