|
|
Isogeometric topology optimization based on energy penalization for symmetric structure |
Xianda XIE1, Shuting WANG1, Ming YE2, Zhaohui XIA1,3( ), Wei ZHAO1, Ning JIANG1, Manman XU1 |
1. School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China 2. Guangzhou Huagong Motor Vehicle Inspection Technology Co., Ltd., Guangzhou 510640, China; National Engineering Research Center of Near-Net-Shape Forming for Metallic Materials, South China University of Technology, Guangzhou 510641, China 3. Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510641, China |
|
|
Abstract We present an energy penalization method for isogeometric topology optimization using moving morphable components (ITO–MMC), propose an ITO–MMC with an additional bilateral or periodic symmetric constraint for symmetric structures, and then extend the proposed energy penalization method to an ITO–MMC with a symmetric constraint. The energy penalization method can solve the problems of numerical instability and convergence for the ITO–MMC and the ITO–MMC subjected to the structural symmetric constraint with asymmetric loads. Topology optimization problems of asymmetric, bilateral symmetric, and periodic symmetric structures are discussed to validate the effectiveness of the proposed energy penalization approach. Compared with the conventional ITO–MMC, the energy penalization method for the ITO–MMC can improve the convergence rate from 18.6% to 44.5% for the optimization of the asymmetric structure. For the ITO–MMC under a bilateral symmetric constraint, the proposed method can reduce the objective value by 5.6% and obtain a final optimized topology that has a clear boundary with decreased iterations. For the ITO–MMC under a periodic symmetric constraint, the proposed energy penalization method can dramatically reduce the number of iterations and obtain a speedup of more than 2.
|
Keywords
topology optimization
moving morphable component
isogeometric analysis
energy penalization method
symmetric constraint
|
Corresponding Author(s):
Zhaohui XIA
|
Just Accepted Date: 11 December 2019
Online First Date: 09 January 2020
Issue Date: 21 February 2020
|
|
1 |
M P Bendsøe, N Kikuchi. Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2): 197–224
https://doi.org/10.1016/0045-7825(88)90086-2
|
2 |
S Gholizadeh, M Ebadijalal. Performance based discrete topology optimization of steel braced frames by a new metaheuristic. Advances in Engineering Software, 2018, 123: 77–92
https://doi.org/10.1016/j.advengsoft.2018.06.002
|
3 |
Y Zhang, W Ge, Y Zhang, et al. Topology optimization of hyperelastic structure based on a directly coupled finite element and element-free Galerkin method. Advances in Engineering Software, 2018, 123: 25–37
https://doi.org/10.1016/j.advengsoft.2018.05.006
|
4 |
A Csébfalvi, J Lógó. A critical analysis of expected-compliance model in volume-constrained robust topology optimization with normally distributed loading directions, using a minimax-compliance approach alternatively. Advances in Engineering Software, 2018, 120: 107–115
https://doi.org/10.1016/j.advengsoft.2018.02.003
|
5 |
J Gao, H Li, L Gao, et al. Topological shape optimization of 3D micro-structured materials using energy-based homogenization method. Advances in Engineering Software, 2018, 116: 89–102
https://doi.org/10.1016/j.advengsoft.2017.12.002
|
6 |
O Sigmund, J Petersson. Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Structural Optimization, 1998, 16(1): 68–75
https://doi.org/10.1007/BF01214002
|
7 |
O Sigmund. A 99 line topology optimization code written in Matlab. Structural and Multidisciplinary Optimization, 2001, 21(2): 120–127
https://doi.org/10.1007/s001580050176
|
8 |
E Andreassen, A Clausen, M Schevenels, et al. Efficient topology optimization in MATLAB using 88 lines of code. Structural and Multidisciplinary Optimization, 2011, 43(1): 1–16
https://doi.org/10.1007/s00158-010-0594-7
|
9 |
Z Liao, Y Zhang, Y Wang, et al. A triple acceleration method for topology optimization. Structural and Multidisciplinary Optimization, 2019, 60(2): 727–724
https://doi.org/10.1007/s00158-019-02234-6
|
10 |
M Zhou, Y Liu, Z Lin. Topology optimization of thermal conductive support structures for laser additive manufacturing. Computer Methods in Applied Mechanics and Engineering, 2019, 353: 24–43
https://doi.org/10.1016/j.cma.2019.03.054
|
11 |
M Zhou, H Lian, O Sigmund, et al. Shape morphing and topology optimization of fluid channels by explicit boundary tracking. International Journal for Numerical Methods in Fluids, 2018, 88(6): 296–313
https://doi.org/10.1002/fld.4667
|
12 |
T Liu, S Wang, B Li, et al. A level-set-based topology and shape optimization method for continuum structure under geometric constraints. Structural and Multidisciplinary Optimization, 2014, 50(2): 253–273
https://doi.org/10.1007/s00158-014-1045-7
|
13 |
T Liu, B Li, S Wang, et al. Eigenvalue topology optimization of structures using a parameterized level set method. Structural and Multidisciplinary Optimization, 2014, 50(4): 573–591
https://doi.org/10.1007/s00158-014-1069-z
|
14 |
Y Mei, X Wang. A level set method for structural topology optimization and its applications. Computer Methods in Applied Mechanics and Engineering, 2004, 35(7): 415–441
https://doi.org/10.1016/j.advengsoft.2004.06.004
|
15 |
Y Wang, D J Benson. Geometrically constrained isogeometric parameterized level-set based topology optimization via trimmed elements. Frontiers of Mechanical Engineering, 2016, 11(4): 328–343
https://doi.org/10.1007/s11465-016-0403-0
|
16 |
Y Wang, D J Benson. Isogeometric analysis for parameterized LSM-based structural topology optimization. Computational Mechanics, 2016, 57(1): 19–35
https://doi.org/10.1007/s00466-015-1219-1
|
17 |
Z Xia, Y Wang, Q Wang, et al. GPU parallel strategy for parameterized LSM-based topology optimization using isogeometric analysis. Structural and Multidisciplinary Optimization, 2017, 56(2): 413–434
https://doi.org/10.1007/s00158-017-1672-x
|
18 |
Y Liu, Z Li, P Wei, et al. Parameterized level-set based topology optimization method considering symmetry and pattern repetition constraints. Computer Methods in Applied Mechanics and Engineering, 2018, 340: 1079–1101
https://doi.org/10.1016/j.cma.2018.04.034
|
19 |
Z Li, T Shi, Q Xia. Eliminate localized eigenmodes in level set based topology optimization for the maximization of the first eigenfrequency of vibration. Advances in Engineering Software, 2017, 107: 59–70
https://doi.org/10.1016/j.advengsoft.2016.12.001
|
20 |
J Liu, L Li, Y Ma. Uniform thickness control without pre-specifying the length scale target under the level set topology optimization framework. Advances in Engineering Software, 2017, 115: 204–216
https://doi.org/10.1016/j.advengsoft.2017.09.013
|
21 |
Q Xia, T Shi, L Xia. Stable hole nucleation in level set based topology optimization by using the material removal scheme of BESO. Computer Methods in Applied Mechanics and Engineering, 2019, 343: 438–452
https://doi.org/10.1016/j.cma.2018.09.002
|
22 |
Z Li, T Shi, L Xia, et al. Maximizing the first eigenfrequency of structures subjected to uniform boundary erosion through the level set method. Engineering with Computers, 2019, 35(1): 21–33
https://doi.org/10.1007/s00366-018-0580-z
|
23 |
Y M Xie, G P Steven. A simple evolutionary procedure for structural optimization. Computers & Structures, 1993, 49(5): 885–896
https://doi.org/10.1016/0045-7949(93)90035-C
|
24 |
X Huang, Y M Xie. Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. Finite Elements in Analysis and Design, 2007, 43(14): 1039–1049
https://doi.org/10.1016/j.finel.2007.06.006
|
25 |
B Stanford, P Ifju. Aeroelastic topology optimization of membrane structures for micro air vehicles. Structural and Multidisciplinary Optimization, 2009, 38(3): 301–316
https://doi.org/10.1007/s00158-008-0292-x
|
26 |
J H Zhu, W H Zhang, L Xia. Topology optimization in aircraft and aerospace structures design. Archives of Computational Methods in Engineering, 2016, 23(4): 595–622
https://doi.org/10.1007/s11831-015-9151-2
|
27 |
T Zegard, G H Paulino. Bridging topology optimization and additive manufacturing. Structural and Multidisciplinary Optimization, 2016, 53(1): 175–192
https://doi.org/10.1007/s00158-015-1274-4
|
28 |
X Guo, J Zhou, W Zhang, et al. Self-supporting structure design in additive manufacturing through explicit topology optimization. Computer Methods in Applied Mechanics and Engineering, 2017, 323: 27–63
https://doi.org/10.1016/j.cma.2017.05.003
|
29 |
Y F Li, X Huang, F Meng, et al. Evolutionary topological design for phononic band gap crystals. Structural and Multidisciplinary Optimization, 2016, 54(3): 595–617
https://doi.org/10.1007/s00158-016-1424-3
|
30 |
Y F Li, X Huang, S Zhou. Topological design of cellular phononic band gap crystals. Materials, 2016, 9(3): 186–208
https://doi.org/10.3390/ma9030186
|
31 |
Y Wang, S Arabnejad, M Tanzer, et al. Hip implant design with three-dimensional porous architecture of optimized graded density. Journal of Mechanical Design, 2018, 140(11): 111406
https://doi.org/10.1115/1.4041208
|
32 |
N Aage, E Andreassen, B S Lazarov, et al. Giga-voxel computational morphogenesis for structural design. Nature, 2017, 550(7674): 84–86
https://doi.org/10.1038/nature23911
|
33 |
O Sigmund. Materials with prescribed constitutive parameters: An inverse homogenization problem. International Journal of Solids and Structures, 1994, 31(17): 2313–2329
https://doi.org/10.1016/0020-7683(94)90154-6
|
34 |
W Zhang, S Sun. Scale-related topology optimization of cellular materials and structures. International Journal for Numerical Methods in Engineering, 2006, 68(9): 993–1011
https://doi.org/10.1002/nme.1743
|
35 |
W M Vicente, R Picelli, R Pavanello, Y M Xie. Topology optimization of periodic structures for coupled acoustic-structure systems. In: Proceedings of the VII European Congress on Computational Methods in Applied Sciences and Engineering. Crete Island, 2016
|
36 |
G He, X Huang, H Wang, et al. Topology optimization of periodic structures using BESO based on unstructured design points. Structural and Multidisciplinary Optimization, 2016, 53(2): 271–275
https://doi.org/10.1007/s00158-015-1342-9
|
37 |
X Guo, W Zhang, W Zhong. Doing topology optimization explicitly and geometrically—A new moving morphable components based framework. Frontiers in Applied Mechanics, 2014, 81(8): 081009
https://doi.org/10.1115/1.4027609
|
38 |
W Hou, Y Gai, X Zhu, et al. Explicit isogeometric topology optimization using moving morphable components. Computer Methods in Applied Mechanics and Engineering, 2017, 326: 694–712
https://doi.org/10.1016/j.cma.2017.08.021
|
39 |
T J R Hughes, J A Cottrell, Y Bazilevs. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 2005, 194(39–41): 4135–4195
https://doi.org/10.1016/j.cma.2004.10.008
|
40 |
J A Cottrell, T J R Hughes, Y. Bazilevs Isogeometric Analysis: Toward Integration of CAD and FEA. Hoboken: John Wiley & Sons, 2009
|
41 |
X Wang, X Zhu, P Hu. Isogeometric finite element method for buckling analysis of generally laminated composite beams with different boundary conditions. International Journal of Mechanical Sciences, 2015, 104: 190–199
https://doi.org/10.1016/j.ijmecsci.2015.10.008
|
42 |
B Marussig, T J R Hughes. A review of trimming in isogeometric analysis: Challenges, data exchange and simulation aspects. Archives of Computational Methods in Engineering, 2018, 25(4): 1059–1127
https://doi.org/10.1007/s11831-017-9220-9
|
43 |
Q Pan, T Rabczuk, C Chen, et al. Isogeometric analysis of minimal surfaces on the basis of extended Catmull–Clark subdivision. Computer Methods in Applied Mechanics and Engineering, 2018, 337: 128–149
https://doi.org/10.1016/j.cma.2018.03.040
|
44 |
Z An, T Yu, T Q Bui, et al. Implementation of isogeometric boundary element method for 2-D steady heat transfer analysis. Advances in Engineering Software, 2018, 116: 36–49
https://doi.org/10.1016/j.advengsoft.2017.11.008
|
45 |
D Rypl, B Patzák . Construction of weighted dual graphs of NURBS-based isogeometric meshes. Advances in Engineering Software, 2013, 60–61: 31–41
https://doi.org/10.1016/j.advengsoft.2012.10.007
|
46 |
D Rypl, B Patzák. Object oriented implementation of the T-spline based isogeometric analysis. Advances in Engineering Software, 2012, 50(1): 137–149
https://doi.org/10.1016/j.advengsoft.2012.02.004
|
47 |
W Lai, T Yu, T Q Bui, et al. 3-D elasto-plastic large deformations: IGA simulation by Bézier extraction of NURBS. Advances in Engineering Software, 2017, 108: 68–82
https://doi.org/10.1016/j.advengsoft.2017.02.011
|
48 |
D Rypl, B Patzák. From the finite element analysis to the isogeometric analysis in an object oriented computing environment. Advances in Engineering Software, 2012, 44(1): 116–125
https://doi.org/10.1016/j.advengsoft.2011.05.032
|
49 |
L Dedè, M J Borden, T J R Hughes. Isogeometric analysis for topology optimization with a phase field model. Archives of Computational Methods in Engineering, 2012, 19(3): 427–465
https://doi.org/10.1007/s11831-012-9075-z
|
50 |
A V Kumar, A Parthasarathy. Topology optimization using B-spline finite elements. Structural and Multidisciplinary Optimization, 2011, 44(4): 471–481
https://doi.org/10.1007/s00158-011-0650-y
|
51 |
Y Wang, H Xu, D Pasini. Multiscale isogeometric topology optimization for lattice materials. Computer Methods in Applied Mechanics and Engineering, 2017, 316: 568–585
https://doi.org/10.1016/j.cma.2016.08.015
|
52 |
M Xu, L Xia, S Wang, et al. An isogeometric approach to topology optimization of spatially graded hierarchical structures. Composite Structures, 2019, 225: 111171
https://doi.org/10.1016/j.compstruct.2019.111171
|
53 |
X Xie, S Wang, M Xu, et al. A new isogeometric topology optimization using moving morphable components based on R-functions and collocation schemes. Computer Methods in Applied Mechanics and Engineering, 2018, 339: 61–90
https://doi.org/10.1016/j.cma.2018.04.048
|
54 |
W Zhang, J Zhou, Y Zhu, et al. Structural complexity control in topology optimization via moving morphable component (MMC) approach. Structural and Multidisciplinary Optimization, 2017, 56(3): 535–552
https://doi.org/10.1007/s00158-017-1736-y
|
55 |
L Piegl, W Tiller. The NURBS Book. Berlin: Springer, 1997
|
56 |
C de Falco, A Reali, R Vázquez. GeoPDEs: A research tool for isogeometric analysis of PDEs. Advances in Engineering Software, 2011, 42(12): 1020–1034
https://doi.org/10.1016/j.advengsoft.2011.06.010
|
57 |
C D de Boor. On calculating with B-splines. Journal of Approximation Theory, 1972, 6(1): 50–62
https://doi.org/10.1016/0021-9045(72)90080-9
|
58 |
Y D Fougerolle, A Gribok, S Foufou, et al. Boolean operations with implicit and parametric representation of primitives using R-functions. IEEE Transactions on Visualization and Computer Graphics, 2005, 11(5): 529–539
https://doi.org/10.1109/TVCG.2005.72
|
59 |
K Svanberg. The method of moving asymptotes—A new method for structural optimization. International Journal for Numerical Methods in Engineering, 1987, 24(2): 359–373
https://doi.org/10.1002/nme.1620240207
|
60 |
X Huang, Y M Xie. Optimal design of periodic structures using evolutionary topology optimization. Structural and Multidisciplinary Optimization, 2008, 36(6): 597–606
https://doi.org/10.1007/s00158-007-0196-1
|
61 |
W Zhang, J Yuan, J Zhang, et al. A new topology optimization approach based on moving morphable components (MMC) and the ersatz material model. Structural and Multidisciplinary Optimization, 2016, 53(6): 1243–1260
https://doi.org/10.1007/s00158-015-1372-3
|
62 |
Z Xia, Q Wang, Q Liu, et al. A novel approach for automatic reconstruction of boundary condition in structure analysis. Advances in Engineering Software, 2016, 96: 38–57
https://doi.org/10.1016/j.advengsoft.2016.02.001
|
63 |
Z Xia, Q Wang, Y Wang, et al. A CAD/CAE incorporate software framework using a unified representation architecture. Advances in Engineering Software, 2015, 87(C): 68–85
https://doi.org/10.1016/j.advengsoft.2015.05.005
|
64 |
Y Wang, Q Wang, X Deng, et al. Graphics processing unit (GPU) accelerated fast multipole BEM with level-skip M2L for 3D elasticity problems. Advances in Engineering Software, 2015, 82(2): 105–118
https://doi.org/10.1016/j.advengsoft.2015.01.002
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|