Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2011, Vol. 4 Issue (4) : 398-406    https://doi.org/10.1007/s12200-011-0219-9
RESEARCH ARTICLE
Modelling of beam propagation and its applications for underwater imaging
Yuzhang CHEN, Kecheng YANG(), Xiaohui ZHANG, Min XIA, Wei LI
Wuhan National Laboratory for Optoelectronics, College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(505 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In order to process underwater imaging to the best possible level, an imaging model based on beam propagation was established. The presented model included not only the laser beam propagation affected by absorption and scattering, but also the effects of underwater turbulence and the diffraction limit of sensors. By this model approximately quantified optical transfer functions (OTFs) were studied. Thus, under this framework, the approaches of image enhancement, restoration and super-resolution reconstruction (SRR) can be extended by incorporating underwater optical properties based on OTF or point spread function (PSF) of the imaging system. Experimental results proved that the imaging range and the image quality can be effectively enhanced, which are critical in underwater imaging or detecting.

Keywords image super-resolution reconstruction (SRR)      optical transfer function (OTF)      point spread function (PSF)      range-gated     
Corresponding Author(s): YANG Kecheng,Email:kcyang@mail.hust.edu.cn   
Issue Date: 05 December 2011
 Cite this article:   
Yuzhang CHEN,Kecheng YANG,Xiaohui ZHANG, et al. Modelling of beam propagation and its applications for underwater imaging[J]. Front Optoelec Chin, 2011, 4(4): 398-406.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-011-0219-9
https://academic.hep.com.cn/foe/EN/Y2011/V4/I4/398
Fig.1  Light paths of three components
Fig.2  Comparison of relative MTFs of different factors: (a) MTF contribution from medium; (b) MTF contribution from turbulence; (c) MTF contribution from diffraction; (d) MTF contribution from ccd sensor; (e) MTF of the whole system
Fig.3  Framework of range-gated imaging system
laser power (P0)divergence angle (α)optical transmittance (T1, T2)relative aperture (D/f)
107 W36 mrad30%0.25
image distance (L)laser & CCD distance (d0)average reflectivity (ρ)attenuation coefficient (k)refractive index (n)
40 m20 cm15%0.25 m-11.35
Tab.1  Main physical properties of underwater range-gated imaging system
Fig.4  Intensity of the light components: (a) non-scattered light; (b) forward-scattered light; (c) back-scattered light; (d) total light
Fig.5  Restored images: (a) original image (size 256 × 256 pixels); (b) restored by Wiener filter; (c) restored by Lagrange filter; (d) restored by Lucky-Richardson filter
imageoriginalWienerLagrangeLucy-Richardson
contrast24.942124.738524.503224.9456
Tab.2  Contrast values of restored images
Fig.6  Restored images (size 256 × 256 pixels) with blind deconvolution by (a) 20 iteration; (b) 50 iteration; (c) 100 iteration
image20 iteration50 iteration100 iteration
contrast25.009929.506327.6188
Tab.3  Contrast values of restored images
Fig.7  Reconstructed images (size 512 × 512 pixels) by (a) bilinear interpolation; (b) cubic convolution interpolation; (c) PG method; (d) Iterative back projection method; (e) POCS method; (f) PSF-based POCS method
imagebilinearcubicPGIBPPOCSPSF-POCS
contrast14.746419.172229.244729.230239.243851.8804
Tab.4  Contrast values of reconstructed images
1 Duntley S Q. Light in the sea. Journal of the Optical Society of America , 1963, 53(2): 214-233
doi: 10.1364/JOSA.53.000214
2 Acharekar M A. Underwater laser imaging system (ULIS). In: Proceedings of SPIE . 1997, 3079: 750
3 Chang P C Y, Walker J G, Hopcraft K I, Ablitt B, Jakeman E. Polarization discrimination for active imaging in scattering media. Optics Communications , 1999, 159(1-3): 1-6
doi: 10.1016/S0030-4018(98)00589-6
4 McLean E A, Burris H R Jr, Strand M P. Short-pulse range-gated optical imaging in turbid water. Applied Optics , 1995, 34(21): 4343-4351
doi: 10.1364/AO.34.004343 pmid:21052268
5 Masters B R, Barrett H H, Myers K J. Foundations of Image Science. In: Saleh B E A, ed. Wiley Series in Pure and Applied Optics . New York: Wiley-Interscience, 2007, 31(2): 114-115
6 Mertens L E, Replogle F S Jr. Use of point spread and beam spread functions for analysis of imaging systems in water. Journal of the Optical Society of America , 1977, 67(8): 1105-1117
doi: 10.1364/JOSA.67.001105
7 Hou W L. A simple underwater imaging model. Optics Letters , 2009, 34(17): 2688-2690
doi: 10.1364/OL.34.002688 pmid:19724533
8 Hou W L, Gray D J, Weidemann A D, Arnone R A. Comparison and validation of point spread models for imaging in natural waters. Optics Express , 2008, 16(13): 9958-9965
doi: 10.1364/OE.16.009958 pmid:18575566
9 Jaffe J S. Computer modeling and the design of optimal underwater imaging systems. IEEE Journal of Oceanic Engineering , 1990, 15(2): 101-111
doi: 10.1109/48.50695
10 Rosenfeld A, Kak A C. Digital Picture Processing. 2nd ed. New York: Academic, 1982
11 Wells W H. Loss of resolution in water as a result of multiple small-angle scattering. Journal of the Optical Society of America , 1969, 59(6): 686-691
doi: 10.1364/JOSA.59.000686
12 Yu Y F, Liu F C. System of remote-operated-vehicle-based underwater blurred image restoration. Optical Engineering , 2007, 46(11): 116002
doi: 10.1117/1.2802169
13 Duntley S Q. Underwater Lighting by Submerged Lasers and Incandescent Sources. San Diego: Scripts Instituition of Oceanography, University of California, 1971
14 Dolin L S, Gilbert G D, Levin I, Luchinin A. Theory of Imaging Through Wavy Sea Surface. Nizhniy Novgorod: Russian Academy of Sciences, Institution of Applied Physics , 2006
15 Wells W H. Theory of small angle scattering. AGARD Lecture Series , 1973, 61: 3.3.1-3.3.19
16 Tatarskii V I. Wave Propagation in a Turbulent Medium. Silverman R S, translated . New York: McGraw-Hill, 1961: 285
17 Bonnier D, Stephane C, Yvves L, Bruno L, Marc L, Pierre G. Modelling of active TV system for surveillance operations. In: Proceedings of SPIE–The International Society for Optical Engineering . 1999, 3698: 217-228
18 Hou W L, Gray Deric J, Weidemann Alan D, Fournier Georges R, Forand J L. Automated underwater image restoration and retrieval of related optical properties. IEEE International Geoscience and Remote Sensing Symposium , 2007: 1889-1892
19 Han H W, Zhang X H, Ge W L. Performance evaluation of underwater range-gated viewing based on image quality metric. In: Proceedings of the International Conference on ICEME’09 . 2009, 4: 441
20 Gonzalez R C, Woods R E. Digital Image Processing. 2nd ed. Upper Saddle River , NJ: Prentice Hall, 2002
21 Park S C, Park M K, Kang M G. Super-resolution image reconstruction: a technical overview. IEEE Signal Processing Magazine , 2003, 20(3): 21-36
doi: 10.1109/MSP.2003.1203207
22 Zhang J L, Zhang Q H, He G M. Blind deconvolution of a noisy degraded image. Applied Optics , 2009, 48(12): 2350-2355
doi: 10.1364/AO.48.002350 pmid:19381188
23 Wang Z F, Tang Y D. Semi-blind image restoration based on Chan-Vese denoising model. Chinese Optics Letters , 2008, 6(6): 405-407
doi: 10.3788/COL20080606.0405
[1] Yue FANG,Cuifang KUANG,Ye MA,Yifan WANG,Xu LIU. Resolution and contrast enhancements of optical microscope based on point spread function engineering[J]. Front. Optoelectron., 2015, 8(2): 152-162.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed