Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2012, Vol. 5 Issue (4) : 371-389    https://doi.org/10.1007/s12200-012-0283-9
REVIEW ARTICLE
Recent progress on tandem structured dye-sensitized solar cells
Dehua XIONG, Wei CHEN()
Michael Gr?tzel Centre for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(935 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Tandem structured dye-sensitized solar cells (DSSCs) can take full advantage of sunlight, effectively broadening the absorption spectrum of the cell, resulting in a higher open circuit voltage or short circuit current than that of the conventional DSSC with single light absorber. The theoretical maximum efficiency is therefore suggested to be over the Schottky-Queisser limit of 33%. Accordingly, tandem design of DSSC is thought to be a promising way to break the performance bottleneck of DSSC. Besides, the tandem designs also broaden the application diversity of DSSC technology, which will accelerate its scale-up industrial application. In this paper, we have reviewed the recent progress on photo-electrochemical applications associated with kinds of tandem designs of DSSCs, in general, which are divided into three kinds: “n-type DSSC+n-type DSSC,” “n-type DSSC+p-type DSSC” and “n-type DSSC+other solar conversion devices.” The working principles, advantages and challenges of these tandem structured DSSCs have been discussed. Some possible solutions for further studies have been also pointed out together.

Keywords dye-sensitized solar cells (DSSCs)      tandem structure      photo-electrochemical cell     
Corresponding Author(s): CHEN Wei,Email:wnlochenwei@hust.edu.cn   
Issue Date: 05 December 2012
 Cite this article:   
Dehua XIONG,Wei CHEN. Recent progress on tandem structured dye-sensitized solar cells[J]. Front Optoelec, 2012, 5(4): 371-389.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-012-0283-9
https://academic.hep.com.cn/foe/EN/Y2012/V5/I4/371
Fig.1  Schematics of tandem dye-sensitized solar cell made up of two completed cells, scanning electron micrographs, and irradiation spectra (Reprinted with permission from Ref. [], Copyright (2004), American Institute of Physics)
Fig.2  Selective positioning of different dyes in one integrated film (Reprinted from Ref. [], Copyright (2009), with permission from Macmillan Publishers Ltd: [Nature Materials])
Fig.3  Structure of tandem cell with one floating porous electrode in the middle (Reprinted with permission from Ref. [], Copyright (2010), Elsevier)
Fig.4  Schematic diagram of preparation procedure and the scanning electron microscope (SEM) images of multilayered photoanode. (a) cross section; b) interface of the scattering and transferred layers; and c) interface of the transferred and bottom layers (Reprinted from Ref. [], Copyright (2011), with permission from John Wiley and Sons)
Fig.5  Schematic show of working principle of n-p tandem structured DSSC (Reprinted from Ref. [], Copyright (2010), with permission from Macmillan Publishers Ltd: [Nature Materials]) (HOMO: highest occupied molecular orbital, LUMO: lower unoccupied molecular orbital, VAC: vacuum level, NHE: normal hydrogen electrode)
electrodethickness/μmdyeelectrolyteVoc/mVJsc/(mA·cm-2)η/%Ref..
NiO1TPPC0.5 M LiI/0.05 M I298.50.0790.0033[20]
erythrosin B82.80.2320.0076
NiO4.2dye 3iodide/triiodide208±36.36±0.150.46±0.02[21]
6.0185±37.0±0.300.43±0.01
NiO1erythrosin B0.5 M LiI/0.05 M I2830.2690.0071[22]
NiOnoneNK-2684I-/I3- electrolyte932.00.027[23]
NiO1.6erythrosin J0.5 M LiI/0.05 M I2122±30. 36±0.120.011±0.001[24]
eosin B0.5 M LiI/0.05 M I277±80. 14±0.020.0032±0.0001
NiO35C3430.6 M LiI/0.3 M I21131.610.057[25]
NiO1.6C3430.5 M LiI/0.05 M I298±80. 55±0.140.016±0.004[24]
0.5 M LiI/0.5 M I265±101.15±0.350. 025±0.006
0.5 M LiI/2 M I237±2.42.13±0.20.024±0.003
NiO0.6C3430.5 M LiI/0.1 M I2700.780.017[26]
P11101.520.052
NiO2.4C3430.7 M LiI/0.05 M I21010.860.031[27]
NiO3.5C343I-/I3- electrolyte1170.880.036[28]
PMI-NDI dyad3701.30.16
NiO1.7fast green FCF0.7 M LiI/0.05 M I2931.440.043[27]
2.2NKX-23111000.660.022
2.1NK-3628770.430.011
1.8NK-2612730.450.013
NiO1-1.4P11 M LiI/0.1 M I21102.510.08[29]
P41002.480.09
NiO5PINDICoII/III couple3501.70.2[30]
PI800.260.006
C3431900.250.015
NiO1.1-1.2P11 M LiI/0.1 M I21063.010.12[31]
P1845.480.15
C343711.890.05
NiO1.2P21 M LiI/0.1 M I2633.370.07[32]
P3551.360.03
P7803.370.09
NiO3.3dye 1iodide/triiodide1532.060.09[33]
dye 21763.400.19
dye 32185.350.41
1.55dye 32273.870.30
NiOXdye 3iodide/triiodide3500.040.01[34]
X+ 0.13051.320.14
NiO0.9dye 3iodide/triiodide3012.60.33[35]
1.72923.30.40
NiO0.6O21.0 M LiI/ 0.1 M I2941.430.05[36]
O6971.040.037
O7901.740.06
NiO0.6O81.0 M LiI/ 0.1 M I2630.440.009[37]
O11791.160.033
O12821.840.051
NiOruthenium sensitizers 11.0 M LiI/0.1 M I2850.630.019[38]
ruthenium sensitizers 2950.780.025
ruthenium sensitizers 3750.250.0065
ruthenium sensitizers 4850.650.018
C343950.870.03
NiO2PMINDICo(ttb-tpy)2(ClO4)2/3PC2401.610.13[39]
Co(dtb-bpy)3(ClO4)2/3PC3402.000.24
Co(dMeO-bpy)3(PF6)2/3MeCN2002.420.17
Co(dtb-bpy)3(PF6)2/3MeCN2752.650.24
CuAlO21.6Dye 3iodide/triiodide333none0.041[40]
CuGaO23.03P11.0 M LiI/ 0.1 M I21800.3840.026[41]
0.1 MCo3+/0.1 MCo2+3570.1650.018
CuGaO21.5PMINDI0.1 M LiI/1 M I21870.290.023[42]
Co2+/Co3+3750.120.0149
Tab.1  Summary of p-type DSSC with their photovoltaic characteristics
Fig.6  Molecular structure of coumarin 343 (Reprinted with permission from Ref. [], Copyright (1996), American Chemical Society)
Fig.7  Structures of dyes (NKX-2311, NKX-2586, NKX-2753 and NKX-2593) []
Fig.8  Molecular structures of P1, P2, P3, P4 and P7 (Reprinted with permission from Ref. [], Copyright (2010), American Chemical Society)
Fig.9  Molecular structures of PI and PINDI (Reprinted with permission from Ref. [], Copyright (2009), John Wiley and Sons)
Fig.10  Chemical structure of donor-acceptor dyes 1–3(Reprinted from Ref. [], Copyright (2010), with permission from Macmillan Publishers Ltd: [Nature Materials])
Fig.11  Structures of series dye with O8, O11 and O12 (Reprinted with permission from Ref. [], Copyright (2012), American Chemical Society)
Fig.12  Molecular structure of Co tris(4,4′-di-ter-butyl-2,2′-dipyridy1) (Reprinted with permission from Ref. [], Copyright (2009), John Wiley and Sons)
Fig.13  (a) Schematic representation of DSSC/CIGS structure, DSSC and CIGS are series connected (Reprinted from Ref. [], Copyright (2010), with permission from Elsevier); (b) spectral response curves of photocurrent for DSSC top cell (bold line) and a red and near IR sensitive bottom cell (dotted line) (Reprinted with permission from Ref. [], Copyright [2006], American Institute of Physics)
Fig.14  Illustration on structure and working principle of tandem positioned DSSC and Si solar cell (Reprinted with permission from Ref. [], Copyright (2011), American Chemical Society)
Fig.15  Illustration on structure of hybrid tandem solar cell based on solid-state DSSC and vacuum deposited bulk heterojunction solar cell (Reprinted from Ref. [], Copyright (2009), with permission from Elsevier)
Fig.16  Two-wire hybrid tandem cell (HTC2) was made by connecting DSSC and TC (thermoelectric cell) (Reprinted from Ref. [], Copyright (2010), with permission from Elsevier)
Fig.17  Layout of three architectures for tandem cell using hematite photoanode and two DSSCs in series. (a) “Back DSSC” configuration; (b) “Trilevel” configuration; (c) “Front DSSC” configuration []
1 O’Regan B, Gr?tzel M. A low-cost, high-efficiency solar cell based on dye sensitized colloidal titanium dioxide films. Nature , 1991, 353(6346): 737–740
doi: 10.1038/353737a0
2 Gr?tzel M. Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C, Photochemistry Reviews , 2003, 4(2): 145–153
doi: 10.1016/S1389-5567(03)00026-1
3 Thomas W H, Rebecca A J, Alex B F M, Hal Van R, Joseph T H. Advancing beyond current generation dye-sensitized solar cells. Energy & Environmental Science , 2008, 1(1): 66–78
doi: 10.1039/b809672d
4 Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H. Dye-sensitized solar cells. Chemical Reviews , 2010, 110(11): 6595–6663
doi: 10.1021/cr900356p pmid:20831177
5 Odobel F, Le Pleux L, Pellegrin Y, Blart E. New photovoltaic devices based on the sensitization of p-type semiconductors: challenges and opportunities. Accounts of Chemical Research , 2010, 43(8): 1063–1071
doi: 10.1021/ar900275b pmid:20455541
6 Shi J F, Xu G, Miao L, Xu X. p-type and pn-type dye-sensitized solar cells. Acta Physico-Chimica Sinica , 2011, 27(6): 1287–1299 (in Chinese)
7 Odobel F, Pellegrin Y, Gibson E A, Hagfeldt A, Smeigh A L, Hammarstr?m L.Recent advances and future directions to optimize the performance of p-type dye-sensitized solar cells. Coordination Chemistry Reviews , 2012, 256(21-22): 2413–2423
doi: 10.1016/j.ccr.2012.04.017 pmid:22523434
8 Yella A, Lee H W, Tsao H N, Yi C, Chandiran A K, Nazeeruddin M K, Diau E W G, Yeh C Y, Zakeeruddin S M, Gr?tzel M. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science , 2011, 334(6056): 629–634
doi: 10.1126/science.1209688 pmid:22053043
9 Wataru K, Ayumi S, Takayuki K, Yuji W, Shozo Y. Dye-sensitized solar cells: improvement of spectral response by tandem structure. Journal of Photochemistry and Photobiology A, Chemistry , 2004, 164(1-3): 33–39
doi: 10.1016/j.jphotochem.2004.01.024
10 Dürr M, Bamedi A, Yasuda A, Nelles G. Tandem dye-sensitized solar cell for improved power conversion efficiencies. Applied Physics Letters , 2004, 84(17): 3397–3399
doi: 10.1063/1.1723685
11 Takeshi Y, Yuki U, Shinya A, Hironori A. Series-connected tandem dye-sensitized solar cell for improving efficiency to more than 10%. Solar Energy Materials and Solar Cells , 2009, 93(6-7): 733–736
doi: 10.1016/j.solmat.2008.09.021
12 Fan S Q, Fang B Z, Choi H B, Paik S, Kim C, Jeong B S, Kim J J, Ko J. Efficiency improvement of dye-sensitized tandem solar cell by increasing the photovoltage of the back sub-cell. Electrochimica Acta , 2010, 55(15): 4642–4646
doi: 10.1016/j.electacta.2010.03.032
13 Masatoshi Y, Nobuko O K, Mitsuhiko K, Kazuhiro S, Hideki S. Optimization of tandem-structured dye-sensitized solar cell. Solar Energy Materials and Solar Cells , 2010, 94(2): 297–302
doi: 10.1016/j.solmat.2009.10.002
14 Lee K, Park S W, Ko M J, Kim K, Park N G. Selective positioning of organic dyes in a mesoporous inorganic oxide film. Nature Materials , 2009, 8(8): 665–671
doi: 10.1038/nmat2475 pmid:19561600
15 Miao Q, Wu L, Cui J, Huang M, Ma T. A new type of dye-sensitized solar cell with a multilayered photoanode prepared by a film-transfer technique. Advanced Materials (Deerfield Beach, Fla.) , 2011, 23(24): 2764–2768
doi: 10.1002/adma.201100820 pmid:21495092
16 Huang F Z, Chen D H, Cao L, Caruso R A, Cheng Y B. Flexible dye-sensitized solar cells containing multiple dyes in discrete layers. Energy & Environmental Science , 2011, 4(8): 2803–2806
doi: 10.1039/c1ee01269j
17 Murayama M, Mori T. Dye-sensitized solar cell using novel tandem cell structure. Journal of Physics D, Applied Physics , 2007, 40(6): 1664–1668
doi: 10.1088/0022-3727/40/6/014
18 Murayama M, Mori T. Novel tandem cell structure of dye-sensitized solar cell for improvement in photocurrent. Thin Solid Films , 2008, 516(9): 2716–2722
doi: 10.1016/j.tsf.2007.04.076
19 Kenshiro U, Shyam S P, Shuzi H. Tandem dye-sensitized solar cells consisting of floating electrode in one cell. Journal of Photochemistry and Photobiology A, Chemistry , 2010, 216(2-3): 104–109
doi: 10.1016/j.jphotochem.2010.07.025
20 He J, Lindstr?m H, Hagfeldt A, Lindquist S. Dye-sensitized nanostructured p-type nickel oxide film as a photocathode for a solar cell. Journal of Physical Chemistry B , 1999, 103(42): 8940–8943
doi: 10.1021/jp991681r
21 Powar S, Wu Q, Weidelener M, Nattesta A, Hu Z, Mishra A, Bauerle P, Spiccia L, Cheng Y B, Bach U. Improved photocurrents for p-type dye-sensitized solar cells using nano-structured nickel(II) oxide microballs. Energy & Environmental Science , 2012, pmid:10.1039/C2EE22127F" target="blank">
doi: 10.1039/C2EE22127F
pmid:10.1039/C2EE22127F" target="blank">
doi: 10.1039/C2EE22127F
22 He J, Lindstr?m H, Hagfeldt A, Lindquist S E. Dye-sensitized nanostructured tandem cell first demonstrated cell with a dye-sensitized photocathode. Solar Energy Materials and Solar Cells , 2000, 62(3): 265–273
doi: 10.1016/S0927-0248(99)00168-3
23 Nakasa A, Usami H, Sumikura S, Hasegawa S, Koyama T, Suzuki E. A high voltage dye-sensitized solar cell using a nanoporous NiO photocathode. Chemistry Letters , 2005, 34(4): 500–501
doi: 10.1246/cl.2005.500
24 Nattestad A, Ferguson M, Kerr R, Cheng Y B, Bach U. Dye-sensitized nickel(II)oxide photocathodes for tandem solar cell applications. Nanotechnology , 2008, 19(29): 295304
doi: 10.1088/0957-4484/19/29/295304 pmid:21730603
25 Mizoguchi Y, Fujihara S. Fabrication and dye-sensitized solar cell performance of nanostructured NiO/Coumarin 343 photocathodes. Electrochemical and Solid-State Letters , 2008, 11(8): K78–K80
doi: 10.1149/1.2929665
26 Qin P, Zhu H, Edvinsson T, Boschloo G, Hagfeldt A, Sun L C. Design of an organic chromophore for p-type dye-sensitized solar cells. Journal of the American Chemical Society , 2008, 130(27): 8570–8571
doi: 10.1021/ja8001474 pmid:18553967
27 Mori S, Fukuda S, Sumikura S, Takeda Y, Tamaki Y, Suzuki E, Abe T. Charge-transfer processes in dye-sensitized NiO solar cells. Journal of Physical Chemistry C , 2008, 112(41): 16134–16139
doi: 10.1021/jp803919b
28 Lepleux L, Chavillon B, Pellegrin Y, Blart E, Cario L, Jobic S, Odobel F. Simple and reproducible procedure to prepare self-nanostructured NiO films for the fabrication of p-type dye-sensitized solar cells. Inorganic Chemistry , 2009, 48(17): 8245–8250
doi: 10.1021/ic900866g pmid:19653664
29 Qin P, Linder M, Brinck T, Boschloo G, Hagfeldt A, Sun L C. High incident photon-to-current conversion efficiency of p-type dye-sen sitized solar cells based on NiO and organic chromophores. Advanced Materials (Deerfield Beach, Fla.) , 2009, 21(29): 2993–2996
doi: 10.1002/adma.200802461
30 Gibson E A, Smeigh A L, Le Pleux L, Fortage J, Boschloo G, Blart E, Pellegrin Y, Odobel F, Hagfeldt A, Hammarstr?m L. A p-type NiO-based dye-sensitized solar cell with an open-circuit voltage of 0.35 V. Angewandte Chemie International Edition , 2009, 48(24): 4402–4405
doi: 10.1002/anie.200900423 pmid:19431175
31 Li L, Gibson E A, Qin P, Boschloo G, Gorlov M, Hagfeldt A, Sun L C. Double-layered NiO photocathodes for p-type DSSCs with record IPCE. Advanced Materials (Deerfield Beach, Fla.) , 2010, 22(15): 1759–1762
doi: 10.1002/adma.200903151 pmid:20496411
32 Qin P, Wiberg J, Gibson E A, Linder M, Li L, Brinck T, Hagfeldt A, Albinsson B, Sun L C. Synthesis and mechanistic studies of organic chromophores with different energy levels for p-type dye-sensitized solar cells. Journal of Physical Chemistry C , 2010, 114(10): 4738–4748
doi: 10.1021/jp911091n
33 Nattestad A, Mozer A J, Fischer M K R, Cheng Y B, Mishra A, B?uerle P, Bach U. Highly efficient photocathodes for dye-sensitized tandem solar cells. Nature Materials , 2010, 9(1): 31–35
doi: 10.1038/nmat2588 pmid:19946281
34 Zhang X L, Huang F, Nattestad A, Wang K, Fu D, Mishra A, B?uerle P, Bach U, Cheng Y B. Enhanced open-circuit voltage of p-type DSC with highly crystalline NiO nanoparticles. Chemical Communications , 2011, 47(16): 4808–4810
doi: 10.1039/c0cc05445c pmid:21416106
35 Zhang X L, Zhang Z, Huang F, B?uerle P, Bach U, Cheng Y B. Charge transport in photocathodes based on the sensitization of NiO Nanorods. Journal of Materials Chemistry , 2012, 22(14): 7005–7009
doi: 10.1039/c2jm16264d
36 Ji Z Q, Natu G, Huang Z J, Wu Y Y. Linker effect in organic donor-acceptor dyes for p-type NiO dye sensitized solar cells. Energy &Environmental Science , 2011, 4(8): 2818–2821
doi: 10.1039/c1ee01527c
37 Ji Z Q, Natu G, Huang Z J, Kokhan O, Zhang X Y, Wu Y Y. Synthesis, photophysics and photovoltaic studies of ruthenium cyclometalated complexes as sensitizers for p-type NiO dye-sensitized solar cells. Journal of Physical Chemistry C , 2012, 116(32): 16854–16863
doi: 10.1021/jp303909x
38 Pellegrin Y, Pleux L, Blart E, Renaud A, Chavillon B, Szuwarski N, Boujtita M, Cario L, Jobic S, Jacquemin D, Odobel F. Ruthenium polypyridine complexes as sensitizers in NiO based p-type dye-sensitized solar cells: effects of the anchoring groups. Journal of Photochemistry and Photobiology A, Chemistry , 2011, 219(2-3): 235–242
doi: 10.1016/j.jphotochem.2011.02.025
39 Gibson E A, Smeigh A L, Le Pleux L, Hammarstr?m L, Odobel F, Boschloo G, Hagfeldt A. Cobalt polypyridyl-based electrolytes for p-type dye-sensitized solar cells. Journal of Physical Chemistry C , 2011, 115(19): 9772–9779
doi: 10.1021/jp110473n
40 Nattestad A, Zhang X, Bach U, Cheng Y B. Dye-sensitized CuAlO2 photocathodes for tandem solar cell applications. Journal of Photonics for Energy , 2011, 1(1): 011103
doi: 10.1117/1.3528236
41 Yu M Z, Natu G, Ji Z Q, Wu Y Y. p-type dye-sensitized solar cells based on delafossite CuGaO2 nanoplates with saturation photovoltages exceeding 460 mV. Journal of Physical Chemistry Letters , 2012, 3(9): 1074–1078
doi: 10.1021/jz3003603
42 Renaud A, Chavillon B, Le Pleux L, Pellegrin Y, Blart E, Boujtita M, Pauporté T, Cario L, Jobic S, Odobel F. CuGaO2 a promising alternative for NiO in p-type dye solar cells. Journal of Materials Chemistry , 2012, 22(29): 14353–14356
doi: 10.1039/c2jm31908j
43 Nakabayashi S, Ohta N, Fujishima A. Dye sensitization of synthetic p-type diamond electrode. Physical Chemistry Chemical Physics , 1999, 1(17): 3993–3997
doi: 10.1039/a905237b
44 Sumikura S, Mori S, Shimizu S, Usami H, Suzuki E. Photoelectrochemical characteristics of cells with dyed and undyed nanoporous p-type semiconductor CuO electrodes. Journal of Photochemistry and Photobiology A, Chemistry , 2008, 194(2-3): 143–147
doi: 10.1016/j.jphotochem.2007.07.035
45 Chitambar M, Wang Z, Liu Y, Rockett A, Maldonado S. Dye-sensitized photocathodes: efficient light-stimulated hole injection into p-GaP under depletion conditions. Journal of the American Chemical Society , 2012, 134(25): 10670–10681
doi: 10.1021/ja304019n pmid:22734693
46 Vera F, Schrebler R, Munoz E, Suarez C, Cury P, Gomez H, Cordova R, Marotti R E, Dalchiele E A. Preparation and characterization of eosin B- and erythrosin J-sensitized nanostructured NiO thin film photocathodes. Thin Solid Films , 2005, 490(2): 182–188
doi: 10.1016/j.tsf.2005.04.052
47 Xi Y Y, Li D, Djuri?i? A B, Xie M H, Man K Y K, Chan W K. Hydrothermal synthesis vs electrodeposition for high specific capacitance nanostructured NiO films. Electrochemical and Solid-State Letters , 2008, 11(6): D56–D59
doi: 10.1149/1.2903345
48 Zhu H, Hagfeldt A, Boschloo G. Photoelectrochemistry of mesoporous NiO electrodes in iodide/triiodide electrolytes. Journal of Physical Chemistry C , 2007, 111(47): 17455–17458
doi: 10.1021/jp077134k
49 Uehara S, Sumikura S, Suzuki E, Mori S. Retardation of electron injection at NiO/dye/electrolyte interface by aluminium alkoxide treatment. Energy & Environmental Science , 2010, 3(5): 641–644
doi: 10.1039/b920083e
50 Bian Z, Tachikawa T, Cui S C, Fujitsuka M, Majima T. Single-molecule charge transfer dynamics in dye-sensitized p-type NiO solar cells: influences of insulating Al2O3 Layers. Chemical Science , 2012, 3(2): 370–379
doi: 10.1039/c1sc00552a
51 Nagarajan R, Draeseke A D, Sleight A W, Tate J. p-type conductivity in CuCr1-xMgxO2 films and powders. Journal of Applied Physics , 2001, 89(12): 8022–8025
doi: 10.1063/1.1372636
52 Gillen R, Robertson J. Band structure calculations of CuAlO2, CuGaO2, CuInO2 and CuCrO2 by screened exchange. Physical Review B: Condensed Matter and Materials Physics , 2011, 84(3): 035125
doi: 10.1103/PhysRevB.84.035125
53 Morandeira A, Boschloo G, Hagfeldt A, Hammarstr?m L. Photoinduced ultrafast dynamics of coumarin 343 sensitized p-type-nanostructured NiO films. Journal of Physical Chemistry B , 2005, 109(41): 19403–19410
doi: 10.1021/jp053230e pmid:16853506
54 Rehm J, McLendon G, Nagasawa Y, Yoshihara K, Moser J, Gr?tzel M. Femtosecond electron-transfer dynamics at a sensitizing dye-semiconductor (TiO2) interface. Journal of Physical Chemistry , 1996, 100(23): 9577–9578
doi: 10.1021/jp960155m
55 Borgstr?m M, Blart E, Boschloo G, Mukhtar E, Hagfeldt A, Hammarstr?m L, Odobel F. Sensitized hole injection of phosphorus porphyrin into NiO: toward new photovoltaic devices. Journal of Physical Chemistry B , 2005, 109(48): 22928–22934
doi: 10.1021/jp054034a pmid:16853987
56 Sánchez-de-Armas R, San Miguel M á, Oviedo J, Sanz J F. Coumarin derivatives for dye sensitized solar cells: a TD-DFT study. Physical Chemistry Chemical Physics , 2012, 14(1): 225–233
doi: 10.1039/c1cp22058f pmid:22080195
57 Morandeira A, Fortage J, Edvinsson T, Le Pleux L, Blart E, Boschloo G, Hagfeldt A, Hammarstr?m L, Odobel F. Improved photon-to-current conversion efficiency with a nanoporous p-type NiO electrode by the use of a sensitizer-acceptor dyad. Journal of Physical Chemistry C , 2008, 112(5): 1721–1728
doi: 10.1021/jp077446n
58 Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, Belov V N, Hein B, von Middendorff C, Sch?nle A, Hell S W. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature , 2009, 457(7233): 1159–1162
doi: 10.1038/nature07596 pmid:19098897
59 Wu X, Xing G, Tan S L, Webster R D, Sum T C, Yeow E K. Hole transfer dynamics from dye molecules to p-type NiO nanoparticles: effects of processing conditions. Physical Chemistry Chemical Physics , 2012, 14(26): 9511–9519
doi: 10.1039/c2cp40926g pmid:22648161
60 Morandeira A, Boschloo G, Hagfeldt A, Hammarstr?m L. Coumarin 343-NiO films as nanostructured photocathodes in dye-sensitized solar cells: ultrafast electron transfer, effect of the I-3/I- Redox couple and mechanism of photocurrent generation. Journal of Physical Chemistry C , 2008, 112(25): 9530–9537
doi: 10.1021/jp800760q
61 Bremner S P, Levy M Y, Honsberg C B. Analysis of tandem solar cell efficiencies under AM1.5G spectrum using a rapid flux calculation method. Progress in Photovoltaics: Research and Applications , 2008, 16(3): 225–233
doi: 10.1002/pip.799
62 Liska P, Thampi K R, Gr?tzel M, Brémaud D, Rudmann D, Upadhyaya H M, Tiwari A N. Nanocrystalline dye-sensitized solar cell/copper indium gallium selenide thin-film tandem showing greater than 15% conversion efficiency. Applied Physics Letters , 2006, 88(20): 203103
doi: 10.1063/1.2203965
63 Wang W L, Lin H, Zhang J, Li X, Yamada A, Konagai M, Li J B. Experimental and simulation analysis of the dye sensitized solar cell/Cu(In,Ga)Se2 solar cell tandem structure. Solar Energy Materials and Solar Cells , 2010, 94(10): 1753–1758
doi: 10.1016/j.solmat.2010.05.041
64 Jeong W S, Lee J W, Jung S, Yun J H, Park N G. Evaluation of external quantum efficiency of a 12.35% tandem solar cell comprising dye-sensitized and CIGS solar cells. Solar Energy Materials and Solar Cells , 2011, 95(12): 3419–3423
doi: 10.1016/j.solmat.2011.07.038
65 Ito S, Dharmadasa I M, Tolan G J, Roberts J S, Hill G, Miura H, Yum J H, Pechy P, Liska P, Comte P, Gr?tzel M. High-voltage (1.8 V) tandem solar cell system using a GaAs/AlXGa(1-X) As graded solar cell and dye-sensitised solar cells with organic dyes having different absorption spectra. Solar Energy , 2011, 85(6): 1220–1225
doi: 10.1016/j.solener.2011.02.024
66 Greg D B, Paul G H, Seung-Hyun A L, Neal M A, Janine M, Thomas E M, Paul L, Shaik M Z, Michael G, Anita H B, Martin A G. Utilization of direct and diffuse sunlight in a dye-sensitized solar cell-silicon photovoltaic hybrid concentrator system. Journal of Physical Chemistry Letters , 2011, 2(6): 581–585
doi: 10.1021/jz200112m
67 Ingmar B, Martin K, Felix E, Jaehyung H, Peter E, Anders H, Jürgen W, Neil P. Efficient organic tandem cell combining a solid state dye-sensitized and a vacuum deposited bulk heterojunction solar cell. Solar Energy Materials and Solar Cells , 2009, 93(10): 1896–1899
doi: 10.1016/j.solmat.2009.05.020
68 Guo X Z, Zhang Y D, Qin D, Luo Y H, Li D M, Pang Y T, Meng Q B. Hybrid tandem solar cell for concurrently converting light and heat energy with utilization of full solar spectrum. Journal of Power Sources , 2010, 195(22): 7684–7690
doi: 10.1016/j.jpowsour.2010.05.033
69 Wang N, Han L, He H C, Park N H, Koumoto K. A novel high-performance photovoltaic-thermoelectric hybrid device. Energy & Environmental Science , 2011, 4(9): 3676–3679
doi: 10.1039/c1ee01646f
70 Jeremie B, Maurin C, Florian L, Jun-Ho Y, Michael G, Kevin S. Examining architectures of photoanode-photovoltaic tandem cells for solar water splitting. Journal of Materials Research , 2010, 25(1): 17–24
71 Kim J K, Shin K, Cho Sung M, Lee T W, Park J H. Synthesis of transparent mesoporous tungsten trioxide films with enhanced photoelectrochemical response: application to unassisted solar water splitting. Energy & Environmental Science , 2011, 4(4): 1465–1470
doi: 10.1039/c0ee00469c
[1] Xiaoyu ZHANG,Michael Grätzel,Jianli HUA. Donor design and modification strategies of metal-free sensitizers for highly-efficient n-type dye-sensitized solar cells[J]. Front. Optoelectron., 2016, 9(1): 3-37.
[2] Jie SHI,Zhaofei CHAI,Runli TANG,Huiyang LI,Hongwei HAN,Tianyou PENG,Qianqian LI,Zhen LI. Effect of electron-withdrawing groups in conjugated bridges: molecular engineering of organic sensitizers for dye-sensitized solar cells[J]. Front. Optoelectron., 2016, 9(1): 60-70.
[3] Yue QIAN,Rong LIU,Xiujuan JIN,Bin LIU,Xianfu WANG,Jin XU,Zhuoran WANG,Gui CHEN,Junfeng CHAO. Optimised synthesis of close packed ZnO cloth and its applications in Li-ion batteries and dye-sensitized solar cells[J]. Front. Optoelectron., 2015, 8(2): 220-228.
[4] Yaoguang RONG, Guanghui LIU, Heng WANG, Xiong LI, Hongwei HAN. Monolithic all-solid-state dye-sensitized solar cells[J]. Front Optoelec, 2013, 6(4): 359-372.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed