Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2016, Vol. 9 Issue (1) : 3-37    https://doi.org/10.1007/s12200-016-0563-x
REVIEW ARTICLE
Donor design and modification strategies of metal-free sensitizers for highly-efficient n-type dye-sensitized solar cells
Xiaoyu ZHANG1,2,Michael Grätzel2,Jianli HUA1,*()
1. Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, China
2. Laboratoire de Photoniques et Interfaces, Institut des Sciences et Ingénierie Chimiques, école Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
 Download: PDF(6036 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Dye-sensitized solar cells (DSSCs) cannot be developed without the research on sensitizers. As the key of light harvesting and electron generation, thousands of sensitizers have been designed for the application in DSSC devices. Among them, organic sensitizers have drawn a lot of attention because of the flexible molecular design, easy synthesis and good photovoltaic performance. Recently, new record photovoltaic conversion efficiencies of 11.5% for DSSCs with iodide electrolyte and 14.3% for DSSCs with cobalt electrolyte and co-sensitization have been achieved with organic sensitizers. Here we focus on the donor design and modification of organic sensitizers. Several useful strategies and corresponding typical examples are presented.

Keywords donors      organic sensitizers      dye-sensitized solar cells (DSSCs)     
Corresponding Author(s): Jianli HUA   
Just Accepted Date: 31 December 2015   Online First Date: 28 January 2016    Issue Date: 18 March 2016
 Cite this article:   
Xiaoyu ZHANG,Michael Gr?tzel,Jianli HUA. Donor design and modification strategies of metal-free sensitizers for highly-efficient n-type dye-sensitized solar cells[J]. Front. Optoelectron., 2016, 9(1): 3-37.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-016-0563-x
https://academic.hep.com.cn/foe/EN/Y2016/V9/I1/3
Fig.1  A simple model for device and working principles of a typical DSSC
Fig.2  Energy level diagram and electron transfer processes in a typical DSSC device (vs. the normal hydrogen electrode, NHE). The insert shows several redox potential examples of redox couples: I-/I3-, iodide/triiodide, Ref. [6]; [Co(dmb)3]3+ /2+, cobalt(II/III) tris(4,4′-dimethyl-2,2′-bipyridine) complexes, [Co(dtb)3]3+ /2+, cobalt(II/III) tris(4,4′-ditert-butyl-2,2′-bipyridine) complexes, [Co(bpy)3]3+ /2+, cobalt (II/III) tris(2,2′-bipyridine) complexes, [Co(phen)3]3+ /2+, cobalt(II/III) tris(1,10-phenanthroline) complexes, Ref. [7]; [Co(Cl-phen)3]3+ /2+, cobalt(II/III) tris(5-chloro-1,10-phenanthroline) complexes, [Co(NO2-phen)3]3+ /2+, cobalt(II/III) tris(5-nitro-1,10-phenanthroline) complexes, Ref. [8]; [Co(bpy-pz)2]3+ /2+, cobalt(II/III) bis[6-(1H-pyrazol-1-yl)-2,2′-bipyridine] complexes, Ref. [9
Fig.3  A model for D-p-A structure and common groups for donor, p-bridge and acceptor part
Fig.4  Scheme 1 Molecular structures of dyes 1-15
Fig.5  Scheme 2 Molecular structures of dyes 16-28
Fig.6  Scheme 3 Molecular structures of dyes 29-38
Fig.7  Scheme 4 Molecular structures of dyes 39-48
Fig.8  Scheme 5 Molecular structures of dyes 49-54
Fig.9  Scheme 6 Molecular structures of dyes 55-64
Fig.10  Scheme 7 Molecular structures of dyes 65-70
Fig.11  Scheme 8 Molecular structures of dyes 71-77
Fig.12  Examples of electron-withdrawing groups used in organic sensitizers for DSSCs
Fig.13  Scheme 9 Molecular structures of dyes 78-89
Fig.14  Scheme 10 Molecular structures of dyes 90-95
Fig.15  Scheme 11 Molecular structures of dyes 96-103
Fig.16  Scheme 12 Molecular structures of dyes 104-112
Fig.17  Scheme 13 Molecular structures of dyes 113-116
Fig.18  Scheme 14 Molecular structures of dyes 117-123
Fig.19  Scheme 15 Molecular structures of dyes 124-130
Fig.20  Scheme 16 Molecular structures of dyes 131-139
dyelmaxa)/nm?a)/(M-1·cm-1)lmaxb)/nmJsc/(mA·cm-2)Voc/VFFPCE/%Ref.
14643270012.330.6420.645.08[30]
24502690011.460.6430.664.93[30]
34973760018.630.6340.637.41[30]
45213400013.70.6060.695.7[31]
54913600015.20.6050.686.3[31]
64223770016.810.740.577.08[32]
74272900015.360.690.505.25[32]
84613130014.280.710.606.12[32]
94612710016.260.660.586.17[32]
104802220011.880.580.543.74[32]
114682250010.890.580.603.75[32]
124382942013.00.660.716.00[33]
134552036915.20.720.727.87[33]
14511279004598.920.6300.794.44[34]
155584280049215.370.6510.757.51[34]
164802500050513.80.6320.696.02[35]
17422293674169.20.6250.794.54[36]
18424138344247.30.6030.743.26[36]
19442137004299.720.7870.715.45[37]
415203004908.830.7360.664.32[43]
474280004229.70.6900.684.55[60]
204581980044011.330.7920.716.38[37]
214792180046511.150.7780.695.99[37]
22410194008.880.7640.5603.80[38]
234252710011.610.7660.5865.21[38]
244402840011.710.7090.5924.92[38]
25460240004769.430.5840.693.78[39]
264503100047510.840.5920.694.41[39]
27449230004807.390.5050.662.48[39]
284912230047111.630.6390.685.08[40]
295232790049118.530.6490.718.49[40]
305042720049015.290.6270.726.84[40]
315235820016.580.7560.7419.29[41]
325225710016.280.7790.7489.49[41]
334923300044416.10.7700.668.18[42]
344952400042314.80.7230.667.06[42]
354652100042715.00.7430.667.36[42]
365004500044815.80.7750.668.08[42]
37447270005098.900.7100.704.41[43]
38411243004838.450.7530.704.44[43]
394363000012.200.7640.777.20[44]
404561600015.330.740.667.43[45]
414632530014.390.700.666.65[46]
424805500013.840.7900.758.2[47]
434807380015.70.6900.748.0[48]
444908500017.610.7100.729.1[48]
455503100051314.010.7040.656.4[49]
465383100048713.370.7140.666.3[49]
475423800048513.250.6960.666.1[49]
485172800046814.900.7380.697.5[49]
494722640047810.750.6550.7004.90[50]
505123010048416.500.7340.6848.28[50]
514987.660.9460.6584.76[52]
5248210.10.8930.6816.15[52]
5349016.50.8330.73710.1[52]
5451311.80.8320.7036.91[52]
554442028916.30.730.708.28[33]
564631261416.80.750.708.71[33]
574827020045612.000.670.604.83[54]
584593720044612.500.710.595.24[54]
594457010044412.960.750.616.00[54]
606106611163211.760.4640.6743.7[55]
616158886765013.350.5190.735.1[56]
62406275004227.750.6890.733.90[57]
63420249004257.890.7310.744.27[57]
64430413004266.860.7520.703.61[57]
654852160044110.3590.7150.7225.35[58]
66468343004546.8660.6870.6783.20[58]
674262900012.210.650.594.68[59]
68413212009.420.690.604.01[59]
69486650004439.80.7500.674.92[61]
704985200046610.20.7540.685.23[60]
714711600011.820.7590.655.84[62]
724742000012.620.7890.636.29[62]
734742000011.410.8040.635.76[62]
74412160004.550.6820.692.14[63]
75412210005.270.7110.722.69[63]
764621300010.760.7930.645.51[63]
774661400012.180.8260.656.55[63]
785182290013.770.6150.7055.97[73]
795452360016.910.6720.7178.15[73]
805363730051416.230.6920.7168.04[74]
815464100052912.320.6990.7276.27[74]
825514300053319.690.7000.73110.08[74]
834951720042813.390.680.746.74[75]
844961920043813.180.780.788.02[75]
855211870050813.600.6850.676.24[80]
865232190052215.650.7760.708.50[80]
87500167004797.100.5700.763.11[85]
884971680048212.110.6710.766.14[85]
895242330051613.560.6910.767.12[85]
905144100011.050.690.685.18[95]
915264600013.400.760.737.43[95]
925933370055813.30.6310.766.4[89]
935382410017.10.6420.6757.4[102]
945495580018.80.7170.6739.1[102]
955404030012.70.7300.7126.6[102]
96556338999.350.5450.6853.49[103]
975802884012.320.5950.7085.19[103]
985842370010.780.6450.7154.97[103]
995513639912.100.6100.7285.37[103]
1004923600042915.40.710.677.3[104]
1015012990043715.50.700.626.7[104]
1024275062348310.180.7330.7695.74[105]
103434607824707.890.7670.7654.63[105]
104423399509.90.7700.6504.94[106]
105428296809.30.7390.6894.73[106]
106426335309.90.7800.6905.33[106]
1074434069014.80.7490.6597.29[106]
1085822800015.40.7300.758.4[107]
1095983300011.50.8070.726.7[107]
1105982400013.30.7160.706.7[107]
1115311200011.00.6720.705.2[107]
11254016003.70.5530.781.7[107]
1134842760047118.260.760.7410.20[108]
1144902300048416.760.760.769.67[108]
1154981990049517.810.760.7510.11[108]
1165332590055318.820.710.729.69[108]
Tab.1  Optical properties of mentioned dyes and their device performance with iodide/triiodide electrolyte
dyelmaxa)/nm?a)/(M-1·cm-1)lmaxb)/nmJsc/(mA·cm-2)Voc/VFFPCE/%Ref.
594457010044410.70.920.686.7[7]
1175261730048714.830.7670.6667.57[119]
1185222140050215.580.7970.7128.84[119]
1195342740050815.7116.250.8820.8900.6930.7379.6010.65[119]
1204986400012.00.8300.727.2[120]
1215008100011.90.9000.717.6[121]
1225315920014.320.9070.688.83[122]
1235436910012.790.8850.697.81[122]
1245425050044114.60.8550.708.8[123]
15.90.9100.7110.3[124]
14.10.8760.789.8[125]
1255484750046816.20.8400.7610.3[125]
1265265770013.40.9010.748.86[126]
1275415260014.10.8110.778.72[127]
1285483552853916.750.8300.7069.81[127]
1295572630054016.080.8020.668.57[127]
1305412550053215.350.7900.647.74[128]
1315875570015.60.7430.788.97[129]
1325965710015.20.7160.768.23[129]
1336006240017.60.7450.759.81[129]
1346026900017.90.7610.7410.1[129]
13551250715.810.8970.74410.6[130]
13617.030.9560.77012.5[130]
1374984320015.571.0360.77512.49[131]
15.991.0340.77412.81[131]
18.271.0140.77114.3[4]
Tab.2  Optical properties of mentioned dyes and their device performance with cobalt electrolyte
1 Grätzel M. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. Journal of Photochemistry and Photobiology A Chemistry, 2004, 164(1–3): 3–14
https://doi.org/10.1016/j.jphotochem.2004.02.023
2 Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H. Dye-sensitized solar cells. Chemical Reviews, 2010, 110(11): 6595–6663
https://doi.org/10.1021/cr900356p pmid: 20831177
3 Ye M D, Wen X R, Wang M Y, Iocozzia J, Zhang N, Lin C J, Lin Z Q. Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Materials Today, 2015, 18(3): 155–162
https://doi.org/10.1016/j.mattod.2014.09.001
4 Kakiage K, Aoyama Y, Yano T, Oya K, Fujisawa J, Hanaya M. Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chemical Communications, 2015, 51(88): 15894–15897
https://doi.org/10.1039/C5CC06759F pmid: 26393334
5 O’Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346): 737–740
https://doi.org/10.1038/353737a0
6 Boschloo G, Hagfeldt A. Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Accounts of Chemical Research, 2009, 42(11): 1819–1826
https://doi.org/10.1021/ar900138m pmid: 19845388
7 Feldt S M, Gibson E A, Gabrielsson E, Sun L, Boschloo G, Hagfeldt A. Design of organic dyes and cobalt polypyridine redox mediators for high-efficiency dye-sensitized solar cells. Journal of the American Chemical Society, 2010, 132(46): 16714–16724
https://doi.org/10.1021/ja1088869 pmid: 21047080
8 Feldt S M, Wang G, Boschloo G, Hagfeldt A. Effects of driving forces for recombination and regeneration on the photovoltaic performance of dye-sensitized solar cells using cobalt polypyridine redox couples. Journal of Physical Chemistry C, 2011, 115(43): 21500–21507
https://doi.org/10.1021/jp2061392
9 Feldt S M, Lohse P W, Kessler F, Nazeeruddin M K, Grätzel M, Boschloo G, Hagfeldt A. Regeneration and recombination kinetics in cobalt polypyridine based dye-sensitized solar cells, explained using Marcus theory. Physical Chemistry Chemical Physics, 2013, 15(19): 7087–7097
https://doi.org/10.1039/c3cp50997d pmid: 23552732
10 Jennings J R, Ghicov A, Peter L M, Schmuki P, Walker A B. Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: transport, trapping, and transfer of electrons. Journal of the American Chemical Society, 2008, 130(40): 13364–13372
https://doi.org/10.1021/ja804852z pmid: 18774820
11 Jennings J R, Liu Y R, Wang Q. Efficiency limitations in dye-sensitized solar cells caused by inefficient sensitizer regeneration. Journal of Physical Chemistry C, 2011, 115(30): 15109–15120
https://doi.org/10.1021/jp2053053
12 Nazeeruddin M K, Kay A, Rodicio I, Humpbry-Baker R, Miiller E, Liska P, Vlachopoulos N, Grätzel M. Conversion of light to electricity by cis-X2Bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X= C1-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes. Journal of the American Chemical Society, 1993, 115(14): 6382–6390
https://doi.org/10.1021/ja00067a063
13 Grätzel M. Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C, Photochemistry Reviews, 2003, 4(2): 145–153
https://doi.org/10.1016/S1389-5567(03)00026-1
14 Wang M K, Grätzel C, Zakeeruddin S M, Grätzel M. Recent developments in redox electrolytes for dye-sensitized solar cells. Energy & Environmental Science, 2012, 5(11): 9394–9405
https://doi.org/10.1039/c2ee23081j
15 Katoh R, Kasuya M, Kodate S, Furube A, Fuke N, Koide N. Effects of 4-tert-butylpyridine and Li ions on photoinduced electron injection efficiency in black-dye-sensitized nanocrystalline TiO2 films. Journal of Physical Chemistry C, 2009, 113(48): 20738–20744
https://doi.org/10.1021/jp906190a
16 Lu H P, Tsai C Y, Yen W N, Hsieh C P, Lee C W, Yeh C Y, Diau E W G. Control of dye aggregation and electron injection for highly efficient porphyrin sensitizers adsorbed on semiconductor films with varying ratios of coadsorbate. Journal of Physical Chemistry C, 2009, 113(49): 20990–20997
https://doi.org/10.1021/jp908100v
17 Gregg B A, Pichot F, Ferrere S, Fields C L. Interfacial recombination processes in dye-sensitized solar cells and methods to passivate the interfaces. Journal of Physical Chemistry B, 2001, 105(7): 1422–1429
https://doi.org/10.1021/jp003000u
18 Park J, Yi J, Tachikawa T, Majima T, Choi W. Guanidinium-enhanced production of hydrogen on nafion-coated dye/TiO2 under visible light. Journal of Physical Chemistry Letters, 2010, 1(9): 1351–1355
https://doi.org/10.1021/jz100292v
19 Ahmad S, Guillén E, Kavan L, Grätzel M, Nazeeruddin M K. Metal free sensitizer and catalyst for dye sensitized solar cells. Energy & Environmental Science, 2013, 6(12): 3439–3466
https://doi.org/10.1039/c3ee41888j
20 Hamann T W, Jensen R A, Martinson A B F, Van Ryswyk H, Hupp J T. Advancing beyond current generation dye-sensitized solar cells. Energy & Environmental Science, 2008, 1(1): 66–78
https://doi.org/10.1039/b809672d
21 Chiba Y, Islam A, Watanabe Y, Komiya R, Koide N, Han L. Dye-sensitized solar cells with conversion efficiency of 11.1%. Japanese Journal of Applied Physics, 2006, 45(25): 638–640
https://doi.org/10.1143/JJAP.45.L638
22 Nazeeruddin M K, Péchy P, Renouard T, Zakeeruddin S M, Humphry-Baker R, Comte P, Liska P, Cevey L, Costa E, Shklover V, Spiccia L, Deacon G B, Bignozzi C A, Grätzel M. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO(2)-based solar cells. Journal of the American Chemical Society, 2001, 123(8): 1613–1624
https://doi.org/10.1021/ja003299u pmid: 11456760
23 Yella A, Lee H W, Tsao H N, Yi C, Chandiran A K, Nazeeruddin M K, Diau E W G, Yeh C Y, Zakeeruddin S M, Grätzel M. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science, 2011, 334(6056): 629–634
https://doi.org/10.1126/science.1209688 pmid: 22053043
24 Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod B F E, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin M K, Grätzel M. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature Chemistry, 2014, 6(3): 242–247
https://doi.org/10.1038/nchem.1861 pmid: 24557140
25 Yao Z, Zhang M, Wu H, Yang L, Li R, Wang P. Donor/acceptor indenoperylene dye for highly efficient organic dye-sensitized solar cells. Journal of the American Chemical Society, 2015, 137(11): 3799–3802
https://doi.org/10.1021/jacs.5b01537 pmid: 25742441
26 Kakiage K, Aoyama Y, Yano T, Oya K, Kyomen T, Hanaya M. Fabrication of a high-performance dye-sensitized solar cell with 12.8% conversion efficiency using organic silyl-anchor dyes. Chemical Communications, 2015, 51(29): 6315–6317
https://doi.org/10.1039/C5CC00464K pmid: 25760960
27 Mishra A, Fischer M K R, Bäuerle P. Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. Angewandte Chemie International Edition, 2009, 48(14): 2474–2499
https://doi.org/10.1002/anie.200804709 pmid: 19294671
28 Liang M, Chen J. Arylamine organic dyes for dye-sensitized solar cells. Chemical Society Reviews, 2013, 42(8): 3453–3488
https://doi.org/10.1039/c3cs35372a pmid: 23396530
29 Clifford J N, Martínez-Ferrero E, Viterisi A, Palomares E. Sensitizer molecular structure-device efficiency relationship in dye sensitized solar cells. Chemical Society Reviews, 2011, 40(3): 1635–1646
https://doi.org/10.1039/B920664G pmid: 21076736
30 Liu B, Zhu W, Zhang Q, Wu W, Xu M, Ning Z, Xie Y, Tian H. Conveniently synthesized isophorone dyes for high efficiency dye-sensitized solar cells: tuning photovoltaic performance by structural modification of donor group in donor-p-acceptor system. Chemical Communications, 2009, 13(13): 1766–1768
https://doi.org/10.1039/b820964b pmid: 19294289
31 Cheng X B, Sun S Y, Liang M, Shi Y B, Sun Z, Xue S. Organic dyes incorporating the cyclopentadithiophene moiety for efficient dye-sensitized solar cells. Dyes and Pigments, 2012, 92(3): 1292–1299
https://doi.org/10.1016/j.dyepig.2011.09.019
32 Chang Y J, Chow T J. Dye-sensitized solar cell utilizing organic dyads containing triarylene conjugates. Tetrahedron, 2009, 65(24): 4726–4734
https://doi.org/10.1016/j.tet.2009.04.024
33 Do K, Kim D, Cho N, Paek S, Song K, Ko J. New type of organic sensitizers with a planar amine unit for efficient dye-sensitized solar cells. Organic Letters, 2012, 14(1): 222–225
https://doi.org/10.1021/ol203012s pmid: 22188378
34 Cai L P, Tsao H N, Zhang W, Wang L, Xue Z S, Grätzel M, Liu B. Organic sensitizers with bridged triphenylamine donor units for efficient dye-sensitized solar cells. Advanced Energy Materials, 2013, 3(2): 200–205
https://doi.org/10.1002/aenm.201200435
35 Ning Z, Zhang Q, Wu W, Pei H, Liu B, Tian H. Starburst triarylamine based dyes for efficient dye-sensitized solar cells. Journal of Organic Chemistry, 2008, 73(10): 3791–3797
https://doi.org/10.1021/jo800159t pmid: 18412319
36 Wan Z Q, Jia C Y, Duan Y D, Zhou L L, Zhang J Q, Lin Y, Shi Y. Influence of the antennas in starburst triphenylamine-based organic dyesensitized solar cells: phenothiazine versus carbazole. RSC Advances, 2012, 2(10): 4507–4514
https://doi.org/10.1039/c2ra01326f
37 Chai Q P, Li W Q, Zhu S Q, Zhang Q, Zhu W H. Influence of donor configurations on photophysical electrochemical, and photovoltaic performances in D-p-A organic sensitizers. ACS Sustainable Chemistry & Engineering, 2014, 2(2): 239–247
https://doi.org/10.1021/sc400293v
38 Zhang M D, Pan H, Ju X H, Ji Y J, Qin L, Zheng H G, Zhou X F. Improvement of dye-sensitized solar cells’ performance through introducing suitable heterocyclic groups to triarylamine dyes. Physical Chemistry Chemical Physics, 2012, 14(8): 2809–2815
https://doi.org/10.1039/c2cp23876d pmid: 22270905
39 Wu W J, Yang J B, Hua J L, Tang J, Zhang L, Long Y T, Tian H. Efficient and stable dye-sensitized solar cells based on phenothiazine sensitizers with thiophene units. Journal of Materials Chemistry, 2010, 20(9): 1772–1779
https://doi.org/10.1039/b918282a
40 Liu B, Liu Q B, You D, Li X Y, Naruta Y, Zhu W H. Molecular engineering of indoline based organic sensitizers for highly efficient dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22(26): 13348–13356
https://doi.org/10.1039/c2jm31704d
41 Liu B, Wang B, Wang R, Gao L, Huo S H, Liu Q B, Li X Y, Zhu W H. Influence of conjugated p-linker in D-D-p-A indoline dyes: towards long-term stable and efficient dye-sensitized solar cells with high photovoltage. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(3): 804–812
https://doi.org/10.1039/C3TA13993J
42 Li G, Liang M, Wang H, Sun Z, Wang L N, Wang Z H, Xue S. Significant enhancement of open-circuit voltage in indoline-based dye-sensitized solar cells via retarding charge recombination. Chemistry of Materials, 2013, 25(9): 1713–1722
https://doi.org/10.1021/cm400196w
43 Tang J, Hua J L, Wu W J, Li J, Jin Z G, Long Y T, Tian H. New starburst sensitizer with carbazole antennas for efficient and stable dye-sensitized solar cells. Energy & Environmental Science Energy Environ. Sci., 2010, 3(11): 1736–1745
https://doi.org/10.1039/c0ee00008f
44 Kim S, Lee J K, Kang S O, Ko J, Yum J H, Fantacci S, De Angelis F, Di Censo D, Nazeeruddin M K, Grätzel M. Molecular engineering of organic sensitizers for solar cell applications. Journal of the American Chemical Society, 2006, 128(51): 16701–16707
https://doi.org/10.1021/ja066376f pmid: 17177420
45 Choi H, Lee J K, Song K, Kang S O, Ko J. Novel organic dyes containing bis-dimethylfluorenyl amino benzo[b]thiophene for highly efficient dye-sensitized solar cell. Tetrahedron, 2007, 63(15): 3115–3121
https://doi.org/10.1016/j.tet.2007.02.018
46 Jung I, Lee J K, Song K H, Song K, Kang S O, Ko J. Synthesis and photovoltaic properties of efficient organic dyes containing the benzo[b]furan moiety for solar cells. Journal of Organic Chemistry, 2007, 72(10): 3652–3658
https://doi.org/10.1021/jo0625150 pmid: 17394353
47 Lim K, Kim C, Song J, Yu T, Lim W, Song K, Wang P, Zu N N, Ko J. Enhancing the performance of organic dye-sensitized solar cells via a slight structure modification. Journal of Physical Chemistry C, 2011, 115(45): 22640–22646
https://doi.org/10.1021/jp2070776
48 Choi H, Raabe I, Kim D, Teocoli F, Kim C, Song K, Yum J H, Ko J, Nazeeruddin M K, Grätzel M. High molar extinction coefficient organic sensitizers for efficient dye-sensitized solar cells. Chemistry—A European Journal, 2010, 16(4): 1193–1201PMID:19998435
https://doi.org/10.1002/chem.200902197
49 Liu J, Yang X C, Zhao J X, Sun L C. Tuning band structures of dyes for dye-sensitized solar cells: effect of different p-bridges on the performance of cells. RSC Advances, 2013, 3(36): 15734–15743
https://doi.org/10.1039/c3ra00180f
50 Yang L, Zheng Z, Li Y, Wu W, Tian H, Wang Z. N-Annulated perylene-based metal-free organic sensitizers for dye-sensitized solar cells. Chemical Communications, 2015, 51(23): 4842–4845
https://doi.org/10.1039/C5CC00650C pmid: 25695804
51 Facchetti A. p-Conjugated polymers for organic electronics and photovoltaic cell applications. Chemistry of Materials, 2011, 23(3): 733–758
https://doi.org/10.1021/cm102419z
52 Zhou N, Prabakaran K, Lee B, Chang S H, Harutyunyan B, Guo P, Butler M R, Timalsina A, Bedzyk M J, Ratner M A, Vegiraju S, Yau S, Wu C G, Chang R P H, Facchetti A, Chen M C, Marks T J. Metal-free tetrathienoacene sensitizers for high-performance dye-sensitized solar cells. Journal of the American Chemical Society, 2015, 137(13): 4414–4423
https://doi.org/10.1021/ja513254z pmid: 25768124
53 Buhbut S, Clifford J N, Kosa M, Anderson A Y, Shalom M, Major D T, Palomares E, Zaban A. Controlling dye aggregation, injection energetics and catalytic recombination in organic sensitizer based dye cells using a single electrolyte additive. Energy & Environmental Science, 2013, 6(10): 3046–3053
https://doi.org/10.1039/c3ee41486h
54 Hagberg D P, Jiang X, Gabrielsson E, Linder M, Marinado T, Brinck T, Hagfeldt A, Sun L C. Symmetric and unsymmetric donor functionalization: comparing structural and spectral benefits of chromophores for dye-sensitized solar cells. Journal of Materials Chemistry, 2009, 19(39): 7232–7238
https://doi.org/10.1039/b911397p
55 Hao Y, Yang X, Cong J, Tian H, Hagfeldt A, Sun L. Efficient near infrared D-p-A sensitizers with lateral anchoring group for dye-sensitized solar cells. Chemical Communications, 2009, 27(27): 4031–4033
https://doi.org/10.1039/b908396k pmid: 19568623
56 Hao Y, Yang X, Zhou M, Cong J, Wang X, Hagfeldt A, Sun L. Molecular design to improve the performance of donor-p acceptor near-IR organic dye-sensitized solar cells. ChemSusChem, 2011, 4(11): 1601–1605
https://doi.org/10.1002/cssc.201100350 pmid: 22038690
57 Ning Z J, Zhang Q, Pei H C, Luan J F, Lu C G, Cui Y P, Tian H. Photovoltage improvement for dye-sensitized solar cells via cone-shaped structural design. Journal of Physical Chemistry C, 2009, 113(23): 10307–10313
https://doi.org/10.1021/jp902408z
58 Numata Y, Islam A, Chen H, Han L Y. Aggregation-free branch-type organic dye with a twisted molecular architecture for dye-sensitized solar cells. Energy & Environmental Science, 2012, 5(9): 8548–8552
https://doi.org/10.1039/c2ee22506a
59 Tsai M S, Hsu Y C, Lin J T, Chen H C, Hsu C P. Organic dyes containing 1H-phenanthro[9,10-d]imidazole conjugation for solar cells. Journal of Physical Chemistry C, 2007, 111(50): 18785–18793
https://doi.org/10.1021/jp075653h
60 Lu M, Liang M, Han H Y, Sun Z, Xue S. Organic dyes incorporating bis-hexapropyltruxeneamino moiety for efficient dye-sensitized solar cells. Journal of Physical Chemistry C, 2011, 115(1): 274–281
https://doi.org/10.1021/jp107439d
61 Liang M, Lu M, Wang Q L, Chen W Y, Han H Y, Sun Z, Xue S. Efficient dye-sensitized solar cells with triarylamine organic dyes featuring functionalized-truxene unit. Journal of Power Sources, 2011, 196(3): 1657–1664
https://doi.org/10.1016/j.jpowsour.2010.08.055
62 Chen C J, Liao J Y, Chi Z G, Xu B J, Zhang X Q, Kuang D B, Zhang Y, Liu S W, Xu J R. Effect of polyphenyl-substituted ethylene end-capped groups in metal-free organic dyes on performance of dye-sensitized solar cells. RSC Advances, 2012, 2(20): 7788–7797
https://doi.org/10.1039/c2ra20819a
63 Chen C J, Liao J Y, Chi Z G, Xu B J, Zhang X Q, Kuang D B, Zhang Y, Liu S W, Xu J R. Metal-free organic dyes derived from triphenylethylene for dye-sensitized solar cells: tuning of the performance by phenothiazine and carbazole. Journal of Materials Chemistry, 2012, 22(18): 8994–9005
https://doi.org/10.1039/c2jm30254c
64 Wu Y, Zhu W. Organic sensitizers from D-p-A to D-A-p-A: effect of the internal electron-withdrawing units on molecular absorption, energy levels and photovoltaic performances. Chemical Society Reviews, 2013, 42(5): 2039–2058
https://doi.org/10.1039/C2CS35346F pmid: 23192709
65 Wu Y, Zhu W H, Zakeeruddin S M, Grätzel M. Insight into D-A-p-A structured sensitizers: a promising route to highly efficient and stable dye-sensitized solar cells. ACS Applied Materials & Interfaces, 2015, 7(18): 9307–9318
https://doi.org/10.1021/acsami.5b02475 pmid: 25899976
66 Velusamy M, Justin Thomas K R, Lin J T, Hsu Y C, Ho K C. Organic dyes incorporating low-band-gap chromophores for dye-sensitized solar cells. Organic Letters, 2005, 7(10): 1899–1902
https://doi.org/10.1021/ol050417f pmid: 15876014
67 Zhu W H, Wu Y Z, Wang S T, Li W Q, Li X, Chen J, Wang Z S, Tian H. Organic D-A-p-A solar cell sensitizers with improved stability and spectral response. Advanced Functional Materials, 2011, 21(4): 756–763
https://doi.org/10.1002/adfm.201001801
68 Wu Y Z, Zhang X, Li W Q, Wang Z S, Tian H, Zhu W H. Hexylthiophene-featured D-A-p-A structural indoline chromophores for coadsorbent-free and panchromatic dye-sensitized solar cells. Advanced Energy Materials, 2012, 2(1): 149–156 doi:10.1002/aenm.201100341
69 Wu Y Z, Marszalek M, Zakeeruddin S M, Zhang Q, Tian H, Grätzel M, Zhu W H. High-conversion-efficiency organic dye-sensitized solar cells: molecular engineering on D-A-p-A featured organic indoline dyes. Energy & Environmental Science, 2012, 5(8): 8261–8272
https://doi.org/10.1039/c2ee22108j
70 Zhu H B, Li W Q, Wu Y Z, Liu B, Zhu S Q, Li X, Ågren H, Zhu W H. Insight into benzothiadiazole acceptor in D-A-p-A configuration on photovoltaic performances of dye-sensitized solar cells. ACS Sustainable Chemistry & Engineering, 2014, 2(4): 1026–1034
https://doi.org/10.1021/sc500035j
71 Chen L, Li X, Ying W J, Zhang X Y, Guo F L, Li J, Hua J L. 5,6-Bis(octyloxy)benzo[c][1,2,5]thiadiazole-bridged dyes for dye-sensitized solar cells with high open-circuit voltage performance. European Journal of Organic Chemistry, 2013, 2013(9): 1770–1780
https://doi.org/10.1002/ejoc.201201424
72 Zhang X Y, Chen L, Li X, Mao J, Wu W, Ågren H, Hua J. Photovoltaic properties of bis(octyloxy)benzo-[c][1,2,5]thiadiazole sensitizers based on an N, N-diphenylthiophen-2-amine donor. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2014, 2(20): 4063–4072
https://doi.org/10.1039/c4tc00169a
73 Zhu H B, Li W Q, Wu Y Z, Liu B, Zhu S Q, Li X, Ågren H, Zhu W H. Insight into benzothiadiazole acceptor in D-A-p-A configuration on photovoltaic performances of dye-sensitized solar cells. ACS Sustainable Chemistry & Engineering, 2014, 2(4): 1026–1034
https://doi.org/10.1021/sc500035j
74 Chai Q P, Li W Q, Liu J C, Geng Z Y, Tian H.Zhu W H.Rational molecular engineering of cyclopentadithiophene-bridged D-A--A sensitizers combining high photovoltaic efficiency with rapid dye adsorption. Scientific Reports, 2015, 5: 11330
75 Cui Y, Wu Y Z, Lu X F, Zhang X, Zhou G, Miapeh F B, Zhu W H, Wang Z S. Incorporating benzotriazole moiety to construct D-A-p-A organic sensitizers for solar cells: significant enhancement of open-circuit photovoltage with long alkyl group. Chemistry of Materials, 2011, 23(19): 4394–4401
https://doi.org/10.1021/cm202226j
76 Mao J, Guo F, Ying W, Wu W, Li J, Hua J. Benzotriazole-bridged sensitizers containing a furan moiety for dye-sensitized solar cells with high open-circuit voltage performance. Chemistry, an Asian Journal, 2012, 7(5): 982–991
https://doi.org/10.1002/asia.201100967 pmid: 22328182
77 Yen Y S, Lee C T, Hsu C Y, Chou H H, Chen Y C, Lin J T. Benzotriazole-containing D-p-A conjugated organic dyes for dye-sensitized solar cells. Chemistry, an Asian Journal, 2013, 8(4): 809–816
https://doi.org/10.1002/asia.201201173 pmid: 23401366
78 Chai Q, Li W, Wu Y, Pei K, Liu J, Geng Z, Tian H, Zhu W. Effect of a long alkyl group on cyclopentadithiophene as a conjugated bridge for D-A-p-A organic sensitizers: IPCE, electron diffusion length, and charge recombination. ACS Applied Materials & Interfaces, 2014, 6(16): 14621–14630
https://doi.org/10.1021/am503891q pmid: 25062140
79 Li H, Wu Y Z, Geng Z Y, Liu J C, Xu D D, Zhu W H. Co-sensitization of benzoxadiazole based D-A-p-A featured sensitizers: compensating light-harvesting and retarding charge recombination. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(35): 14649–14657
https://doi.org/10.1039/C4TA02777A
80 Pei K, Wu Y, Wu W, Zhang Q, Chen B, Tian H, Zhu W. Constructing organic D-A-p-A-featured sensitizers with a quinoxaline unit for high-efficiency solar cells: the effect of an auxiliary acceptor on the absorption and the energy level alignment. Chemistry—A European Journal, 2012, 18(26): 8190–8200
https://doi.org/10.1002/chem.201103542 pmid: 22615266
81 Pei K, Wu Y, Islam A, Zhang Q, Han L, Tian H, Zhu W. Constructing high-efficiency D-A-p-A-featured solar cell sensitizers: a promising building block of 2,3-diphenylquinoxaline for antiaggregation and photostability. ACS Applied Materials & Interfaces, 2013, 5(11): 4986–4995
https://doi.org/10.1021/am400754d pmid: 23688179
82 Pei K, Wu Y Z, Islam A, Zhu S Q, Han L Y, Geng Z Y, Zhu W H. Dye-sensitized solar cells based on quinoxaline dyes: effect of p-linker on absorption, energy levels, and photovoltaic performances. Journal of Physical Chemistry C, 2014, 118(30): 16552–16561
https://doi.org/10.1021/jp412259t
83 Pei K, Wu Y, Li H, Geng Z, Tian H, Zhu W H. Cosensitization of D-A-p-A quinoxaline organic dye: efficiently filling the absorption valley with high photovoltaic efficiency. ACS Applied Materials & Interfaces, 2015, 7(9): 5296–5304
https://doi.org/10.1021/am508623e pmid: 25710618
84 Chang D W, Lee H J, Kim J H, Park S Y, Park S M, Dai L, Baek J B. Novel quinoxaline-based organic sensitizers for dye-sensitized solar cells. Organic Letters, 2011, 13(15): 3880–3883
https://doi.org/10.1021/ol2012378 pmid: 21702514
85 Ying W J, Yang J B, Wielopolski M, Moehl T, Moser J E, Comte P, Hua J L, Zakeeruddin S M, Tian H, Grätzel M. New pyrido[3,4-b]pyrazine-based sensitizers for efficient and stable dye-sensitized solar cells. Chemical Science (Cambridge), 2014, 5(1): 206–214
https://doi.org/10.1039/C3SC51844B
86 Li X, Cui S, Wang D, Zhou Y, Zhou H, Hu Y, Liu J G, Long Y, Wu W, Hua J, Tian H. New organic donor-acceptor-p-acceptor sensitizers for efficient dye-sensitized solar cells and photocatalytic hydrogen evolution under visible-light irradiation. ChemSusChem, 2014, 7(10): 2879–2888
https://doi.org/10.1002/cssc.201402414 pmid: 25154958
87 Zhang X Y, Ying W J, Wu W J, Li J, Hua J L. Synthesis and photovoltaic performance of (octyloxyphenyl)pyrido-[3,4-b]pyrazine-based sensitizers for dye-sensitized solar cells. Acta Chimica Sinica, 2015, 73(3): 272–280
https://doi.org/10.6023/A14090642
88 Ying W J, Zhang X Y, Li X, Wu W J, Guo F L, Li J, Ågren H, Hua J L. Synthesis and photovoltaic properties of new [1,2,5]thiadiazolo[3,4-c]pyridine-based organic Broadly absorbing sensitizers for dye-sensitized solar cells. Tetrahedron, 2014, 70(25): 3901–3908
https://doi.org/10.1016/j.tet.2014.04.039
89 Mao J, Yang J, Teuscher J, Moehl T, Yi C, Humphry-Baker R, Comte P, Grätzel C, Hua J, Zakeeruddin S M, Tian H, Grätzel M. Thiadiazolo[3,4-c]pyridine acceptor based blue sensitizers for high efficiency dye-sensitized solar cells. Journal of Physical Chemistry C, 2014, 118(30): 17090–17099
https://doi.org/10.1021/jp501173b
90 Hua Y, He J, Zhang C S, Qin C J, Han L Y, Zhao J Z, Chen T, Wong W Y, Wong W K, Zhu X J. Effects of various p-conjugated spacers in thiadiazole[3,4-c]pyridine-cored panchromatic organic dyes for dye-sensitized solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(6): 3103–3112
https://doi.org/10.1039/C4TA05350H
91 Feng Q, Lu X, Zhou G, Wang Z S. Synthesis and photovoltaic properties of organic sensitizers incorporating a thieno[3,4-c]pyrrole-4,6-dione moiety. Physical Chemistry Chemical Physics, 2012, 14(22): 7993–7999
https://doi.org/10.1039/c2cp40872d pmid: 22555312
92 Feng Q, Zhang W, Zhou G, Wang Z S. Enhanced performance of quasi-solid-state dye-sensitized solar cells by branching the linear substituent in sensitizers based on thieno[3,4-c]pyrrole-4,6-dione. Chemistry, an Asian Journal, 2013, 8(1): 168–177
https://doi.org/10.1002/asia.201200720 pmid: 23081835
93 Qu S Y, Wu W J, Hua J L, Kong C, Long Y T, Tian H. New diketopyrrolopyrrole (DPP) dyes for efficient dye-sensitized solar cells. Journal of Physical Chemistry C, 2010, 114(2): 1343–1349
https://doi.org/10.1021/jp909786k
94 Qu S, Qin C, Islam A, Hua J, Chen H, Tian H, Han L. Tuning the electrical and optical properties of diketopyrrolopyrrole complexes for panchromatic dye-sensitized solar cells. Chemistry, an Asian Journal, 2012, 7(12): 2895–2903
https://doi.org/10.1002/asia.201200648 pmid: 23015395
95 Qu S, Qin C, Islam A, Wu Y, Zhu W, Hua J, Tian H, Han L. A novel D-A-p-A organic sensitizer containing a diketopyrrolopyrrole unit with a branched alkyl chain for highly efficient and stable dye-sensitized solar cells. Chemical Communications, 2012, 48(55): 6972–6974
https://doi.org/10.1039/c2cc31998e pmid: 22673708
96 Qu S Y, Hua J L, Tian H. New D-p-A dyes for efficient dye-sensitized solar cells. Science China Chemistry, 2012, 55(5): 677–697 doi:10.1007/s11426-012-4517-x
97 Qu S Y, Wang B, Guo F L, Li J, Wu W J, Kong C, Long Y T, Hua J L. New diketo-pyrrolo-pyrrole (DPP) sensitizer containing a furan moiety for efficient and stable dye-sensitized solar cells. Dyes and Pigments, 2012, 92(3): 1384–1393
https://doi.org/10.1016/j.dyepig.2011.09.009
98 Holcombe T W, Yum J H, Kim Y, Rakstys K, Grätzel M. Diketopyrrolopyrrole-based sensitizers for dye-sensitized solar cell applications: anchor engineering. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2013, 1(44): 13978–13983
https://doi.org/10.1039/c3ta13643d
99 Ying W, Guo F, Li J, Zhang Q, Wu W, Tian H, Hua J. Series of new D-A-p-A organic broadly absorbing sensitizers containing isoindigo unit for highly efficient dye-sensitized solar cells. ACS Applied Materials & Interfaces, 2012, 4(8): 4215–4224
https://doi.org/10.1021/am300925e pmid: 22817332
100 Li S G, Jiang K J, Huang J H, Yang L M, Song Y L. Molecular engineering of panchromatic isoindigo sensitizers for dye-sensitized solar cell applications. Chemical Communications, 2014, 50(33): 4309–4311
https://doi.org/10.1039/c4cc00783b pmid: 24637700
101 Wang D, Ying W J, Zhang X Y, Hu Y, Wu W J, Hua J L. Near-infrared absorbing isoindigo sensitizers: synthesis and performance for dye-sensitized solar cells. Dyes and Pigments, 2015, 112: 327–334
https://doi.org/10.1016/j.dyepig.2014.07.017
102 Kang X W, Zhang J X, O’Neil D, Rojas A J, Chen W, Szymanski P, Marder S R, El-Sayed M A. Effect of molecular structure perturbations on the performance of the D-A-p-A dye sensitized solar cells. Chemistry of Materials, 2014, 26(15): 4486–4493
https://doi.org/10.1021/cm5016355
103 Franco S, Garín J, de Baroja N M, Pérez-Tejada R, Orduna J, Yu Y, Lira-Cantú M. New D-p-A-conjugated organic sensitizers based on 4H-pyran-4-ylidene donors for highly efficient dye-sensitized solar cells. Organic Letters, 2012, 14(3): 752–755
https://doi.org/10.1021/ol203298r pmid: 22264095
104 Zhang X H, Wang Z S, Cui Y, Koumura N, Furube A, Hara K. Organic sensitizers based on hexylthiophene-functionalized indolo[3,2-b]carbazole for efficient dye-sensitized solar cells. Journal of Physical Chemistry C, 2009, 113(30): 13409–13415
https://doi.org/10.1021/jp808536v
105 Paramasivam M, Chitumalla R K, Singh S P, Islam A, Han L Y, Rao V J, Bhanuprakash K. Tuning the photovoltaic performance of benzocarbazole-based sensitizers for dye-sensitized solar cells: a joint experimental and theoretical study of the influence of p-spacers. Journal of Physical Chemistry C, 2015, 119(30): 17053–17064
https://doi.org/10.1021/acs.jpcc.5b04629
106 Wu Z, An Z, Chen X, Chen P. Cyclic thiourea/urea functionalized triphenylamine-based dyes for high-performance dye-sensitized solar cells. Organic Letters, 2013, 15(7): 1456–1459
https://doi.org/10.1021/ol4001685 pmid: 23506212
107 Delcamp J H, Yella A, Holcombe T W, Nazeeruddin M K, Grätzel M. The molecular engineering of organic sensitizers for solar-cell applications. Angewandte Chemie International Edition, 2013, 52(1): 376–380
https://doi.org/10.1002/anie.201205007 pmid: 22927088
108 Joly D, Pellejà L, Narbey S, Oswald F, Meyer T, Kervella Y, Maldivi P, Clifford J N, Palomares E, Demadrille R. Metal-free organic sensitizers with narrow absorption in the visible for solar cells exceeding 10% efficiency. Energy & Environmental Science, 2015, 8(7): 2010–2018
https://doi.org/10.1039/C5EE00444F
109 Hardin B E, Snaith H J, McGehee M D. The renaissance of dye-sensitized solar cells. Nature Photonics, 2012, 6(3): 162–169 doi:10.1038/nphoton.2012.22
110 Cheng M, Yang X, Chen C, Zhao J, Zhang F, Sun L. Dye-sensitized solar cells based on hydroquinone/benzoquinone as bio-inspired redox couple with different counter electrodes. Physical Chemistry Chemical Physics, 2013, 15(36): 15146–15152
https://doi.org/10.1039/c3cp51980e pmid: 23925069
111 Tian H N, Gabrielsson E, Lohse P W, Vlachopoulos N, Kloo L, Hagfeldt A, Sun L C. Development of an organic redox couple and organic dyes for aqueous dye-sensitized solar cells. Energy & Environmental Science, 2012, 5(12): 9752–9755
https://doi.org/10.1039/c2ee23263d
112 Bai Y, Yu Q, Cai N, Wang Y, Zhang M, Wang P. High-efficiency organic dye-sensitized mesoscopic solar cells with a copper redox shuttle. Chemical Communications, 2011, 47(15): 4376–4378
https://doi.org/10.1039/c1cc10454c pmid: 21399826
113 Wang M, Chamberland N, Breau L, Moser J E, Humphry-Baker R, Marsan B, Zakeeruddin S M, Grätzel M. An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells. Nature Chemistry, 2010, 2(5): 385–389
https://doi.org/10.1038/nchem.610 pmid: 20414239
114 Sun Z, Liang M, Chen J. Kinetics of iodine-free redox shuttles in dye-Sensitized solar cells: interfacial recombination and dye regeneration. Accounts of Chemical Research, 2015, 48(6): 1541–1550
https://doi.org/10.1021/ar500337g pmid: 26001106
115 Nusbaumer H, Moser J E, Zakeeruddin S M, Nazeeruddin M K, Grätzel M. CoII(dbbip)22+ Complex rivals tri-iodide/iodide redox mediator in dye-sensitized photovoltaic cells. Journal of Physical Chemistry B, 2001, 105(43): 10461–10464
https://doi.org/10.1021/jp012075a
116 Yum J H, Baranoff E, Kessler F, Moehl T, Ahmad S, Bessho T, Marchioro A, Ghadiri E, Moser J E, Yi C Y, Nazeeruddin M K, Grätzel M.A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials. Nature Communications, 2012, 3: 631
117 Kashif M K, Axelson J C, Duffy N W, Forsyth C M, Chang C J, Long J R, Spiccia L, Bach U. A new direction in dye-sensitized solar cells redox mediator development: in situ fine-tuning of the cobalt(II)/(III) redox potential through Lewis base interactions. Journal of the American Chemical Society, 2012, 134(40): 16646–16653
https://doi.org/10.1021/ja305897k pmid: 22967268
118 Tsao H N, Comte P, Yi C, Grätzel M. Avoiding diffusion limitations in cobalt(III/II)-tris(2,2′-bipyridine)-based dye-sensitized solar cells by tuning the mesoporous TiO2 film properties. ChemPhysChem, 2012, 13(12): 2976–2981
https://doi.org/10.1002/cphc.201200435 pmid: 22855412
119 Yang J, Ganesan P, Teuscher J, Moehl T, Kim Y J, Yi C, Comte P, Pei K, Holcombe T W, Nazeeruddin M K, Hua J, Zakeeruddin S M, Tian H, Grätzel M. Influence of the donor size in D-p-A organic dyes for dye-sensitized solar cells. Journal of the American Chemical Society, 2014, 136(15): 5722–5730
https://doi.org/10.1021/ja500280r pmid: 24655036
120 Zong X P, Liang M, Fan C R, Tang K, Li G, Sun Z, Xue S. Design of truxene-based organic dyes for high-efficiency dye-sensitized solar cells employing cobalt redox shuttle. Journal of Physical Chemistry C, 2012, 116(20): 11241–11250
https://doi.org/10.1021/jp301406x
121 Zong X, Liang M, Chen T, Jia J, Wang L, Sun Z, Xue S. Efficient iodine-free dye-sensitized solar cells employing truxene-based organic dyes. Chemical Communications, 2012, 48(53): 6645–6647
https://doi.org/10.1039/c2cc32926c pmid: 22634582
122 Xia Q, Liang M, Tan Y L, Gao W X, Ouyang L Y, Ge G Y, Sun Z, Xue S. Engineering of the electron donor of triarylamine sensitizers for high-performance dye-sensitized solar cells. Organic Electronics, 2015, 17: 285–294
https://doi.org/10.1016/j.orgel.2014.12.026
123 Tsao H N, Yi C, Moehl T, Yum J H, Zakeeruddin S M, Nazeeruddin M K, Grätzel M. Cyclopentadithiophene bridged donor-acceptor dyes achieve high power conversion efficiencies in dye-sensitized solar cells based on the tris-cobalt bipyridine redox couple. ChemSusChem, 2011, 4(5): 591–594
https://doi.org/10.1002/cssc.201100120 pmid: 21557495
124 Tsao H N, Burschka J, Yi C Y, Kessler F, Nazeeruddin M K, Grätzel M. Influence of the interfacial charge-transfer resistance at the counter electrode in dye-sensitized solar cells employing cobalt redox shuttles. Energy & Environmental Science, 2011, 4(12): 4921–4924
https://doi.org/10.1039/c1ee02389f
125 Yella A, Humphry-Baker R, Curchod B F E, Astani N A, Teuscher J, Polander L E, Mathew S, Moser J E, Tavernelli I, Rothlisberger U, Grätzel M, Nazeeruddin M K, Frey J. Molecular engineering of a fluorene donor for dye-sensitized solar cells. Chemistry of Materials, 2013, 25(13): 2733–2739
https://doi.org/10.1021/cm401593b
126 Polander L E, Yella A, Teuscher J, Humphry-Baker R, Curchod B F E, Astani N A, Gao P, Moser J E, Tavernelli I, Rothlisberger U, Grätzel M, Nazeeruddin M K, Frey J. Unravelling the potential for dithienopyrrole sensitizers in dye-sensitized solar cells. Chemistry of Materials, 2013, 25(13): 2642–2648
https://doi.org/10.1021/cm401144j
127 Zhang X, Mao J, Wang D, Li X, Yang J, Shen Z, Wu W, Li J, Ågren H, Hua J. Comparative study on pyrido[3,4-b]pyrazine-based sensitizers by tuning bulky donors for dye-sensitized solar cells. ACS Applied Materials & Interfaces, 2015, 7(4): 2760–2771
https://doi.org/10.1021/am507824h pmid: 25580622
128 Li X, Zhou Y, Chen J, Yang J, Zheng Z, Wu W, Hua J, Tian H. Stacked graphene platelet nanofibers dispersed in the liquid electrolyte of highly efficient cobalt-mediator-based dye-sensitized solar cells. Chemical Communications, 2015, 51(51): 10349–10352
https://doi.org/10.1039/C5CC02504D pmid: 25998326
129 Yum J H, Holcombe T W, Kim Y, Rakstys K, Moehl T, Teuscher J, Delcamp J H, Nazeeruddin M K, Grätzel M. Blue-coloured highly efficient dye-sensitized solar cells by implementing the diketopyrrolopyrrole chromophore. Scientific Reports, 2013, 3: 2446
130 Yao Z, Zhang M, Wu H, Yang L, Li R, Wang P. Donor/acceptor indenoperylene dye for highly efficient organic dye-sensitized solar cells. Journal of the American Chemical Society, 2015, 137(11): 3799–3802
https://doi.org/10.1021/jacs.5b01537 pmid: 25742441
131 Kakiage K, Aoyama Y, Yano T, Oya K, Kyomen T, Hanaya M. Fabrication of a high-performance dye-sensitized solar cell with 12.8% conversion efficiency using organic silyl-anchor dyes. Chemical Communications, 2015, 51(29): 6315–6317
https://doi.org/10.1039/C5CC00464K pmid: 25760960
[1] Jie SHI,Zhaofei CHAI,Runli TANG,Huiyang LI,Hongwei HAN,Tianyou PENG,Qianqian LI,Zhen LI. Effect of electron-withdrawing groups in conjugated bridges: molecular engineering of organic sensitizers for dye-sensitized solar cells[J]. Front. Optoelectron., 2016, 9(1): 60-70.
[2] Yue QIAN,Rong LIU,Xiujuan JIN,Bin LIU,Xianfu WANG,Jin XU,Zhuoran WANG,Gui CHEN,Junfeng CHAO. Optimised synthesis of close packed ZnO cloth and its applications in Li-ion batteries and dye-sensitized solar cells[J]. Front. Optoelectron., 2015, 8(2): 220-228.
[3] Yaoguang RONG, Guanghui LIU, Heng WANG, Xiong LI, Hongwei HAN. Monolithic all-solid-state dye-sensitized solar cells[J]. Front Optoelec, 2013, 6(4): 359-372.
[4] Dehua XIONG, Wei CHEN. Recent progress on tandem structured dye-sensitized solar cells[J]. Front Optoelec, 2012, 5(4): 371-389.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed