Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2017, Vol. 12 Issue (3) : 281-302    https://doi.org/10.1007/s11465-017-0442-1
REVIEW ARTICLE
Overview of condition monitoring and operation control of electric power conversion systems in direct-drive wind turbines under faults
Shoudao HUANG, Xuan WU(), Xiao LIU, Jian GAO, Yunze HE
College of Electrical and Information Engineering, Hunan University, Changsha 410082, China
 Download: PDF(595 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Electric power conversion system (EPCS), which consists of a generator and power converter, is one of the most important subsystems in a direct-drive wind turbine (DD-WT). However, this component accounts for the most failures (approximately 60% of the total number) in the entire DD-WT system according to statistical data. To improve the reliability of EPCSs and reduce the operation and maintenance cost of DD-WTs, numerous researchers have studied condition monitoring (CM) and fault diagnostics (FD). Numerous CM and FD techniques, which have respective advantages and disadvantages, have emerged. This paper provides an overview of the CM, FD, and operation control of EPCSs in DD-WTs under faults. After introducing the functional principle and structure of EPCS, this survey discusses the common failures in wind generators and power converters; briefly reviewed CM and FD methods and operation control of these generators and power converters under faults; and discussed the grid voltage faults related to EPCSs in DD-WTs. These theories and their related technical concepts are systematically discussed. Finally, predicted development trends are presented. The paper provides a valuable reference for developing service quality evaluation methods and fault operation control systems to achieve high-performance and high-intelligence DD-WTs.

Keywords direct-drive wind turbine      electric power conversion system      condition monitoring      fault diagnosis      operation control under faults      fault tolerance     
Corresponding Author(s): Xuan WU   
Just Accepted Date: 07 June 2017   Online First Date: 19 July 2017    Issue Date: 04 August 2017
 Cite this article:   
Shoudao HUANG,Xuan WU,Xiao LIU, et al. Overview of condition monitoring and operation control of electric power conversion systems in direct-drive wind turbines under faults[J]. Front. Mech. Eng., 2017, 12(3): 281-302.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-017-0442-1
https://academic.hep.com.cn/fme/EN/Y2017/V12/I3/281
Fig.1  Configuration of a typical DD-WT
Fig.2  Control system of a DD-WT
Fig.3  Structure of EPCS in DD-WT
MethodsReferencesMonitoring resultsLimitations
Spectral analysis of stator current[1214]Monitoring stator winding faultJudgment is not accurate, and it is related to load and power supply reliability
Symmetrical component method[15,16]Monitoring of inter-turn short-circuit faultInsulation is not monitored
Park vector analysis of stator current[17,18]Monitoring of inter-turn short-circuit faultRelationship between the ellipticity of the trajectory of (id, iq) and the fault is unclear
Axial magnetic flux leakage[1921]Monitoring of inter-turn short-circuit fault as well as phase-to-phase and phase-to-ground insulation deteriorationInstallation of multiple probes with high concentricity is required
Vibration signal analysis[2224]Monitoring of inter-turn short-circuit fault and winding insulation deteriorationMultiple vibration sensors should be installed
Temperature signal analysis[2530]Monitoring of inter-turn short-circuit fault and phase-to-ground insulation deteriorationTemperature sensors, which are difficult to locate, should be installed
Partial discharge[3134]Monitoring of inter-turn short-circuit fault and insulation deteriorationHigh cost
Tab.1  Monitoring methods for stator windings
Fig.4  Vector trajectory of Park vector. (a) Normal operation; (b) A phase 6 turns short circuit; (c) B phase 18 turns short circuit; (d) C phase 18 turns short circuit
Methods for demagnetization detectionReferencesFeatures
Static prevention methods[45]Permanent-magnet materials were studied, and an expression for demagnetization in specific cases were derived by this method
[46]The effect of the alternating magnetic field on the permanent-magnetic material was studied by this method
Off-line detection methods[48]The method of “D-the Module” flux observation was proposed. The method can respond to the changing flux linkage, but it can only observe fluctuations in the flux amplitude in a fixed direction
[49]An improved back-EMF method was proposed. The method can be used to estimate the flux linkage, but it can only observe the fluctuations in the flux amplitude in a fixed direction
[51]A reactive power feedback method to compensate for the torque ripple caused by flux linkage was proposed. However, the method can only consider the fluctuations in the flux linkage amplitude
On-line detection methods[47]An on-line flux linkage monitoring method based on the Kalman filter was proposed. The method can ensure the optimal operation of PMSGs under fluctuating magnetic field of the permanent magnet
Tab.2  Methods for demagnetization monitoring and their features
Fig.5  Equivalent circuit of a power module
Fig.6  Condition monitoring method for wind power converters based on SCADA
Fig.7  SCADA network structure diagram
Stator fault typesReferencesNumber of faultsDiagnostic methods
Inter-turn short circuit[7388]50a. Model-based diagnostic methods
b. Signal-based diagnostic methods
c. Knowledge-based diagnostic methods
Insulation fault[31,89]45TGA-B diagnostic instrument; O3 monitoring
Cracks and deformation in core and base[9092]5a. Finite-element diagnosis
b. Electrical signal-based diagnosis
Tab.3  Stator fault types
Demagnetization fault diagnosis methodsMethods presented in referencesReferencesFeatures
Demagnetization fault diagnosis based on signal transformationHHT[100]This method can detect demagnetization fault under steady-state dynamic situations
CWT[101]This method can rapidly diagnose faults
DWT[101]This method can acquire the spectrum of the stator current
FFT[102]This method is capable of detecting demagnetization, but it is not applicable under conditions of changing loads and variable speed
Demagnetization fault diagnosis based on an equivalent magnetic circuitSemi-analyticalequivalent model[103]The accuracy of calculation is low, but the computational speed is fast
Tab.4  Demagnetization fault diagnosis methods and their features
Fig.8  Diagram of a double-bearing outer-rotor permanent-magnet DD-WT
Fig.9  Motor-side converter control strategy for suppressing second-order voltage ripple
Fig.10  Multiphase permanent-magnet synchronous generator
Fig.11  Schematic of two-level three-phase reconfigurable inverter for external single phase-loss faults [149]
Fig.12  Schematics of two-level three-phase FT inverters [151]. (a) Switch-based four-leg inverter; (b) capacitor-based four-leg inverter
Fault typesSymptomsControl
Symmetrical voltage dropConversion system energy accumulation and DC-bus voltage rapid increaseEnergy balance control
Asymmetrical voltage drop1) Conversion system energy accumulation and DC-bus voltage rapid increase
2) Double-frequency DC-bus voltage fluctuations affecting the generator stator current
Energy balance control and suppression of second-order frequency fluctuation
Tab.5  Types and features of voltage drop faults
Fig.13  Diagram of energy equilibrium scheme using an energy storage device [158]
Fig.14  Schematic of energy balance method for a parallel converter [160]
WTWind turbine
ACAlternating current
DCDirect current
PWMPulse width modulation
IGBTInsulated gate bipolar transistor
EMFElectromotive force
EPCSElectric power conversion system
DD-WTDirect-drive wind turbine
CMCondition monitoring
FDFault diagnostics
DFIGDoubly fed induction generator
PMSGPermanent-magnet synchronous generator
DD-PMSGDirect-drive permanent-magnet synchronous generator
WECSWind-energy conversion system
AEAcoustic emission
SCADASupervisory control and data acquisition
ANNArtificial neural network
HHTHilbert-Huang transform
CWTContinuous wavelet transform
DWTDiscrete wavelet transform
FFTFast Fourier transform
ZSIZ-source inverter
FTFault tolerant
STATCOMStatic compensator
SVCStatic var compensator
FACTSFlexible alternative current transmission system
ITDIntrinsic time deposition
LS-SVMLeast-squares support vector machine
SVMSupport vector machine
PI-RESProportional-integral-resonant
  
1 Qiao W, Lu D. A survey on wind turbine condition monitoring and fault diagnosis—Part I: Components and subsystems. IEEE Transactions on Industrial Electronics, 2015, 62(10): 6536–6545
https://doi.org/10.1109/TIE.2015.2422112
2 Qiao W, Lu D. A survey on wind turbine condition monitoring and fault diagnosis—Part II: Signals and signal processing methods. IEEE Transactions on Industrial Electronics, 2015, 62(10): 6546–6557
https://doi.org/10.1109/TIE.2015.2422394
3 Liu W, Tang B, Han J, et al. The structure healthy condition monitoring and fault diagnosis methods in wind turbines: A review. Renewable and Sustainable Energy Reviews, 2015, 44: 466–472
https://doi.org/10.1016/j.rser.2014.12.005
4 Mirafzal B. Survey of fault-tolerance techniques for three-phase voltage source inverters. IEEE Transactions on Industrial Electronics, 2014, 61(10): 5192–5202 
https://doi.org/10.1109/TIE.2014.2301712
5 Machado de Azevedo H D, Araújo A M, Bouchonneau N. A review of wind turbine bearing condition monitoring: State of the art and challenges. Renewable and Sustainable Energy Reviews, 2016, 56: 368–379
https://doi.org/10.1016/j.rser.2015.11.032
6 Feng Y, Zhou J, Qiu Y, et al. Fault tolerance for wind turbine power converter. In: Proceedings of 2nd IET Renewable Power Generation Conference (RPG 2013). IET, 2013
https://doi.org/10.1049/cp.2013.1831
7 Qiu Y, Jiang H, Feng Y, et al. A new fault diagnosis algorithm for PMSG wind turbine power converters under variable wind speed conditions. Energies, 2016, 9(7): 548
https://doi.org/10.3390/en9070548
8 Tian Z, Jin T, Wu B, et al. Condition based maintenance optimization for wind power generation systems under continuous monitoring. Renewable Energy, 2011, 36(5): 1502–1509
9 Yang D, Li H, Hu Y, et al. Vibration condition monitoring system for wind turbine bearings based on noise suppression with multi-point data fusion. Renewable Energy, 2016, 92: 104–116
https://doi.org/10.1016/j.renene.2016.01.099
10 Cheng M, Zhu Y, The state of the art of wind energy conversion systems and technologies: A review. Energy Conversion and Management, 2014, 88: 332–347
https://doi.org/10.1016/j.enconman.2014.08.037
11 Nasiri M, Milimonfared J, Fathi S H. A review of low-voltage ride-through enhancement methods for permanent magnet synchronous generator based wind turbines. Renewable and Sustainable Energy Reviews, 2015, 47: 399–415
https://doi.org/10.1016/j.rser.2015.03.079
12 Thomson W T. On-line MCSA to diagnose shorted turns in low voltage stator windings of 3-phase induction motors prior to failure. In: Proceedings of the IEEE International Electric Machines and Drives Conference. IEEE, 2001, 891–898
https://doi.org/10.1109/IEMDC.2001.939425
13 Tallam R M, Habetler T G, Harley R G. Stator winding turn-fault detection for closed-loop induction motor drives. IEEE Transactions on Industry Applications, 2003, 39(3): 720–724
https://doi.org/10.1109/TIA.2003.811784
14 Nandi S, Toliyat H. Novel frequency-domain-based technique to detect stator interturn faults in induction machines using stator-induced voltages after switch-off. IEEE Transactions on Industry Applications, 2002, 38(1): 101–109
https://doi.org/10.1109/28.980363
15 Kliman G B, Premerlani W J, Koegl R A, et al.Sensitive on-line turn-to-turn fault detection in AC motors. Electric Machines and Power Systems, 2000, 28(10): 915–927
https://doi.org/10.1080/07313560050129800
16 Li H, Sun L, Xu B. Research on transient behaviors and detection methods of stator winding inter-turn short circuit fault in induction motors based on multi-loop mathematical model. In: Proceedings of International Conference on Electrical Machines and Systems. IEEE, 2005, 1951–1955
https://doi.org/10.1109/ICEMS.2005.202901
17 Joksimovic G M, Penman J. The detection of inter-turn short circuits in the stator windings of operating motors. IEEE Transactions on Industrial Electronics, 2000, 47(5): 1078–1084
https://doi.org/10.1109/41.873216
18 Cruz S M Z, Cardoso A J M. Stator winding fault diagnosis in three-phase synchronous and asynchronous motors, by the extended Park’s vector approach. IEEE Transactions on Industry Applications, 2001, 37(5): 395–401
https://doi.org/10.1109/28.952496
19 Penman J, Sedding H G, Lloyd B A, et al. Detection and location of interturn short circuits in the stator windings of operating motors. IEEE Transactions on Energy Conversion, 1994, 9(4): 652–658
https://doi.org/10.1109/60.368345
20 Melero M G, Cabanas M F. Study of an induction motor working under stator winding inter-turn short circuit condition. In: Proceedings of 4th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives. Atlanta: IEEE, 2003, 423–429
https://doi.org/10.1109/DEMPED.2003.1234546
21 Henao H, Demian C, Capolino G A. A frequency-domain detection of stator winding faults in induction machines using an external flux sensor. IEEE Transactions on Industry Applications, 2003, 39(5): 1272–1279
https://doi.org/10.1109/TIA.2003.816531
22 Guo C, Zhang L, Wang Z. Fault diagnosis of AC motor on the vibrating spectral analysis. Oil Field Machinery, 2005, 34(4): 21–23 (in Chinese)
23 Cao C. Real-time detecting signal of motor vibration based on wavelet packet decomposition. Electric Machines and Control Applications, 2005, 32(8): 58–61 (in Chinese)
24 Amaral T G, Pires V F, Martins J F, et al. Statistic moment based method for the detection and diagnosis of induction motor stator fault. In: Proceedings of International Conference on Power Engineering. IEEE, 2007, 106–110 
https://doi.org/10.1109/POWERENG.2007.4380151
25 Lee S B, Habetler T G, Harley R G, et al. An evaluation of model-based stator resistance estimation for induction motor stator winding temperature monitoring. IEEE Transactions on Energy Conversion, 1998, 4, 17(1): 7–15
https://doi.org/10.1109/60.986431
26 Lee S B, Habetler T G.An online stator winding resistance estimation technique for temperature monitoring of line-connected induction machines. IEEE Transactions on Industry Application, 2003, 4, 39(3): 685–694
https://doi.org/10.1109/TIA.2003.811789
27 Gao Z, Habetler T G, Harley R G, et al. A sensorless adaptive stator winding temperature estimator for mains-fed induction machines with continuous-operation periodic duty cycles. In: Proceedings of the IEEE Industry Applications Conference, 2006. 41st IAS Annual Meeting. IEEE, 2006, 448–455 
https://doi.org/10.1109/IAS.2006.256559
28 Briz F, Degner M W, Guerrero J M, et al. Temperature estimation in inverter fed machines using high frequency carrier signal injection. IEEE Transactions on Industry Application, 2007, 799–808
https://doi.org/10.1109/TIA.2008.921380
29 Beguenane R,Benbouzid M E H.Induction motors thermal monitoring by means of rotor resistance identification. IEEE Transactions on Energy Conversion, 1999, 14(3): 566–570
https://doi.org/10.1109/60.790915
30 Grubic S, Aller J M, Lu B, et al. A survey on testing and monitoring methods for stator insulation systems of low-voltage induction machines focusing on turn insulation problems. IEEE Transactions on Industrial Electronics, 2008, 55(12): 4127–4136
https://doi.org/10.1109/TIE.2008.2004665
31 Stone G C. Advancements during the past quarter century in on-line monitoring of motor and generator winding insulation. IEEE Transactions on Dielectrics and Electrical Insulation, 2002, 9(5): 746–751
https://doi.org/10.1109/TDEI.2002.1038661
32 Stone G C, Boulter E A, Culbert I, et al. Electrical Insulation for Rotating Machines: Design, Evaluation, Aging, Testing, and Repair. New York: John Wiley & Sons, Inc., 2004
33 Tozzi M, Cavallini A, Montanari G C. Monitoring off-line and on-line PD under impulsive voltage on induction motors—Part 1: Standard procedure. IEEE Electrical Insulation Magazine, 2010, 26(4): 16–26 
https://doi.org/10.1109/MEI.2010.5511185
34 Wang C, Wang Z, Li F, et al. Anti-interference techniques used for on-line partial discharge monitoring. In: Proceedings of International Conference on Properties and Application. 1994, 2: 582– 585 
https://doi.org/10.1109/ICPADM.1994.414077
35 Li G, Yi K. Study on using thermal infrared imaging technology detecting the iron core faults of generator. Ningxia Electric Power, 2012, 12(6): 5–7
36 Posedel Z. Inspection of stator cores in large machines with a low yoke induction method-measurement and analysis of interlamination short-circuits. IEEE Transactions on Energy Conversion, 2001, 16(1): 81–86
https://doi.org/10.1109/60.911408
37 Sarikhani A, Mirafzal B, Mohammed O. Inter-turn fault diagnosis of PM synchronous generator for variable speed wind applications using floating-space-vector. In: Proceedings of IECON 2010— 36th Annual Conference on IEEE Industrial Electronics Society. IEEE, 2010, 2628–2633
https://doi.org/10.1109/IECON.2010.5675137
38 Ding F, Trutt F C. Calculation of frequency spectra of electromagnetic vibration for wound-rotor induction machines with winding faults. Electric Machines and Power Systems, 1988, 14(3–4): 137–150 
https://doi.org/10.1080/07313568808909280
39 Hameed Z, Hong Y S, Cho Y M, et al. Condition monitoring and fault detection of wind turbines and related algorithms: A review. Renewable and Sustainable Energy Reviews, 2009, 13(1): 1–39
https://doi.org/10.1016/j.rser.2007.05.008
40 Zhang R, Wang X, Yang Y, et al. Based on the method of equivalent residual magnetism of permanent magnet motor rotor eccentricity magnetic field analytic calculation. Transactions of China Electrotechnical Society, 2009, 24(5): 7–12 (in Chinese)
41 Qiu Z, LiC, Zhou X, et al. Analytical calculation of no-load air-gap magnetic field in surface-mounted permanent magnet motors with rotor eccentricity. Transactions of China Electrotechnical Society, 2013, 28(3): 114–121 (in Chinese)
42 Tang R. Modern Permanent Magnet Machines Theory and Design. Beijing: China Machine Press, 2008, 18–21 (in Chinese)
43 Hao H, Chai J, Jiang Z, et al. Excitation loss in a Nd-Fe-B magnetic materials with alternating magnetic fields. Journal of Tsinghua University (Science and Technology), 2004, 44(6): 721–724 (in Chinese)
44 Xiao X, Zhang M, Li Y. On-line estimation of permanent-magnet flux linkage ripple for PMSM. Proceedings of the CSEE, 2007, 27(24): 142–146 (in Chinese)
45 Qi F. Magnetic stability of permanent magnet materials.  Journal of magnetic Materials and Devices, 1998, 29(5): 26–31 (in Chinese)
46 von Staa F,Hempel K A, ArtzH. On the energy losses of hot worked Nd-Fe-B magnets and ferrites in a small alternating magnetic field perpendicular to a bias field. IEEE Transactions on Magnetics, 1995, 31(6): 3650–3652 
https://doi.org/10.1109/20.489598
47 Xiao X, Zhang M, Li Y. Permanent magnet synchronous motor permanent magnet condition on-line monitoring. Proceedings of the CSEE, 2007, 27(24): 43–47 (in Chinese)
48 Shinnaka S. New “D-State-Observer”-based vector control for sensorless drive of permanent-magnet synchronous motors. IEEE Transactions on Industry Applications, 2005, 41(3): 825–833
https://doi.org/10.1109/TIA.2005.847282
49 Chen Z, Tomita M, Doki S, et al. An extended electromotive force model for sensorless control of Interior permanent-magnet synchronous motors. IEEE Transactions on Industrial Electronics, 2003, 50(2): 288–295
https://doi.org/10.1109/TIE.2003.809391
50 Eskola M, Tuusa H. Comparison of MRAS and novel simple method for position estimation in PMSM drives. In: Proceedings of IEEE 34th Annual Power Electronics Specialist Conference. Acapulco: IEEE, 2003
https://doi.org/10.1109/PESC.2003.1218115
51 Krishnan R, Vijayraghavan P. Fast estimation and compensation of rotor flux linkage in permanent magnet synchronous machines. In: Proceedings of the IEEE International Symposium on Industrial Electronics. IEEE, 1999
https://doi.org/10.1109/ISIE.1999.798691
52 Tchakoua P, Wamkeue R, Ouhrouche M, et al. Wind turbine condition monitoring: State-of-the-art review, new trends, and future challenges. Energies, 2014, 7(4): 2595–2630
https://doi.org/10.3390/en7042595
53 García Márquez F P, Tobias A M, Pinar Pérez J M, et al. Condition monitoring of wind turbines: Techniques and methods. Renewable Energy, 2012, 46(2): 169–178
https://doi.org/10.1016/j.renene.2012.03.003
54 Yang W, Tavner P J, Tian W. Wind turbine condition monitoring based on an improved spline-kernelled chirplet transform. IEEE Transactions on Industrial Electronics, 2015, 62(10): 6565–6574 
https://doi.org/10.1109/TIE.2015.2458787 
55 Astolfi D, Castellani F, Terzi L. Fault prevention and diagnosis through SCADA temperature data analysis of an onshore wind farm. Diagnostyka, 2014, 15(2): 71–78
56 Shahriar M R, Wang L, Kan M S, et al. Fault detection of wind turbine drivetrain utilizing power-speed characteristics. In: Amadi-Echendu J, Hoohlo C, Mathew J, eds. 9th WCEAM Research Papers. Lecture Notes in Mechanical Engineering. Cham: Springer, 2015, 143–155
57 Guo P, Infield D. Wind turbine tower vibration modeling and monitoring by the nonlinear state estimation technique (NSET). Energies, 2012, 5(12): 5279–5293
https://doi.org/10.3390/en5125279
58 Yang H, Mathew J, Ma L. Vibration feature extraction techniques for fault diagnosis of rotating machinery: A literature survey. In: Proceedings of Asia-Pacific Vibration Conference. Gold Coast, 2003
59 Hameed Z, Ahn S, Cho Y. Practical aspects of a condition monitoring system for a wind turbine with emphasis on its design, system architecture, testing and installation. Renewable Energy, 2010, 35(5): 879–894
https://doi.org/10.1016/j.renene.2009.10.031
60 Costinas S, Diaconescu I, Fagarasanu J. Wind power plant condition monitoring. In: Proceedings of the 3rd WSEAS International Conference on Energy Planning, Energy Saving, Environmental Education. Tenerife, 2009, 71–76
61 Rogers A L, Manwell J F, Wright S. Wind Turbine Acoustic Noise. White paper. 2002/2006
62 Salon S, Salem S, Sivasubramaniam K. Monitoring and diagnostic solutions for wind generators. In: Proceedings of IEEE Power and Energy Society General Meeting. IEEE, 2011 
https://doi.org/10.1109/PES.2011.6039907
63 Niknam S A, Thomas T, Hines J W, et al. Analysis of acoustic emission data for bearings subject to unbalance. International Journal Prognostics and Health Management, 2013, 21(Suppl2): 1–10
64 Ma Y, He C, Feng X. Institutions function and failure statistic and analysis of wind turbine. Physics Procedia, 2012, 24(Part A): 25–30
https://doi.org/10.1016/j.phpro.2012.02.005
65 Yang W, Court R, Jiang J. Wind turbine condition monitoring by the approach of SCADA data. Renewable Energy. 2013, 53(9): 365–376
https://doi.org/10.1016/j.renene.2012.11.030
66 Patil N, Das D, Goebel K, et al. Identification of failure precursor parameters for insulated gate bipolar transistors (IGBTs). In: Proceedings of International Conference on Prognostics and Health Management. Denver: IEEE, 2008
https://doi.org/10.1109/PHM.2008.4711417
67 Yang L, Agyakwa P A, Johnson C M. A time-domain physics-of-failure model for the lifetime prediction of wire bond interconnects. Microelectronics and Reliability, 2011, 51(9–11): 1882–1886
https://doi.org/10.1016/j.microrel.2011.07.052
68 Li H, Liu S, Ran L, et al.Overview of condition monitoring technologies of power converter for high power grid-connected wind turbine generator system. Transactions of China Electrotechnical Society, 2016, 31(8): 1–10 (in Chinese)
69 Jabłoński A, Barszcz T, Bielecka M. Automatic validation of vibration signals in wind farm distributed monitoring systems. Measurement, 2011, 44(10): 1954–1967 
https://doi.org/10.1016/j.measurement.2011.08.017
70 Liang Y, Fang R. An online wind turbine condition assessment method based on SCADA and support vector regression. Automation of Electric Power Systems, 2013, 37(14): 7–12 (in Chinese)
71 Guo P, Xu M, Bai N, et al. Wind turbine tower vibration modeling and monitoring driven by SCADA data. Proceedings of the CSEE, 2013, 33(5): 138–135 (in Chinese)
72 Dai J, Yuan X, Liu D, et al. Vibration analysis of large direct drive wind turbine nacelle based on SCADA system. Acta Energize Solaris Sinica, 2015, 36(12): 2895–2905
73 Isermann R. Model-based fault detection and diagnosis-status and applications. Annual Reviews in Control, 2004, 29(1): 71–85
https://doi.org/10.1016/j.arcontrol.2004.12.002
74 Mahyob P, Reghem P, Barakat G. Permeance network modeling of the stator winding faults in electrical machines. IEEE Transactions on Magnetics, 2009, 45(3): 1820–1823
https://doi.org/10.1109/TMAG.2009.2012780
75 Kim B W, Kim K T, Hur J. Simplified impedance modeling and analysis for inter-turn fault of IPM-type BLDC motor. Journal of Power Electronics, 2012, 12(1): 10–18
76 Yazidi A, Henao H, Capolino G. Double-fed three-phase induction machine model for simulation of inter-turn short circuit fault. In: Proceedings of IEEE International Electric Machines and Drives Conference. IEEE, 2009, 571–576
https://doi.org/10.1109/IEMDC.2009.5075263
77 Zhu D, Tan K. Present situation and prospects of condition monitoring and fault diagnosis technology for electrical equipments. Electrical Equipment, 2003, 4(6): 1–8 (in Chinese)
78 Widodo A, Yang B S, Gu D S, et al. Intelligent fault diagnosis system of induction motor based on transient current signal. Mechatronics, 2009, 19(5): 680–689 
https://doi.org/10.1016/j.mechatronics.2009.02.002
79 Cusido J, Romeral L, Ortega J A,et al. Fault detection in induction machines using power spectral density in wavelet decomposition. IEEE Transactions on Industrial Electronics, 2008, 55(2): 633–643
https://doi.org/10.1109/TIE.2007.911960
80 Jung J H, Lee J J, Kwon B H. Online diagnosis of induction motors using MCSA. IEEE Transactions on Industrial Electronics, 2006, 53(6): 1842–1852
https://doi.org/10.1109/TIE.2006.885131
81 Cusido J, Rosero J A, Ortega J A, et al. Induction motor fault detection by using wavelet decomposition on dq0 components. In: Proceedings of IEEE International Symposiums on Industry Electronics. IEEE, 2006, 2406–2411
https://doi.org/10.1109/ISIE.2006.295949
82 Chetwani S H, Shah M K, Ramamoorty M. Online condition monitoring of induction motors through signal processing. In: Proceedings of 8th International Conference on Electrical Machines and Systems. IEEE, 2005, 2175–2179
https://doi.org/10.1109/ICEMS.2005.202952
83 Wu G. Theory and Practice of the State Monitoring of Motor Equipment. Beijing: Tsinghua University Press, 2005 (in Chinese)
84 Liu M, Cui S, GuoB. A method of failure recognition based on fuzzy C-means support vector machines for permanent magnetic DC motor. Micromotors, 2011, 44(10): 78–80 (in Chinese) 
https://doi.org/10.3969/j.issn.1001-6848.2011.10.020
85 Xu Y, Xu J, Guo X. Fuzzy diagnostic system for induction motor based on wavelet analysis and RBF neural network. Research and Exploration in Laboratory, 2012, 28(4): 282–301
86 Chen X. Fault diagnosis of electro-mechanical equipment based on noise signal processing. Machine Tool and Hydraulic, 2005, 65(12): 183–186 (in Chinese)
87 Tan Y, He Y, Cui C. A novel method for analog fault diagnosis based on neural networks and genetic algorithm. IEEE Transactions on Instrumentation and Measurement, 2008, 57(11): 2631–2639
https://doi.org/10.1109/TIM.2008.925009
88 Su H, Chong K T. Induction machine condition monitoring using neural network modeling. IEEE Transactions on Industrial Electronics, 2007, 54(1): 241–249
https://doi.org/10.1109/TIE.2006.888786
89 Valtierra-Rodriguez M, de Jesus Romero-Troncoso R, Osornio-Rios R A,et al. Detection and classification of single and combined power quality disturbances using neural networks. IEEE Transactions on Industrial Electronics, 2014, 61(5): 2473–2482
https://doi.org/10.1109/TIE.2013.2272276
90 Wang X, Kruger U, Irwin G W, et al. Nonlinear PCA with the local approach for diesel engine fault detection and diagnosis.  IEEE Transactions on Control System Technology, 2008, 16(1): 122–129
https://doi.org/10.1109/TCST.2007.899744
91 Huang X, Wang J. The network generation technique of crack tracking. Journal of Shanghai Jiaotong University, 2001, 35(4): 493–495 (in Chinese)
92 Wang C, Zheng C. Semi-analytical finite element method for plane crack stress intensity factor. Engineering Mechanics, 2005, 22(1): 33–37 (in Chinese)
93 Yang T, Ren Y, Liu X, et al.Research on the modeling and simulation of wind turbine rotor imbalance fault. Journal of Mechanical Engineering, 2012, 48(6): 130–135 (in Chinese)
94 Jiang D. Huang Q, Hong L. Theoretical and experimental study on wind wheel unbalance for a wind turbine. In: Proceedings of World Non-Grid-Connected Wind Power and Energy Conference. IEEE, 2009
https://doi.org/10.1109/WNWEC.2009.5335787
95 Yuji T, Bouno T, Hamada T. Suggestion of temporarily for forecast diagnosis on blade of small wind turbine. IEEJ Transactions on Power and Energy, 2006, 126(7): 710–711
https://doi.org/10.1541/ieejpes.126.710
96 Bouno T, Yuji T, Hamada T, et al. Failure forecast diagnosis of small wind turbine using acoustic emission sensor. KIEE International Transaction on Electrical Machinery and Energy Conversion Systems, 2005, 5-B(1): 78–83
97 Qian Y, Ma H. A survey of fault diagnosis method for doubly-fed induction motor. Large electric Machine and Hydraulic Turbine, 2011, (5): 5–8 (in Chinese)
98 Le Roux W, Harley R G, Habetler T G. Detecting rotor faults in permanent magnet synchronous machines. In: Proceedings of 4th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronic Sand Drives. IEEE, 2003, 198–203
https://doi.org/10.1109/DEMPED.2003.1234573
99 Le Roux W, Harley R G, Habetler T G. Converter control effects on condition monitoring of rotor faults in permanent magnet synchronous machines. In: Proceedings of the Industry Applications Conference. 38th IAS Annual Meeting. IEEE, 2003, 1389–1396
https://doi.org/10.1109/IAS.2003.1257736
100 Rosero J, Romeral L, Ortega J A, et al.Demagnetization fault detection by means of Hilbert Huang transform of the stator current decomposition in PMSM. In: Proceedings of IEEE International Symposium on Industrial Electronics. IEEE, 2008, 172–177
https://doi.org/10.1109/ISIE.2008.4677217
101 Ruiz J R R, Rosero J A, Espinosa A G, et al. Detection of demagnetization faults in permanent-magnet synchronous motors under nonstationary conditions. IEEE Transactions on Magnetics, 2009, 45(7): 2961–2969
https://doi.org/10.1109/TMAG.2009.2015942
102 Rosero J A, Cusido J, Garcia A, et al. Study on the permanent magnet demagnetization fault in permanent magnet synchronous machines. In: Proceedings of 32nd Annual Conference of the IEEE Industrial Electronics. IEEE, 2006, 879–884
https://doi.org/10.1109/IECON.2006.347598
103 Farooq J, Srairi S, Djerdir A, et al. Use of permeance network method in the demagnetization phenomenon modeling in a permanent magnet. IEEE Transactions on Magnetics, 2006, 42(4): 1295–1298
https://doi.org/10.1109/TMAG.2006.870936
104 Wymore M L, Dam J E V, Ceylan H, et al. A survey of health monitoring systems for wind turbines. Renewable and Sustainable Energy Reviews, 2015, 52: 976–990
https://doi.org/10.1016/j.rser.2015.07.110
105 Jöckel S, Herrmann A, Rink J. High energy production plus built-in reliability—The VENSYS 70/77—New gearless wind turbines in the 1.5 MW class. Presentation in the Technical Track of the European Wind Energy Conference. 2006
106 Dubois M R, Polinder H, Ferreira J A. Generator topologies for direct-drive wind turbines, and adapted technology for turbines running in cold climate. In: Proceedings of Conference on Wind Energy in Cold Climates. Matane, 2001, 201–215
107 Dubois M R, Polinder H, Ferreira J A. Comparison of generator topologies for direct-drive wind turbines. In: Proceedings of Nordic Countries Power and Industrial Electronics Conference (NORPIE). Aalborg, 2000
108 Versteegh C J A. Design of the Zephyros Z72 wind turbine with emphasis on the direct drive PM generator. In: Proceedings of Nordic Countries Power and Industrial Electronics Conference (NORPIE). Trondheim, 2004
109 An X, Jiang D. Chaotic characteristics identification and trend prediction of running state for wind turbine. Electric Power Automation Equipment, 2010, 30(3): 15–19, 24 (in Chinese)
110 An X, Jiang D, Liu S, et al. Correlation analysis of oil temperature trend for wind turbine gearbox. In: Proceedings of the ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 3. Montreal, 2010
111 ZhangY, WuW, Wu L.Motor mechanical fault diagnosis based on wavelet packet, Shannon entropy, SVM and GA. Electric Power Automation Equipment, 2010, 30(1): 87–91 (in Chinese)
112 Gu Y, Zhao W, Wu Z. Combustion optimization for utility boiler based on least square-support vector machine. Proceedings of the CSEE, 2010, 30(17): 91–97 (in Chinese)
113 Zhao M. Fault Feature Analysis and Experimental Investigation for Wind Turbine. Beijing: Tsinghua University Press, 2010 (in Chinese)
114 Barszcz T. Application of diagnostic algorithms for wind turbines. Diagnostyka, 2009, 50(2): 7–12
115 Wu Z, Huang N, Long S, et al. On the trend, trending, and variability of nonlinear and nonstationary time series. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(38): 14889–14894
https://doi.org/10.1073/pnas.0701020104
116 Pierre Tchakoua, René Wamkeue, Tommy Andy Tameghe, et al. A review of concepts and methods for wind turbines condition monitoring. In: Proceedings of 2013 World Congress on Computer and Information Technology (WCCIT). 2013 
https://doi.org/10.1109/WCCIT.2013.6618706
117 Izelu C O, Oghenevwaire I S. A review on developments in the design and analysis wind turbine drive train. In: Proceedings of International Conference on Renewable Energy Research and Applications. IEEE, 2014, 589–594 
https://doi.org/10.1109/ICRERA.2014.7016452
118 Estima J O, Cardoso A J M. Fast fault detection, isolation and reconfiguration in fault-tolerant permanent magnet synchronous motor drives. In: Proceedings of IEEE Energy Convers. 2012, 3617–3624
119 Lu B, Sharma S K. A literature review of IGBT fault diagnostic and protection methods for power inverters. IEEE Transactions on Industry Applications, 2009, 45(5): 1770–1777
https://doi.org/10.1109/TIA.2009.2027535
120 de Araujo Ribeiro R L, Jacobina C B, da Silva E R C, et al. Fault detection of open-switch damage in voltage-fed PWM motor drive systems. IEEE Transactions on Power Electronics, 2003, 18(2): 587–593
https://doi.org/10.1109/TPEL.2003.809351
121 Khomfoi S, Tolbert L M. Fault diagnostic system for a multilevel inverter using a neural network. IEEE Transactions on Power Electronics, 2007, 22(3): 1062–1069
https://doi.org/10.1109/TPEL.2007.897128
122 Tavnet P J, Van Bussel G J W, Spinato F. Machine and converter reliabilities in wind turbines. In: Proceedings of 3rd IET International Conference on Power electronics, Machines and Drives. Dublin: IET, 2006, 127–130
123 Jlassi I, Estima J O, Khojet El Khil S, et al. Multiple open-circuit faults diagnosis in back-to-back converters of PMSG drives for wind turbine systems. IEEE Transactions on Power Electronics, 2015, 30(5): 2689–2702
https://doi.org/10.1109/TPEL.2014.2342506
124 Choi U M, Jeong H G, Lee K B, et al. Method for detecting an open-switch fault in a grid-connected NPC inverter system. IEEE Transactions on Power Electronics, 2012, 27(6): 2726–2739
https://doi.org/10.1109/TPEL.2011.2178435
125 Freire N M A, Estima J O, Marques Cardoso A J. Open-circuit fault diagnosis in PMSG drives for wind turbine applications. IEEE Transactions on Industrial Electronics, 2013, 60(9): 3957–3967
https://doi.org/10.1109/TIE.2012.2207655
126 Fang Z P. Z-source inverter. IEEE Transactions on Industry Applications, 2003, 39(2): 504–510
https://doi.org/10.1109/TIA.2003.808920
127 Faulstich S, Hahn B, Tavner P J. Wind turbine downtime and its importance for offshore deployment. Wind Energy (Chichester, England), 2011, 14(3): 327–337
https://doi.org/10.1002/we.421
128 Gao Z, Cecati C, Ding S X. A survey of fault diagnosis and fault-tolerant techniques—Part I: Fault diagnosis with model-based and signal-based approaches. IEEE Transactions on Industrial Electronics, 2015, 62(6): 3757–3767
https://doi.org/10.1109/TIE.2015.2417501
129 Gao Z, Cecati C, Ding S X. A survey of fault diagnosis and fault-tolerant techniques—Part II: Fault diagnosis with knowledge-based and hybrid/active approaches. IEEE Transactions on Industrial Electronics, 2015, 62(6): 3768–3774
https://doi.org/10.1109/TIE.2015.2417501
130 Schulte H, Gauterin E. Fault-tolerant control of wind turbines with hydrostatic trans-mission using Takagi-Sugeno and sliding mode techniques. Annual Reviews in Control, 2015, 40(17): 82–92
https://doi.org/10.1016/j.arcontrol.2015.08.003
131 Corradini M L, Ippoliti G, Orlando G. Sensorless efficient fault-tolerant control of wind turbines with geared generator. Automatica, 2015, 62(11): 161–167
https://doi.org/10.1016/j.automatica.2015.09.024
132 Guan H, Zhao H, Wang W, et al.LVRT capability of wind turbine generator and its application. Transactions of China Electrotechnical Society, 2007, 22(10): 173–177 (in Chinese)
133 Hu S, Li J, XuH. Modeling on converters of direct-driven wind power system and its performance during voltage sags. High Voltage Engineering, 2008, 34(5): 949–954 (in Chinese)
134 Freitas W, Morelato A, Xu W. Improvement of induction generator stability using braking resistors. IEEE Transactions on Power Systems, 2004, 19(2): 1247–1249
https://doi.org/10.1109/TPWRS.2004.825929
135 Causebrook A, Atkinson D J, Jack A G. Fault ride-through of large wind farms using series dynamic braking resistors. IEEE Transactions on Power Systems, 2007, 22(3): 966–975
https://doi.org/10.1109/TPWRS.2007.901658
136 Fatu M, Lascu C, Andreescu G D, et al. Voltage sags ride-through of motion sensorless controlled PMSG for wind turbines. In: Proceedings of IEEE Industry Applications Conference. 42nd IAS Annual Meeting. IEEE, 2007, 171–178
https://doi.org/10.1109/07IAS.2007.74
137 Li J, Hu S, Kong D, et al. Studies on the low voltage ride through capability of fully converted wind turbine with PMSG. Automation of Electric Power Systems, 2008, 32(19): 92–95 (in chinese)
138 Li H, Dong S, Wang Y, et al.Coordinated control of active and reactive power of PMSG-based wind turbines for low voltage ride through. Transactions of China Electrotechnical Society, 2013, 28(5): 73–81 (in Chinese)
139 Schulte  H, Gauterin E. Fault-tolerant control of wind turbines with hydrostatic transmission using Takagi-Sugeno and sliding mode techniques. Annual Reviews in Control, 2015, 40: 82–92
https://doi.org/10.1016/j.arcontrol.2015.08.003
140 Zhang Z, Xu J, Liu X. Research on the high performance flux-weakening control strategy of permanent magnetic synchronous generator for wind turbine. High Power Converter Technology, 2013, 27(3): 62–65 (in Chinese)
141 Chai F, Bi Y. Research review of flux-weakening methods of axial flux permanent magnet synchronous machine. Micromotors, 2015, (2): 70–76 (in Chinese)
142 Li Z, Li Y, Li X. Flux-weakening control of consequent-pole permanent magnet machines. Proceedings of the CSEE, 2013, (21): 124–131 (in Chinese)
143 Parsa L, Toliyat H. Multi-phase permanent-magnet motor drives. IEEE Transactions on Industry Applications, 2005, 41(1): 30–37
https://doi.org/10.1109/TIA.2004.841021
144 Fu J R, Lipo T A. Disturbance-free operation of a multiphase current-regulated motor drive with an opened phase. IEEE Transactions on Industry Applications, 1994, 30(5): 1267–1274
https://doi.org/10.1109/28.315238
145 Toliyat H A. Analysis and simulation of five-phase variable speed induction motor drives under asymmetrical connections. IEEE Transactions on Power Electronics, 1998, 13(4): 748–756
https://doi.org/10.1109/63.704150
146 Dwari S, Parsa L. Fault-tolerant control of five-phase permanent-magnet motors with trapezoidal back EMF. IEEE Transactions on Industrial Electronics, 2011, 58(2): 476–485
https://doi.org/10.1109/TIE.2010.2045322
147 Liu T H, Fu J R, Lipo T A. A strategy for improving reliability of field oriented controlled induction motor drives. IEEE Transactions on Industry Applications, 1993, 29(5): 910–918
https://doi.org/10.1109/28.245714
148 Sinha G, Hochgraf C, Lasseter R H, et al. Fault protection in a multilevel inverter implementation of a static condenser. In: Proceedings of IEEE Industry Applications Conference. Thirtieth IAS Annual Meeting. IEEE, 1995, 2557–2564
https://doi.org/10.1109/IAS.1995.530628
149 Bianchi N, Bolognani S, Zigliotto M, et al. Innovative remedial strategies for inverter faults in IPM synchronous motor drives. IEEE Transactions on Energy Conversion, 2003, 18(2): 306–314
https://doi.org/10.1109/TEC.2002.808334
150 Athulya Justin, Reshma S. Fault tolerant control of wind energy conversion system—Fuzzy approach. In: Proceedings of the Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT). Acapulco: IEEE, 2013 
https://doi.org/10.1109/ICCCNT.2013.6726761
151 de Araujo Ribeiro R L, Jacobina C B, da Silva E R C, et al. Fault-tolerant voltage-fed PWM inverter AC motor drive systems. IEEE Transactions on Industrial Electronics, 2004, 51(2): 439–446
https://doi.org/10.1109/TIE.2004.825284
152 Welchko B A, Lipo T A, Jahns T M, et al. Fault tolerant three-phase AC motor drive topologies: A comparison of features, cost, limitations. IEEE Transactions on Power Electronics, 2004, 19(4): 1108–1116
https://doi.org/10.1109/TPEL.2004.830074
153 Tiegna H, Amara Y, Barakat G, et al. Overview of high power wind turbine generators. In: Proceedings of International Conference on Renewable Energy Research and Applications (ICRERA). IEEE, 2012 
https://doi.org/10.1109/ICRERA.2012.6477341
154 Chowdhury M M, Haque M E, Aktarujjaman M, et al. Grid integration impacts and energy storage systems for wind energy applications—A review. In: Proceedings of IEEE Power and Energy Society General Meeting. IEEE, 2011 
https://doi.org/10.1109/PES.2011.6039798
155 Polinder H, Ferreira J A, Jensen B B, et al. Trends in wind turbine generator systems. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2013, 1(3): 174–185 
https://doi.org/10.1109/JESTPE.2013.2280428
156 Huang S, Gao J. The Design and Grid-Connected Control of Direct-Drive Permanent Magnet Wind Turbine. Beijing: Publishing House of Electronics Industry, 2015, 15–19 (in Chinese)
157 Alepuz S, Calle A, Busquets-Monge S, et al. Use of stored energy in PMSG rotor inertia for low-voltage ride-through in back-to-back NPC converter-based wind power systems. IEEE Transactions on Industrial Electronics, 2013, 60(5): 1787–1796
158 Scarcella G, Scelba G, Pulvirenti M, et al. A fault-tolerant power conversion topology for PMSG based wind power systems. In: Proceedings of International Conference on Electrical Machines (ICEM). IEEE, 2014 
https://doi.org/10.1109/ICELMACH.2014.6960410
159 YangZ, Chai Y. A survey of fault diagnosis for onshore grid-connected converter in wind energy conversion systems. Renewable and Sustainable Energy Reviews, 2016, 66: 345–359
https://doi.org/10.1016/j.rser.2016.08.006
160 Huang S, Wang H, Liao W, et al. The coordinated control strategy based on VSC-HVDC series-parallel topology in wind farm. Transactions of China Electrotechnical Society, 2015, 30(23): 155–162 (in Chinese)
161 Huang S, Wang H, Liao W, et al. Control strategy based on VSC-HVDC series topology offshore wind farm for low voltage ride through. Transactions of China Electrotechnical Society, 2015, 30(14): 362–369 (in Chinese)
162 Arani M F M, Mohamed Y A R I. Assessment and enhancement of a full-scale PMSG-based wind power generator performance under faults. IEEE Transactions on Energy Conversion, 2016, 31(2): 728–739
https://doi.org/10.1109/TEC.2016.2526618
163 Zmood D N, Holmes D G. Stationary frame current regulation of PWM inverters with zero steady-state error. IEEE Transactions on Power Electronics, 2003, 18(3): 814–822
https://doi.org/10.1109/TPEL.2003.810852
164 Nian H, Cheng P. Resonant based direct power control strategy for PWM rectifier under unbalanced grid voltage condition. Transactions of China Electrotechnical Society, 2013, 28(11): 86–94 (in Chinese)
165 Huang S, Xiao L, Huang K, et al.DC voltage stability of directly-driven wind turbine with PM synchronous generator during the asymmetrical faults. Transactions of China Electrotechnical Society, 2010, 25(7): 123–129 (in Chinese)
166 Huang S, Xiao L, Huang K, et al.Operation and control on the grid-side converter of the directly-driven wind turbine with PM synchronous generator during asymmetrical faults. Transactions of China Electrotechnical Society, 2011, 26(2): 173–180 (in Chinese)
167 Xiao L, Huang S, Lu K. DC-bus voltage control of grid-connected voltage source converter by using space vector modulated direct power control under unbalanced network conditions. IET Power Electronics, 2013, 6(5): 925–934
https://doi.org/10.1049/iet-pel.2012.0576
168 Hasegawa N, Kumano T. Low voltage ride-through capability improvement of wind power generation using dynamic voltage restorer. In: Proceedings of the 5th IASME/WSEAS International Conference on Energy and Environment. 2010, 166–171
169 Wang L, Truong D N. Dynamic stability improvement of four parallel-operated PMSG-based off shore wind turbine generators fed to a power system using a STATCOM. IEEE Transactions on Power Delivery, 2013, 28(1): 111–119
https://doi.org/10.1109/TPWRD.2012.2222937
[1] Xuefeng CHEN, Shibin WANG, Baijie QIAO, Qiang CHEN. Basic research on machinery fault diagnostics: Past, present, and future trends[J]. Front. Mech. Eng., 2018, 13(2): 264-291.
[2] Peng ZHOU, Zhike PENG, Shiqian CHEN, Yang YANG, Wenming ZHANG. Non-stationary signal analysis based on general parameterized time--frequency transform and its application in the feature extraction of a rotary machine[J]. Front. Mech. Eng., 2018, 13(2): 292-300.
[3] Diego CABRERA,Fernando SANCHO,René-Vinicio SÁNCHEZ,Grover ZURITA,Mariela CERRADA,Chuan LI,Rafael E. VÁSQUEZ. Fault diagnosis of spur gearbox based on random forest and wavelet packet decomposition[J]. Front. Mech. Eng., 2015, 10(3): 277-286.
[4] Houjun SU, Tielin SHI, Fei CHEN, Shuhong HUANG. New method of fault diagnosis of rotating machinery based on distance of information entropy[J]. Front Mech Eng, 2011, 6(2): 249-253.
[5] Lixin GAO, Lijuan WU, Yan WANG, Houpei WEI, Hui YE. Intelligent fault diagnostic system based on RBR for the gearbox of rolling mills[J]. Front Mech Eng Chin, 2010, 5(4): 483-490.
[6] Shaohong WANG, Tao CHEN, Jianghong SUN. Design and realization of a remote monitoring and diagnosis and prediction system for large rotating machinery[J]. Front Mech Eng Chin, 2010, 5(2): 165-170.
[7] Xiaohu CHEN, Wenfeng WU, Hangong WANG, Yongtao ZHOU, . Distributed monitoring and diagnosis system for hydraulic system of construction machinery[J]. Front. Mech. Eng., 2010, 5(1): 106-110.
[8] LI Zhinong, HE Yongyong, CHU Fulei, WU Zhaotong. Blind identification of threshold auto-regressive model for machine fault diagnosis[J]. Front. Mech. Eng., 2007, 2(1): 46-49.
[9] LIANG Lin, XU Guang-hua. Reduction of rough set attribute based on immune clone selection[J]. Front. Mech. Eng., 2006, 1(4): 413-417.
[10] HU You-min, YANG Shu-zi, DU Run-sheng. Distributed flexible reconfigurable condition monitoring and diagnosis technology[J]. Front. Mech. Eng., 2006, 1(3): 276-281.
[11] LI Wei-hua, SHI Tie-lin, YANG Shu-zi. An approach for mechanical fault classification based on generalized discriminant analysis[J]. Front. Mech. Eng., 2006, 1(3): 292-298.
[12] YANG Ping. Data mining diagnosis system based on rough set theory for boilers in thermal power plants[J]. Front. Mech. Eng., 2006, 1(2): 162-167.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed