|
|
Connected morphable components-based multiscale topology optimization |
Jiadong DENG1, Claus B. W. PEDERSEN2, Wei CHEN1( ) |
1. Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA 2. Dassault Systèmes Deutschland GmbH, 200095 Hamburg, Germany |
|
|
Abstract The advances of manufacturing techniques, such as additive manufacturing, have provided unprecedented opportunities for producing multiscale structures with intricate latticed/cellular material microstructures to meet the increasing demands for parts with customized functionalities. However, there are still difficulties for the state-of-the-art multiscale topology optimization (TO) methods to achieve manufacturable multiscale designs with cellular materials, partially due to the disconnectivity issue when tiling material microstructures. This paper attempts to address the disconnectivity issue by extending component-based TO methodology to multiscale structural design. An effective linkage scheme to guarantee smooth transitions between neighboring material microstructures (unit cells) is devised and investigated. Associated with the advantages of components-based TO, the number of design variables is greatly reduced in multiscale TO design. Homogenization is employed to calculate the effective material properties of the porous materials and to correlate the macro/structural scale with the micro/material scale. Sensitivities of the objective function with respect to the geometrical parameters of each component in each material microstructure have been derived using the adjoint method. Numerical examples demonstrate that multiscale structures with well-connected material microstructures or graded/layered material microstructures are realized.
|
Keywords
multiscale topology optimization
morphable component
material microstructure
homogenization
|
Corresponding Author(s):
Wei CHEN
|
Just Accepted Date: 29 November 2018
Online First Date: 14 January 2019
Issue Date: 22 April 2019
|
|
1 |
J PKruth, M C Leu, T Nakagawa. Progress in additive manufacturing and rapid prototyping. CIRP Annals-Manufacturing Technology, 1998, 47(2): 525–540
https://doi.org/10.1016/S0007-8506(07)63240-5
|
2 |
IGibson, D W Rosen, B Stucker. Additive Manufacturing Technologies. New York: Springer, 2010
|
3 |
D WRosen. Computer-aided design for additive manufacturing of cellular structures. Computer-Aided Design and Applications, 2007, 4(5): 585–594
https://doi.org/10.1080/16864360.2007.10738493
|
4 |
CChu, G Graf, D WRosen. Design for additive manufacturing of cellular structures. Computer-Aided Design and Applications, 2008, 5(5): 686–696
https://doi.org/10.3722/cadaps.2008.686-696
|
5 |
JChu, S Engelbrecht, GGraf, et al.A comparison of synthesis methods for cellular structures with application to additive manufacturing. Rapid Prototyping Journal, 2010, 16(4): 275–283
https://doi.org/10.1108/13552541011049298
|
6 |
LMurr, S Gaytan, FMedina, et al.Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1917, 2010(368): 1999–2032
https://doi.org/10.1098/rsta.2010.0010
|
7 |
XWang, S Xu, SZhou, et al.Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials, 2016, 83: 127–141
https://doi.org/10.1016/j.biomaterials.2016.01.012
|
8 |
OSigmund, N Aage, EAndreassen. On the (non-) optimality of Michell structures. Structural and Multidisciplinary Optimization, 2016, 54(2): 361–373
https://doi.org/10.1007/s00158-016-1420-7
|
9 |
M PBendsøe, OSigmund. Topology Optimization: Theory, Methods, and Applications. 2nd ed. Berlin: Springer, 2004
|
10 |
DBrackett, I Ashcroft, RHague. Topology optimization for additive manufacturing. In: Proceedings of the Solid Freeform Fabrication Symposium. Austin, 2011
|
11 |
A TGaynor, N A Meisel, C B Williams, et al.Multiple-material topology optimization of compliant mechanisms created via PolyJet three-dimensional printing. Journal of Manufacturing Science and Engineering, 2014, 136(6): 061015
https://doi.org/10.1115/1.4028439
|
12 |
H AAlmeida, E S Oliveira. Sustainability based on biomimetic design models. In: Muthu S, Savalani M, eds. Handbook of Sustainability in Additive Manufacturing. Singapore: Springer, 2016, 65–84
https://doi.org/10.1007/978-981-10-0606-7_3
|
13 |
TZegard, G H Paulino. Bridging topology optimization and additive manufacturing. Structural and Multidisciplinary Optimization, 2016, 53(1): 175–192
https://doi.org/10.1007/s00158-015-1274-4
|
14 |
M PBendsøe. Optimal shape design as a material distribution problem. Structural Optimization, 1989, 1(4): 193–202
https://doi.org/10.1007/BF01650949
|
15 |
M PBendsøe, NKikuchi. Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2): 197–224
https://doi.org/10.1016/0045-7825(88)90086-2
|
16 |
M PBendsoe, J M Guedes, R B Haber, et al.An analytical model to predict optimal material properties in the context of optimal structural design. Journal of Applied Mechanics, 1994, 61(4): 930–937
https://doi.org/10.1115/1.2901581
|
17 |
U TRingertz. On finding the optimal distribution of material properties. Structural Optimization, 1993, 5(4): 265–267
https://doi.org/10.1007/BF01743590
|
18 |
J PGroen, O Sigmund. Homogenization-based topology optimization for high-resolution manufacturable microstructures. International Journal for Numerical Methods in Engineering, 2018, 113(8): 1148–1163
https://doi.org/10.1002/nme.5575
|
19 |
HRodrigues, J M Guedes, M P Bendsoe. Hierarchical optimization of material and structure. Structural and Multidisciplinary Optimization, 2002, 24(1): 1–10
https://doi.org/10.1007/s00158-002-0209-z
|
20 |
JDeng, W Chen. Concurrent topology optimization of multiscale structures with multiple porous materials under random field loading uncertainty. Structural and Multidisciplinary Optimization, 2017, 56(1): 1–19
https://doi.org/10.1007/s00158-017-1689-1
|
21 |
JDeng, J Yan, GCheng. Multi-objective concurrent topology optimization of thermoelastic structures composed of homogeneous porous material. Structural and Multidisciplinary Optimization, 2013, 47(4): 583–597
https://doi.org/10.1007/s00158-012-0849-6
|
22 |
XGuo, X Zhao, WZhang, et al.Multi-scale robust design and optimization considering load uncertainties. Computer Methods in Applied Mechanics and Engineering, 2015, 283: 994–1009
https://doi.org/10.1016/j.cma.2014.10.014
|
23 |
LLiu, J Yan, GCheng. Optimum structure with homogeneous optimum truss-like material. Computers & Structures, 2008, 86(13‒14): 1417–1425
https://doi.org/10.1016/j.compstruc.2007.04.030
|
24 |
BNiu, J Yan, GCheng. Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency. Structural and Multidisciplinary Optimization, 2009, 39(2): 115–132
https://doi.org/10.1007/s00158-008-0334-4
|
25 |
FSchury, M Stingl, FWein. Efficient two-scale optimization of manufacturable graded structures. SIAM Journal on Scientific Computing, 2012, 34(6): B711–B733
https://doi.org/10.1137/110850335
|
26 |
P BNakshatrala, DTortorelli, KNakshatrala. Nonlinear structural design using multiscale topology optimization. Part I: Static formulation. Computer Methods in Applied Mechanics and Engineering, 2013, 261‒262: 167–176
https://doi.org/10.1016/j.cma.2012.12.018
|
27 |
LXia, P Breitkopf. Concurrent topology optimization design of material and structure within FE2 nonlinear multiscale analysis framework. Computer Methods in Applied Mechanics and Engineering, 2014, 278: 524–542
https://doi.org/10.1016/j.cma.2014.05.022
|
28 |
PZhang, J Toman, YYu, et al.Efficient design-optimization of variable-density hexagonal cellular structure by additive manufacturing: Theory and validation. Journal of Manufacturing Science and Engineering, 2015, 137(2): 021004
https://doi.org/10.1115/1.4028724
|
29 |
YWang, F Chen, M YWang. Concurrent design with connectable graded microstructures. Computer Methods in Applied Mechanics and Engineering, 2017, 317: 84–101
https://doi.org/10.1016/j.cma.2016.12.007
|
30 |
YWang, L Zhang, SDaynes, et al.Design of graded lattice structure with optimized mesostructures for additive manufacturing. Materials & Design, 2018, 142: 114–123
https://doi.org/10.1016/j.matdes.2018.01.011
|
31 |
AClausen, N Aage, OSigmund. Exploiting additive manufacturing infill in topology optimization for improved buckling load. Engineering, 2016, 2(2): 250–257
https://doi.org/10.1016/J.ENG.2016.02.006
|
32 |
JWu, A Clausen, OSigmund. Minimum compliance topology optimization of shell-infill composites for additive manufacturing. Computer Methods in Applied Mechanics and Engineering, 2017, 326: 358–375
https://doi.org/10.1016/j.cma.2017.08.018
|
33 |
YWang, Z Kang. A level set method for shape and topology optimization of coated structures. Computer Methods in Applied Mechanics and Engineering, 2018, 329: 553–574
https://doi.org/10.1016/j.cma.2017.09.017
|
34 |
HLi, Z Luo, LGao, et al.Topology optimization for functionally graded cellular composites with metamaterials by level sets. Computer Methods in Applied Mechanics and Engineering, 2018, 328: 340–364
https://doi.org/10.1016/j.cma.2017.09.008
|
35 |
PVogiatzis, M Ma, SChen, et al.Computational design and additive manufacturing of periodic conformal metasurfaces by synthesizing topology optimization with conformal mapping. Computer Methods in Applied Mechanics and Engineering, 2018, 328: 477–497
https://doi.org/10.1016/j.cma.2017.09.012
|
36 |
XGuo, W Zhang, WZhong. Doing topology optimization explicitly and geometrically—A new moving morphable components based framework. Journal of Applied Mechanics, 2014, 81(8): 081009
https://doi.org/10.1115/1.4027609
|
37 |
JNorato, B Bell, DTortorelli. A geometry projection method for continuum-based topology optimization with discrete elements. Computer Methods in Applied Mechanics and Engineering, 2015, 293: 306–327
https://doi.org/10.1016/j.cma.2015.05.005
|
38 |
WZhang, J Yuan, JZhang, et al.A new topology optimization approach based on moving morphable components (MMC) and the ersatz material model. Structural and Multidisciplinary Optimization, 2016, 53(6): 1243–1260
https://doi.org/10.1007/s00158-015-1372-3
|
39 |
JDeng, W Chen. Design for structural flexibility using connected morphable components based topology optimization. Science China. Technological Sciences, 2016, 59(6): 839–851
https://doi.org/10.1007/s11431-016-6027-0
|
40 |
JDeng. Topology optimization of emerging complex structures. Dissertation for the Doctoral Degree. Evanston: Northwestern University, 2016
|
41 |
ABensoussan, J L Lions, G Papanicolaou. Asymptotic Analysis for Periodic Structures. Amsterdam: AMS Chelsea Publishing, 1978
|
42 |
KTerada, N Kikuchi. A class of general algorithms for multi-scale analyses of heterogeneous media. Computer Methods in Applied Mechanics and Engineering, 2001, 190(40‒41): 5427–5464
https://doi.org/10.1016/S0045-7825(01)00179-7
|
43 |
OSigmund, J Petersson. Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Structural Optimization, 1998, 16(1): 68–75
https://doi.org/10.1007/BF01214002
|
44 |
KSvanberg. The method of moving asymptotes—A new method for structural optimization. International Journal for Numerical Methods in Engineering, 1987, 24(2): 359–373
https://doi.org/10.1002/nme.1620240207
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|