Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2021, Vol. 16 Issue (1) : 97-110    https://doi.org/10.1007/s11465-020-0600-8
RESEARCH ARTICLE
Analysis and comparison of laser cutting performance of solar float glass with different scanning modes
Wenyuan LI1, Yu HUANG1, Youmin RONG1, Long CHEN1, Guojun ZHANG1(), Zhangrui GAO2
1. State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2. HG Farley Laserlab Cutting Welding System Engineering Co., Ltd., Wuhan 430223, China
 Download: PDF(6858 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Cutting quality and efficiency have always been important indicators of glass laser cutting. Laser scanning modes have two kinds, namely, the spiral and concentric circle scanning modes. These modes can achieve high-performance hole cutting of thick solar float glass using a 532-nm nanosecond laser. The mechanism of the glass laser cutting under these two different scanning modes has been described. Several experiments are conducted to explore the effect of machining parameters on cutting efficiency and quality under these two scanning modes. Results indicate that compared with the spiral scanning mode, the minimum area of edge chipping (218340 µm2) and the minimum Ra (3.01 µm) in the concentric circle scanning mode are reduced by 9.4% and 16.4% respectively. Moreover, the best cutting efficiency scanning mode is 14.2% faster than that in the spiral scanning mode. The best parameter combination for the concentric circle scanning mode is as follows: Scanning speed: 2200 mm/s, number of inner circles: 6, and circle spacing: 0.05 mm. This parameter combination reduces the chipping area and sidewall surface roughness by 8.8% and 9.6% respectively at the same cutting efficiency compared with the best spiral processing parameters. The range of glass processing that can be achieved in the concentric circle scanning mode is wider than that in the spiral counterpart. The analyses of surface topography, white spots, microstructures, and sidewall surface element composition are also performed. The study concluded that the concentric circle scanning mode shows evident advantages in the performance of solar float glass hole cutting.

Keywords laser cutting      solar float glass      scanning mode      surface quality      cutting efficiency     
Corresponding Author(s): Guojun ZHANG   
Just Accepted Date: 16 October 2020   Online First Date: 19 November 2020    Issue Date: 11 March 2021
 Cite this article:   
Wenyuan LI,Yu HUANG,Youmin RONG, et al. Analysis and comparison of laser cutting performance of solar float glass with different scanning modes[J]. Front. Mech. Eng., 2021, 16(1): 97-110.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-020-0600-8
https://academic.hep.com.cn/fme/EN/Y2021/V16/I1/97
Fig.1  Schematic of solar float glass laser cutting under different scanning modes.
Fig.2  Schematic of glass chipping formation by laser cutting.
Properties of solar float glass Value
Density 2480 kg/m3
Expansion coefficient 9.1×10−6/K
Specific heat capacity 836 J/(kg·K)
Thermal conductivity 0.8 W/(m·K)
Young’s modulus 74 GPa
Poisson’s ratio 0.23
Softening temperature 993–1003 K
Average bending fracture strength 49 MPa
Tab.1  Physical and mechanical properties of solar float glass
Fig.3  Experimental setup for laser cutting of solar float glass.
Scanning mode Parameter Value
Spiral scanning mode Scanning speed, v 200, 250, 300, and 350 mm/s
Spiral width, w 0.45, 0.5, 0.55, and 0.6 mm
Spiral overlap ratio, r 60%, 65%, 70%, and 75%
Concentric circle scanning mode Scanning speed, v 1600, 1900, 2200, and 2500 mm/s
Number of inner circles, n 5, 6, 7, and 8
Circle spacing, d 0.04, 0.05, 0.06, and 0.07 mm
Tab.2  Process parameters and their levels
Property Value
Shape and size of specimens Square, 8 mm × 8 mm × 2.2 mm
Laser pulse frequency 43 kHz
Laser power under focus lens 25.4 W
Focus spot size 15 µm
Focus rise distance per layer 0.02 mm
Laser chiller constant temperature 23 °C
Ambient temperature 25 °C
Chiller cooling water Deionized water
Tab.3  Processing condition of solar float glass by laser cutting
Fig.4  Machined specimens with different laser scanning modes: (a) The spiral scanning mode with parameter combination No. 12 in Table 4; (b) the concentric circle scanning mode with parameter combination No. 12 in Table 5.
No. v/(mm·s−1) w/mm r/% Chipping area/µm2 Ra/µm Cutting time/s
1 200 0.45 60 363036 8.76 20.31
2 200 0.50 65 364899 6.22 20.31
3 200 0.55 70 474649 6.25 20.31
4 200 0.60 75 380659 4.27 20.31
5 250 0.45 65 363388 7.32 16.32
6 250 0.50 60 442924 7.25 16.32
7 250 0.55 75 447636 3.62 16.32
8 250 0.60 70 306502 6.15 16.32
9 300 0.45 70 399383 4.96 13.65
10 300 0.50 75 481037 4.51 13.65
11 300 0.55 60 295180 4.57 13.65
12 300 0.60 65 241009 3.66 13.65
13 350 0.45 75 457950 3.98 11.75
14 350 0.50 70 384307 3.60 11.75
15 350 0.55 65 479588 7.33 11.75
16 350 0.60 60 471696 9.67 11.75
Tab.4  Experimental results in the spiral scanning mode
No. v/(mm·s−1) n d/mm Chipping area/µm2 Ra/µm Cutting time/s
1 1600 5 0.04 424832 3.48 15.51
2 1600 6 0.05 416584 3.50 17.85
3 1600 7 0.06 323467 3.98 20.08
4 1600 8 0.07 405490 4.19 22.19
5 1900 5 0.05 341807 3.20 13.12
6 1900 6 0.04 434733 3.56 15.30
7 1900 7 0.07 386704 3.19 16.96
8 1900 8 0.06 304975 3.01 19.07
9 2200 5 0.06 401814 4.21 11.38
10 2200 6 0.07 244576 4.63 13.08
11 2200 7 0.04 341502 3.71 15.17
12 2200 8 0.05 218340 3.24 16.79
13 2500 5 0.07 413602 4.60 10.08
14 2500 6 0.06 380233 4.48 11.72
15 2500 7 0.05 320253 4.82 13.37
16 2500 8 0.04 360403 3.62 15.07
Tab.5  Experimental results in the concentric circle scanning mode
Scanning mode γv γw γr γn γd
Spiral scanning mode
?Chipping area 0.605 0.690 0.681
?Ra 0.577 0.595 0.639
Concentric circle scanning mode
?Chipping area 0.633 0.596 0.654
?Ra 0.613 0.592 0.651
Tab.6  Gray correlation degree of three parameters with chipping area and Ra
Fig.5  Effect of parameters on glass chipping in different scanning modes: (a) Spiral scanning mode; (b) concentric circle scanning mode.
Fig.6  Interactions between each cutting parameter for the chipping area in different scanning modes: (a) Spiral scanning mode; (b) concentric circle scanning mode.
Fig.7  Effect of parameters on Ra in different scanning modes: (a) Spiral scanning mode; (b) concentric circle scanning mode.
Fig.8  Interactions between each cutting parameter for Ra in different scanning modes: (a) Spiral scanning mode; (b) concentric circle scanning mode.
Fig.9  Effect of parameters on cutting efficiency in different scanning modes: (a) Spiral scanning mode; (b) concentric circle scanning mode.
Fig.10  Minimum chipping area in different laser scanning modes: (a) No. 12 in Table 4 (chipping area: 240524 µm2); (b) No. 12 in Table 5 (chipping area: 216245 µm2).
Fig.11  Profile of the minimum chipping area in different laser scanning modes: (a) No. 12 in Table 4; (b) No. 12 in Table 5.
Fig.12  Maximum chipping area in different laser scanning modes: (a) No. 15 in Table 4 (chipping area: 486664 µm2); (b) No. 6 in Table 5 (chipping area: 400168 µm2).
Fig.13  Minimum Ra of the laser-processed sidewall in different laser scanning modes: (a) No. 14 in Table 4 (Ra: 3.59 µm); (b) No. 8 in Table 5 (Ra: 2.92 µm).
Fig.14  Maximum Ra of the laser-processed sidewall in different laser scanning modes: (a) No. 16 in Table 4 (Ra: 11.16 µm); (b) No. 15 in Table 5 (Ra: 4.91 µm).
Fig.15  SEM images of laser-processed sidewall surface in two different scanning modes: (a) No. 14 in Table 4; (b) No. 8 in Table 5; (c) No. 16 in Table 4; (d) No. 15 in Table 5.
Fig.16  SEM images of a laser-processed surface edge in two different scanning modes: (a) No. 12 in Table 4; (b) No. 12 in Table 5; (c) No. 15 in Table 4; (d) No. 6 in Table 5.
Fig.17  EDS analysis of laser-processed surfaces on glass under two different scanning modes: (a) Glass substrate; (b) No. 14 in Table 4; (c) No. 8 in Table 5; (d) No. 16 in Table 4.
1 L J Yang, Y Wang, Z G Tian, et al. YAG laser cutting soda-lime glass with controlled fracture and volumetric heat absorption. International Journal of Machine Tools and Manufacture, 2010, 50(10): 849–859
https://doi.org/10.1016/j.ijmachtools.2010.07.001
2 S Kühnapfel, S Severin, N Kersten, et al. Multi crystalline silicon thin films grown directly on low cost soda-lime glass substrates. Solar Energy Materials and Solar Cells, 2019, 203: 110168
https://doi.org/10.1016/j.solmat.2019.110168
3 V I Kondrashov, L A Shitova, V A Litvinov, et al. Characteristics of cutting parameters and their effect on the glass edge quality. Glass and Ceramics, 2001, 58(9–10): 303–305
https://doi.org/10.1023/A:1013926908241
4 T Matsumura, T Hiramatsu, T Shirakashi, et al. A study on cutting force in the milling process of glass. Journal of Manufacturing Processes, 2005, 7(2): 102–108
https://doi.org/10.1016/S1526-6125(05)70087-6
5 A B Zhimalov, V F Solinov, V S Kondratenko, et al. Laser cutting of float glass during production. Glass and Ceramics, 2006, 63(9–10): 319–321
https://doi.org/10.1007/s10717-006-0112-y
6 A Sharma, V Jain, D Gupta. Characterization of chipping and tool wear during drilling of float glass using rotary ultrasonic machining. Measurement, 2018, 128: 254–263
https://doi.org/10.1016/j.measurement.2018.06.040
7 M A Azmir, A K Ahsan. A study of abrasive water jet machining process on glass/epoxy composite laminate. Journal of Materials Processing Technology, 2009, 209(20): 6168–6173
https://doi.org/10.1016/j.jmatprotec.2009.08.011
8 X Yu, P Wang, X Li, et al. Thin Czochralski silicon solar cells based on diamond wire sawing technology. Solar Energy Materials and Solar Cells, 2012, 98: 337–342
https://doi.org/10.1016/j.solmat.2011.11.028
9 R M Lumley. Controlled separation of brittle materials using a laser. American Ceramic Society Bulletin, 1969, 48(9): 850–854
10 S Nisar, L Li, M A Sheikh. Laser glass cutting techniques—A review. Journal of Laser Applications, 2013, 25(4): 042010
https://doi.org/10.2351/1.4807895
11 C H Tsai, C S Liou. Fracture mechanism of laser cutting with controlled fracture. Journal of Manufacturing Science and Engineering, 2003, 125(3): 519–528
https://doi.org/10.1115/1.1559163
12 M V Udrea, A Alacakir, A Esendemir, et al. Small-power-pulsed and continuous longitudinal CO2 laser for material processing. Proceedings Volume 4068, SIOEL’99: Sixth Symposium on Optoelectronics, 2000, 4068: 657–662
https://doi.org/10.1117/12.378741
13 C Zhao, H Zhang, Y Wang. Semiconductor laser asymmetry cutting glass with laser induced thermal-crack propagation. Optics and Lasers in Engineering, 2014, 63: 43–52
https://doi.org/10.1016/j.optlaseng.2014.06.008
14 L Deng, H Yang, X Zeng, et al. Study on mechanics and key technologies of laser nondestructive mirror-separation for KDP crystal. International Journal of Machine Tools and Manufacture, 2015, 94: 26–36
https://doi.org/10.1016/j.ijmachtools.2015.04.001
15 Y L Kuo, J Lin. Laser cleaving on glass sheets with multiple laser beams. Optics and Lasers in Engineering, 2008, 46(5): 388–395
https://doi.org/10.1016/j.optlaseng.2007.12.006
16 J Jiao, X Wang. Cutting glass substrates with dual-laser beams. Optics and Lasers in Engineering, 2009, 47(7–8): 860–864
https://doi.org/10.1016/j.optlaseng.2008.12.009
17 C Zhao, H Zhang, L Yang, et al. Dual laser beam revising the separation path technology of laser induced thermal-crack propagation for asymmetric linear cutting glass. International Journal of Machine Tools and Manufacture, 2016, 106: 43–55
https://doi.org/10.1016/j.ijmachtools.2016.04.005
18 H Wang, M Wang, H Zhang, et al. Use of inner-heated circular microwave spot to cut glass sheets based on thermal-controlled fracture method. Journal of Materials Processing Technology, 2020, 276: 116309
https://doi.org/10.1016/j.jmatprotec.2019.116309
19 R R Gattass, E Mazur. Femtosecond laser micromachining in transparent materials. Nature Photonics, 2008, 2(4): 219–225
https://doi.org/10.1038/nphoton.2008.47
20 H Shin, D Kim. Cutting thin glass by femtosecond laser ablation. Optics & Laser Technology, 2018, 102: 1–11
https://doi.org/10.1016/j.optlastec.2017.12.020
21 A Couairon, A Mysyrowicz. Femtosecond filamentation in transparent media. Physics Reports, 2007, 441(2–4): 47–189
https://doi.org/10.1016/j.physrep.2006.12.005
22 C F Chuang, K S Chen, T C Chiu, et al. Crafting interior holes on chemically strengthened thin glass based on ultrafast laser ablation and thermo-shock crack propagations. Sensors and Actuators A: Physical, 2020, 301: 111723
https://doi.org/10.1016/j.sna.2019.111723
23 L Mačernytė, J Skruibis, V Vaičaitis, et al. Femtosecond laser micromachining of soda-lime glass in ambient air and under various aqueous solutions. Micromachines, 2019, 10(6): 354
https://doi.org/10.3390/mi10060354
24 A R Collins, G M O’Connor. Mechanically inspired laser scribing of thin flexible glass. Optics Letters, 2015, 40(20): 4811–4814
https://doi.org/10.1364/OL.40.004811
25 P Liu, J Duan, B Wu, et al. A flexible multi-focus laser separation technology for thick glass. International Journal of Machine Tools and Manufacture, 2018, 135: 12–23
https://doi.org/10.1016/j.ijmachtools.2018.08.001
26 P Liu, L Deng, F Zhang, et al. Study on high-efficiency separation of laminated glass by skillfully combining laser-induced thermal-crack propagation and laser thermal melting. Applied Physics A, 2020, 126(4): 286
https://doi.org/10.1007/s00339-020-3461-4
27 F Feucht, J Ketelaer, A Wolff, et al. Latest machining technologies of hard-to-cut materials by ultrasonic machine tool. Procedia CIRP, 2014, 14(1): 148–152
https://doi.org/10.1016/j.procir.2014.03.040
[1] Wenyuan LI, Guojun ZHANG, Long CHEN, Yu HUANG, Youmin RONG, Zhangrui GAO. Dimethicone-aided laser cutting of solar rolled glass[J]. Front. Mech. Eng., 2021, 16(1): 111-121.
[2] BIAN Hongyou, LIU Weijun, ZHAO Jibin. New kind of subarea-parallel scanning mode for laser metal deposition shaping[J]. Front. Mech. Eng., 2007, 2(4): 417-422.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed