|
|
Donor design and modification strategies of metal-free sensitizers for highly-efficient n-type dye-sensitized solar cells |
Xiaoyu ZHANG1,2,Michael Grätzel2,Jianli HUA1,*( ) |
1. Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, China 2. Laboratoire de Photoniques et Interfaces, Institut des Sciences et Ingénierie Chimiques, école Polytechnique Fédérale de Lausanne, Lausanne, Switzerland |
|
|
Abstract Dye-sensitized solar cells (DSSCs) cannot be developed without the research on sensitizers. As the key of light harvesting and electron generation, thousands of sensitizers have been designed for the application in DSSC devices. Among them, organic sensitizers have drawn a lot of attention because of the flexible molecular design, easy synthesis and good photovoltaic performance. Recently, new record photovoltaic conversion efficiencies of 11.5% for DSSCs with iodide electrolyte and 14.3% for DSSCs with cobalt electrolyte and co-sensitization have been achieved with organic sensitizers. Here we focus on the donor design and modification of organic sensitizers. Several useful strategies and corresponding typical examples are presented.
|
Keywords
donors
organic sensitizers
dye-sensitized solar cells (DSSCs)
|
Corresponding Author(s):
Jianli HUA
|
Just Accepted Date: 31 December 2015
Online First Date: 28 January 2016
Issue Date: 18 March 2016
|
|
1 |
Grätzel M. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. Journal of Photochemistry and Photobiology A Chemistry, 2004, 164(1–3): 3–14
https://doi.org/10.1016/j.jphotochem.2004.02.023
|
2 |
Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H. Dye-sensitized solar cells. Chemical Reviews, 2010, 110(11): 6595–6663
https://doi.org/10.1021/cr900356p
pmid: 20831177
|
3 |
Ye M D, Wen X R, Wang M Y, Iocozzia J, Zhang N, Lin C J, Lin Z Q. Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Materials Today, 2015, 18(3): 155–162
https://doi.org/10.1016/j.mattod.2014.09.001
|
4 |
Kakiage K, Aoyama Y, Yano T, Oya K, Fujisawa J, Hanaya M. Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chemical Communications, 2015, 51(88): 15894–15897
https://doi.org/10.1039/C5CC06759F
pmid: 26393334
|
5 |
O’Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346): 737–740
https://doi.org/10.1038/353737a0
|
6 |
Boschloo G, Hagfeldt A. Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Accounts of Chemical Research, 2009, 42(11): 1819–1826
https://doi.org/10.1021/ar900138m
pmid: 19845388
|
7 |
Feldt S M, Gibson E A, Gabrielsson E, Sun L, Boschloo G, Hagfeldt A. Design of organic dyes and cobalt polypyridine redox mediators for high-efficiency dye-sensitized solar cells. Journal of the American Chemical Society, 2010, 132(46): 16714–16724
https://doi.org/10.1021/ja1088869
pmid: 21047080
|
8 |
Feldt S M, Wang G, Boschloo G, Hagfeldt A. Effects of driving forces for recombination and regeneration on the photovoltaic performance of dye-sensitized solar cells using cobalt polypyridine redox couples. Journal of Physical Chemistry C, 2011, 115(43): 21500–21507
https://doi.org/10.1021/jp2061392
|
9 |
Feldt S M, Lohse P W, Kessler F, Nazeeruddin M K, Grätzel M, Boschloo G, Hagfeldt A. Regeneration and recombination kinetics in cobalt polypyridine based dye-sensitized solar cells, explained using Marcus theory. Physical Chemistry Chemical Physics, 2013, 15(19): 7087–7097
https://doi.org/10.1039/c3cp50997d
pmid: 23552732
|
10 |
Jennings J R, Ghicov A, Peter L M, Schmuki P, Walker A B. Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: transport, trapping, and transfer of electrons. Journal of the American Chemical Society, 2008, 130(40): 13364–13372
https://doi.org/10.1021/ja804852z
pmid: 18774820
|
11 |
Jennings J R, Liu Y R, Wang Q. Efficiency limitations in dye-sensitized solar cells caused by inefficient sensitizer regeneration. Journal of Physical Chemistry C, 2011, 115(30): 15109–15120
https://doi.org/10.1021/jp2053053
|
12 |
Nazeeruddin M K, Kay A, Rodicio I, Humpbry-Baker R, Miiller E, Liska P, Vlachopoulos N, Grätzel M. Conversion of light to electricity by cis-X2Bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X= C1-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes. Journal of the American Chemical Society, 1993, 115(14): 6382–6390
https://doi.org/10.1021/ja00067a063
|
13 |
Grätzel M. Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C, Photochemistry Reviews, 2003, 4(2): 145–153
https://doi.org/10.1016/S1389-5567(03)00026-1
|
14 |
Wang M K, Grätzel C, Zakeeruddin S M, Grätzel M. Recent developments in redox electrolytes for dye-sensitized solar cells. Energy & Environmental Science, 2012, 5(11): 9394–9405
https://doi.org/10.1039/c2ee23081j
|
15 |
Katoh R, Kasuya M, Kodate S, Furube A, Fuke N, Koide N. Effects of 4-tert-butylpyridine and Li ions on photoinduced electron injection efficiency in black-dye-sensitized nanocrystalline TiO2 films. Journal of Physical Chemistry C, 2009, 113(48): 20738–20744
https://doi.org/10.1021/jp906190a
|
16 |
Lu H P, Tsai C Y, Yen W N, Hsieh C P, Lee C W, Yeh C Y, Diau E W G. Control of dye aggregation and electron injection for highly efficient porphyrin sensitizers adsorbed on semiconductor films with varying ratios of coadsorbate. Journal of Physical Chemistry C, 2009, 113(49): 20990–20997
https://doi.org/10.1021/jp908100v
|
17 |
Gregg B A, Pichot F, Ferrere S, Fields C L. Interfacial recombination processes in dye-sensitized solar cells and methods to passivate the interfaces. Journal of Physical Chemistry B, 2001, 105(7): 1422–1429
https://doi.org/10.1021/jp003000u
|
18 |
Park J, Yi J, Tachikawa T, Majima T, Choi W. Guanidinium-enhanced production of hydrogen on nafion-coated dye/TiO2 under visible light. Journal of Physical Chemistry Letters, 2010, 1(9): 1351–1355
https://doi.org/10.1021/jz100292v
|
19 |
Ahmad S, Guillén E, Kavan L, Grätzel M, Nazeeruddin M K. Metal free sensitizer and catalyst for dye sensitized solar cells. Energy & Environmental Science, 2013, 6(12): 3439–3466
https://doi.org/10.1039/c3ee41888j
|
20 |
Hamann T W, Jensen R A, Martinson A B F, Van Ryswyk H, Hupp J T. Advancing beyond current generation dye-sensitized solar cells. Energy & Environmental Science, 2008, 1(1): 66–78
https://doi.org/10.1039/b809672d
|
21 |
Chiba Y, Islam A, Watanabe Y, Komiya R, Koide N, Han L. Dye-sensitized solar cells with conversion efficiency of 11.1%. Japanese Journal of Applied Physics, 2006, 45(25): 638–640
https://doi.org/10.1143/JJAP.45.L638
|
22 |
Nazeeruddin M K, Péchy P, Renouard T, Zakeeruddin S M, Humphry-Baker R, Comte P, Liska P, Cevey L, Costa E, Shklover V, Spiccia L, Deacon G B, Bignozzi C A, Grätzel M. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO(2)-based solar cells. Journal of the American Chemical Society, 2001, 123(8): 1613–1624
https://doi.org/10.1021/ja003299u
pmid: 11456760
|
23 |
Yella A, Lee H W, Tsao H N, Yi C, Chandiran A K, Nazeeruddin M K, Diau E W G, Yeh C Y, Zakeeruddin S M, Grätzel M. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science, 2011, 334(6056): 629–634
https://doi.org/10.1126/science.1209688
pmid: 22053043
|
24 |
Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod B F E, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin M K, Grätzel M. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature Chemistry, 2014, 6(3): 242–247
https://doi.org/10.1038/nchem.1861
pmid: 24557140
|
25 |
Yao Z, Zhang M, Wu H, Yang L, Li R, Wang P. Donor/acceptor indenoperylene dye for highly efficient organic dye-sensitized solar cells. Journal of the American Chemical Society, 2015, 137(11): 3799–3802
https://doi.org/10.1021/jacs.5b01537
pmid: 25742441
|
26 |
Kakiage K, Aoyama Y, Yano T, Oya K, Kyomen T, Hanaya M. Fabrication of a high-performance dye-sensitized solar cell with 12.8% conversion efficiency using organic silyl-anchor dyes. Chemical Communications, 2015, 51(29): 6315–6317
https://doi.org/10.1039/C5CC00464K
pmid: 25760960
|
27 |
Mishra A, Fischer M K R, Bäuerle P. Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. Angewandte Chemie International Edition, 2009, 48(14): 2474–2499
https://doi.org/10.1002/anie.200804709
pmid: 19294671
|
28 |
Liang M, Chen J. Arylamine organic dyes for dye-sensitized solar cells. Chemical Society Reviews, 2013, 42(8): 3453–3488
https://doi.org/10.1039/c3cs35372a
pmid: 23396530
|
29 |
Clifford J N, Martínez-Ferrero E, Viterisi A, Palomares E. Sensitizer molecular structure-device efficiency relationship in dye sensitized solar cells. Chemical Society Reviews, 2011, 40(3): 1635–1646
https://doi.org/10.1039/B920664G
pmid: 21076736
|
30 |
Liu B, Zhu W, Zhang Q, Wu W, Xu M, Ning Z, Xie Y, Tian H. Conveniently synthesized isophorone dyes for high efficiency dye-sensitized solar cells: tuning photovoltaic performance by structural modification of donor group in donor-p-acceptor system. Chemical Communications, 2009, 13(13): 1766–1768
https://doi.org/10.1039/b820964b
pmid: 19294289
|
31 |
Cheng X B, Sun S Y, Liang M, Shi Y B, Sun Z, Xue S. Organic dyes incorporating the cyclopentadithiophene moiety for efficient dye-sensitized solar cells. Dyes and Pigments, 2012, 92(3): 1292–1299
https://doi.org/10.1016/j.dyepig.2011.09.019
|
32 |
Chang Y J, Chow T J. Dye-sensitized solar cell utilizing organic dyads containing triarylene conjugates. Tetrahedron, 2009, 65(24): 4726–4734
https://doi.org/10.1016/j.tet.2009.04.024
|
33 |
Do K, Kim D, Cho N, Paek S, Song K, Ko J. New type of organic sensitizers with a planar amine unit for efficient dye-sensitized solar cells. Organic Letters, 2012, 14(1): 222–225
https://doi.org/10.1021/ol203012s
pmid: 22188378
|
34 |
Cai L P, Tsao H N, Zhang W, Wang L, Xue Z S, Grätzel M, Liu B. Organic sensitizers with bridged triphenylamine donor units for efficient dye-sensitized solar cells. Advanced Energy Materials, 2013, 3(2): 200–205
https://doi.org/10.1002/aenm.201200435
|
35 |
Ning Z, Zhang Q, Wu W, Pei H, Liu B, Tian H. Starburst triarylamine based dyes for efficient dye-sensitized solar cells. Journal of Organic Chemistry, 2008, 73(10): 3791–3797
https://doi.org/10.1021/jo800159t
pmid: 18412319
|
36 |
Wan Z Q, Jia C Y, Duan Y D, Zhou L L, Zhang J Q, Lin Y, Shi Y. Influence of the antennas in starburst triphenylamine-based organic dyesensitized solar cells: phenothiazine versus carbazole. RSC Advances, 2012, 2(10): 4507–4514
https://doi.org/10.1039/c2ra01326f
|
37 |
Chai Q P, Li W Q, Zhu S Q, Zhang Q, Zhu W H. Influence of donor configurations on photophysical electrochemical, and photovoltaic performances in D-p-A organic sensitizers. ACS Sustainable Chemistry & Engineering, 2014, 2(2): 239–247
https://doi.org/10.1021/sc400293v
|
38 |
Zhang M D, Pan H, Ju X H, Ji Y J, Qin L, Zheng H G, Zhou X F. Improvement of dye-sensitized solar cells’ performance through introducing suitable heterocyclic groups to triarylamine dyes. Physical Chemistry Chemical Physics, 2012, 14(8): 2809–2815
https://doi.org/10.1039/c2cp23876d
pmid: 22270905
|
39 |
Wu W J, Yang J B, Hua J L, Tang J, Zhang L, Long Y T, Tian H. Efficient and stable dye-sensitized solar cells based on phenothiazine sensitizers with thiophene units. Journal of Materials Chemistry, 2010, 20(9): 1772–1779
https://doi.org/10.1039/b918282a
|
40 |
Liu B, Liu Q B, You D, Li X Y, Naruta Y, Zhu W H. Molecular engineering of indoline based organic sensitizers for highly efficient dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22(26): 13348–13356
https://doi.org/10.1039/c2jm31704d
|
41 |
Liu B, Wang B, Wang R, Gao L, Huo S H, Liu Q B, Li X Y, Zhu W H. Influence of conjugated p-linker in D-D-p-A indoline dyes: towards long-term stable and efficient dye-sensitized solar cells with high photovoltage. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(3): 804–812
https://doi.org/10.1039/C3TA13993J
|
42 |
Li G, Liang M, Wang H, Sun Z, Wang L N, Wang Z H, Xue S. Significant enhancement of open-circuit voltage in indoline-based dye-sensitized solar cells via retarding charge recombination. Chemistry of Materials, 2013, 25(9): 1713–1722
https://doi.org/10.1021/cm400196w
|
43 |
Tang J, Hua J L, Wu W J, Li J, Jin Z G, Long Y T, Tian H. New starburst sensitizer with carbazole antennas for efficient and stable dye-sensitized solar cells. Energy & Environmental Science Energy Environ. Sci., 2010, 3(11): 1736–1745
https://doi.org/10.1039/c0ee00008f
|
44 |
Kim S, Lee J K, Kang S O, Ko J, Yum J H, Fantacci S, De Angelis F, Di Censo D, Nazeeruddin M K, Grätzel M. Molecular engineering of organic sensitizers for solar cell applications. Journal of the American Chemical Society, 2006, 128(51): 16701–16707
https://doi.org/10.1021/ja066376f
pmid: 17177420
|
45 |
Choi H, Lee J K, Song K, Kang S O, Ko J. Novel organic dyes containing bis-dimethylfluorenyl amino benzo[b]thiophene for highly efficient dye-sensitized solar cell. Tetrahedron, 2007, 63(15): 3115–3121
https://doi.org/10.1016/j.tet.2007.02.018
|
46 |
Jung I, Lee J K, Song K H, Song K, Kang S O, Ko J. Synthesis and photovoltaic properties of efficient organic dyes containing the benzo[b]furan moiety for solar cells. Journal of Organic Chemistry, 2007, 72(10): 3652–3658
https://doi.org/10.1021/jo0625150
pmid: 17394353
|
47 |
Lim K, Kim C, Song J, Yu T, Lim W, Song K, Wang P, Zu N N, Ko J. Enhancing the performance of organic dye-sensitized solar cells via a slight structure modification. Journal of Physical Chemistry C, 2011, 115(45): 22640–22646
https://doi.org/10.1021/jp2070776
|
48 |
Choi H, Raabe I, Kim D, Teocoli F, Kim C, Song K, Yum J H, Ko J, Nazeeruddin M K, Grätzel M. High molar extinction coefficient organic sensitizers for efficient dye-sensitized solar cells. Chemistry—A European Journal, 2010, 16(4): 1193–1201PMID:19998435
https://doi.org/10.1002/chem.200902197
|
49 |
Liu J, Yang X C, Zhao J X, Sun L C. Tuning band structures of dyes for dye-sensitized solar cells: effect of different p-bridges on the performance of cells. RSC Advances, 2013, 3(36): 15734–15743
https://doi.org/10.1039/c3ra00180f
|
50 |
Yang L, Zheng Z, Li Y, Wu W, Tian H, Wang Z. N-Annulated perylene-based metal-free organic sensitizers for dye-sensitized solar cells. Chemical Communications, 2015, 51(23): 4842–4845
https://doi.org/10.1039/C5CC00650C
pmid: 25695804
|
51 |
Facchetti A. p-Conjugated polymers for organic electronics and photovoltaic cell applications. Chemistry of Materials, 2011, 23(3): 733–758
https://doi.org/10.1021/cm102419z
|
52 |
Zhou N, Prabakaran K, Lee B, Chang S H, Harutyunyan B, Guo P, Butler M R, Timalsina A, Bedzyk M J, Ratner M A, Vegiraju S, Yau S, Wu C G, Chang R P H, Facchetti A, Chen M C, Marks T J. Metal-free tetrathienoacene sensitizers for high-performance dye-sensitized solar cells. Journal of the American Chemical Society, 2015, 137(13): 4414–4423
https://doi.org/10.1021/ja513254z
pmid: 25768124
|
53 |
Buhbut S, Clifford J N, Kosa M, Anderson A Y, Shalom M, Major D T, Palomares E, Zaban A. Controlling dye aggregation, injection energetics and catalytic recombination in organic sensitizer based dye cells using a single electrolyte additive. Energy & Environmental Science, 2013, 6(10): 3046–3053
https://doi.org/10.1039/c3ee41486h
|
54 |
Hagberg D P, Jiang X, Gabrielsson E, Linder M, Marinado T, Brinck T, Hagfeldt A, Sun L C. Symmetric and unsymmetric donor functionalization: comparing structural and spectral benefits of chromophores for dye-sensitized solar cells. Journal of Materials Chemistry, 2009, 19(39): 7232–7238
https://doi.org/10.1039/b911397p
|
55 |
Hao Y, Yang X, Cong J, Tian H, Hagfeldt A, Sun L. Efficient near infrared D-p-A sensitizers with lateral anchoring group for dye-sensitized solar cells. Chemical Communications, 2009, 27(27): 4031–4033
https://doi.org/10.1039/b908396k
pmid: 19568623
|
56 |
Hao Y, Yang X, Zhou M, Cong J, Wang X, Hagfeldt A, Sun L. Molecular design to improve the performance of donor-p acceptor near-IR organic dye-sensitized solar cells. ChemSusChem, 2011, 4(11): 1601–1605
https://doi.org/10.1002/cssc.201100350
pmid: 22038690
|
57 |
Ning Z J, Zhang Q, Pei H C, Luan J F, Lu C G, Cui Y P, Tian H. Photovoltage improvement for dye-sensitized solar cells via cone-shaped structural design. Journal of Physical Chemistry C, 2009, 113(23): 10307–10313
https://doi.org/10.1021/jp902408z
|
58 |
Numata Y, Islam A, Chen H, Han L Y. Aggregation-free branch-type organic dye with a twisted molecular architecture for dye-sensitized solar cells. Energy & Environmental Science, 2012, 5(9): 8548–8552
https://doi.org/10.1039/c2ee22506a
|
59 |
Tsai M S, Hsu Y C, Lin J T, Chen H C, Hsu C P. Organic dyes containing 1H-phenanthro[9,10-d]imidazole conjugation for solar cells. Journal of Physical Chemistry C, 2007, 111(50): 18785–18793
https://doi.org/10.1021/jp075653h
|
60 |
Lu M, Liang M, Han H Y, Sun Z, Xue S. Organic dyes incorporating bis-hexapropyltruxeneamino moiety for efficient dye-sensitized solar cells. Journal of Physical Chemistry C, 2011, 115(1): 274–281
https://doi.org/10.1021/jp107439d
|
61 |
Liang M, Lu M, Wang Q L, Chen W Y, Han H Y, Sun Z, Xue S. Efficient dye-sensitized solar cells with triarylamine organic dyes featuring functionalized-truxene unit. Journal of Power Sources, 2011, 196(3): 1657–1664
https://doi.org/10.1016/j.jpowsour.2010.08.055
|
62 |
Chen C J, Liao J Y, Chi Z G, Xu B J, Zhang X Q, Kuang D B, Zhang Y, Liu S W, Xu J R. Effect of polyphenyl-substituted ethylene end-capped groups in metal-free organic dyes on performance of dye-sensitized solar cells. RSC Advances, 2012, 2(20): 7788–7797
https://doi.org/10.1039/c2ra20819a
|
63 |
Chen C J, Liao J Y, Chi Z G, Xu B J, Zhang X Q, Kuang D B, Zhang Y, Liu S W, Xu J R. Metal-free organic dyes derived from triphenylethylene for dye-sensitized solar cells: tuning of the performance by phenothiazine and carbazole. Journal of Materials Chemistry, 2012, 22(18): 8994–9005
https://doi.org/10.1039/c2jm30254c
|
64 |
Wu Y, Zhu W. Organic sensitizers from D-p-A to D-A-p-A: effect of the internal electron-withdrawing units on molecular absorption, energy levels and photovoltaic performances. Chemical Society Reviews, 2013, 42(5): 2039–2058
https://doi.org/10.1039/C2CS35346F
pmid: 23192709
|
65 |
Wu Y, Zhu W H, Zakeeruddin S M, Grätzel M. Insight into D-A-p-A structured sensitizers: a promising route to highly efficient and stable dye-sensitized solar cells. ACS Applied Materials & Interfaces, 2015, 7(18): 9307–9318
https://doi.org/10.1021/acsami.5b02475
pmid: 25899976
|
66 |
Velusamy M, Justin Thomas K R, Lin J T, Hsu Y C, Ho K C. Organic dyes incorporating low-band-gap chromophores for dye-sensitized solar cells. Organic Letters, 2005, 7(10): 1899–1902
https://doi.org/10.1021/ol050417f
pmid: 15876014
|
67 |
Zhu W H, Wu Y Z, Wang S T, Li W Q, Li X, Chen J, Wang Z S, Tian H. Organic D-A-p-A solar cell sensitizers with improved stability and spectral response. Advanced Functional Materials, 2011, 21(4): 756–763
https://doi.org/10.1002/adfm.201001801
|
68 |
Wu Y Z, Zhang X, Li W Q, Wang Z S, Tian H, Zhu W H. Hexylthiophene-featured D-A-p-A structural indoline chromophores for coadsorbent-free and panchromatic dye-sensitized solar cells. Advanced Energy Materials, 2012, 2(1): 149–156 doi:10.1002/aenm.201100341
|
69 |
Wu Y Z, Marszalek M, Zakeeruddin S M, Zhang Q, Tian H, Grätzel M, Zhu W H. High-conversion-efficiency organic dye-sensitized solar cells: molecular engineering on D-A-p-A featured organic indoline dyes. Energy & Environmental Science, 2012, 5(8): 8261–8272
https://doi.org/10.1039/c2ee22108j
|
70 |
Zhu H B, Li W Q, Wu Y Z, Liu B, Zhu S Q, Li X, Ågren H, Zhu W H. Insight into benzothiadiazole acceptor in D-A-p-A configuration on photovoltaic performances of dye-sensitized solar cells. ACS Sustainable Chemistry & Engineering, 2014, 2(4): 1026–1034
https://doi.org/10.1021/sc500035j
|
71 |
Chen L, Li X, Ying W J, Zhang X Y, Guo F L, Li J, Hua J L. 5,6-Bis(octyloxy)benzo[c][1,2,5]thiadiazole-bridged dyes for dye-sensitized solar cells with high open-circuit voltage performance. European Journal of Organic Chemistry, 2013, 2013(9): 1770–1780
https://doi.org/10.1002/ejoc.201201424
|
72 |
Zhang X Y, Chen L, Li X, Mao J, Wu W, Ågren H, Hua J. Photovoltaic properties of bis(octyloxy)benzo-[c][1,2,5]thiadiazole sensitizers based on an N, N-diphenylthiophen-2-amine donor. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2014, 2(20): 4063–4072
https://doi.org/10.1039/c4tc00169a
|
73 |
Zhu H B, Li W Q, Wu Y Z, Liu B, Zhu S Q, Li X, Ågren H, Zhu W H. Insight into benzothiadiazole acceptor in D-A-p-A configuration on photovoltaic performances of dye-sensitized solar cells. ACS Sustainable Chemistry & Engineering, 2014, 2(4): 1026–1034
https://doi.org/10.1021/sc500035j
|
74 |
Chai Q P, Li W Q, Liu J C, Geng Z Y, Tian H.Zhu W H.Rational molecular engineering of cyclopentadithiophene-bridged D-A--A sensitizers combining high photovoltaic efficiency with rapid dye adsorption. Scientific Reports, 2015, 5: 11330
|
75 |
Cui Y, Wu Y Z, Lu X F, Zhang X, Zhou G, Miapeh F B, Zhu W H, Wang Z S. Incorporating benzotriazole moiety to construct D-A-p-A organic sensitizers for solar cells: significant enhancement of open-circuit photovoltage with long alkyl group. Chemistry of Materials, 2011, 23(19): 4394–4401
https://doi.org/10.1021/cm202226j
|
76 |
Mao J, Guo F, Ying W, Wu W, Li J, Hua J. Benzotriazole-bridged sensitizers containing a furan moiety for dye-sensitized solar cells with high open-circuit voltage performance. Chemistry, an Asian Journal, 2012, 7(5): 982–991
https://doi.org/10.1002/asia.201100967
pmid: 22328182
|
77 |
Yen Y S, Lee C T, Hsu C Y, Chou H H, Chen Y C, Lin J T. Benzotriazole-containing D-p-A conjugated organic dyes for dye-sensitized solar cells. Chemistry, an Asian Journal, 2013, 8(4): 809–816
https://doi.org/10.1002/asia.201201173
pmid: 23401366
|
78 |
Chai Q, Li W, Wu Y, Pei K, Liu J, Geng Z, Tian H, Zhu W. Effect of a long alkyl group on cyclopentadithiophene as a conjugated bridge for D-A-p-A organic sensitizers: IPCE, electron diffusion length, and charge recombination. ACS Applied Materials & Interfaces, 2014, 6(16): 14621–14630
https://doi.org/10.1021/am503891q
pmid: 25062140
|
79 |
Li H, Wu Y Z, Geng Z Y, Liu J C, Xu D D, Zhu W H. Co-sensitization of benzoxadiazole based D-A-p-A featured sensitizers: compensating light-harvesting and retarding charge recombination. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(35): 14649–14657
https://doi.org/10.1039/C4TA02777A
|
80 |
Pei K, Wu Y, Wu W, Zhang Q, Chen B, Tian H, Zhu W. Constructing organic D-A-p-A-featured sensitizers with a quinoxaline unit for high-efficiency solar cells: the effect of an auxiliary acceptor on the absorption and the energy level alignment. Chemistry—A European Journal, 2012, 18(26): 8190–8200
https://doi.org/10.1002/chem.201103542
pmid: 22615266
|
81 |
Pei K, Wu Y, Islam A, Zhang Q, Han L, Tian H, Zhu W. Constructing high-efficiency D-A-p-A-featured solar cell sensitizers: a promising building block of 2,3-diphenylquinoxaline for antiaggregation and photostability. ACS Applied Materials & Interfaces, 2013, 5(11): 4986–4995
https://doi.org/10.1021/am400754d
pmid: 23688179
|
82 |
Pei K, Wu Y Z, Islam A, Zhu S Q, Han L Y, Geng Z Y, Zhu W H. Dye-sensitized solar cells based on quinoxaline dyes: effect of p-linker on absorption, energy levels, and photovoltaic performances. Journal of Physical Chemistry C, 2014, 118(30): 16552–16561
https://doi.org/10.1021/jp412259t
|
83 |
Pei K, Wu Y, Li H, Geng Z, Tian H, Zhu W H. Cosensitization of D-A-p-A quinoxaline organic dye: efficiently filling the absorption valley with high photovoltaic efficiency. ACS Applied Materials & Interfaces, 2015, 7(9): 5296–5304
https://doi.org/10.1021/am508623e
pmid: 25710618
|
84 |
Chang D W, Lee H J, Kim J H, Park S Y, Park S M, Dai L, Baek J B. Novel quinoxaline-based organic sensitizers for dye-sensitized solar cells. Organic Letters, 2011, 13(15): 3880–3883
https://doi.org/10.1021/ol2012378
pmid: 21702514
|
85 |
Ying W J, Yang J B, Wielopolski M, Moehl T, Moser J E, Comte P, Hua J L, Zakeeruddin S M, Tian H, Grätzel M. New pyrido[3,4-b]pyrazine-based sensitizers for efficient and stable dye-sensitized solar cells. Chemical Science (Cambridge), 2014, 5(1): 206–214
https://doi.org/10.1039/C3SC51844B
|
86 |
Li X, Cui S, Wang D, Zhou Y, Zhou H, Hu Y, Liu J G, Long Y, Wu W, Hua J, Tian H. New organic donor-acceptor-p-acceptor sensitizers for efficient dye-sensitized solar cells and photocatalytic hydrogen evolution under visible-light irradiation. ChemSusChem, 2014, 7(10): 2879–2888
https://doi.org/10.1002/cssc.201402414
pmid: 25154958
|
87 |
Zhang X Y, Ying W J, Wu W J, Li J, Hua J L. Synthesis and photovoltaic performance of (octyloxyphenyl)pyrido-[3,4-b]pyrazine-based sensitizers for dye-sensitized solar cells. Acta Chimica Sinica, 2015, 73(3): 272–280
https://doi.org/10.6023/A14090642
|
88 |
Ying W J, Zhang X Y, Li X, Wu W J, Guo F L, Li J, Ågren H, Hua J L. Synthesis and photovoltaic properties of new [1,2,5]thiadiazolo[3,4-c]pyridine-based organic Broadly absorbing sensitizers for dye-sensitized solar cells. Tetrahedron, 2014, 70(25): 3901–3908
https://doi.org/10.1016/j.tet.2014.04.039
|
89 |
Mao J, Yang J, Teuscher J, Moehl T, Yi C, Humphry-Baker R, Comte P, Grätzel C, Hua J, Zakeeruddin S M, Tian H, Grätzel M. Thiadiazolo[3,4-c]pyridine acceptor based blue sensitizers for high efficiency dye-sensitized solar cells. Journal of Physical Chemistry C, 2014, 118(30): 17090–17099
https://doi.org/10.1021/jp501173b
|
90 |
Hua Y, He J, Zhang C S, Qin C J, Han L Y, Zhao J Z, Chen T, Wong W Y, Wong W K, Zhu X J. Effects of various p-conjugated spacers in thiadiazole[3,4-c]pyridine-cored panchromatic organic dyes for dye-sensitized solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(6): 3103–3112
https://doi.org/10.1039/C4TA05350H
|
91 |
Feng Q, Lu X, Zhou G, Wang Z S. Synthesis and photovoltaic properties of organic sensitizers incorporating a thieno[3,4-c]pyrrole-4,6-dione moiety. Physical Chemistry Chemical Physics, 2012, 14(22): 7993–7999
https://doi.org/10.1039/c2cp40872d
pmid: 22555312
|
92 |
Feng Q, Zhang W, Zhou G, Wang Z S. Enhanced performance of quasi-solid-state dye-sensitized solar cells by branching the linear substituent in sensitizers based on thieno[3,4-c]pyrrole-4,6-dione. Chemistry, an Asian Journal, 2013, 8(1): 168–177
https://doi.org/10.1002/asia.201200720
pmid: 23081835
|
93 |
Qu S Y, Wu W J, Hua J L, Kong C, Long Y T, Tian H. New diketopyrrolopyrrole (DPP) dyes for efficient dye-sensitized solar cells. Journal of Physical Chemistry C, 2010, 114(2): 1343–1349
https://doi.org/10.1021/jp909786k
|
94 |
Qu S, Qin C, Islam A, Hua J, Chen H, Tian H, Han L. Tuning the electrical and optical properties of diketopyrrolopyrrole complexes for panchromatic dye-sensitized solar cells. Chemistry, an Asian Journal, 2012, 7(12): 2895–2903
https://doi.org/10.1002/asia.201200648
pmid: 23015395
|
95 |
Qu S, Qin C, Islam A, Wu Y, Zhu W, Hua J, Tian H, Han L. A novel D-A-p-A organic sensitizer containing a diketopyrrolopyrrole unit with a branched alkyl chain for highly efficient and stable dye-sensitized solar cells. Chemical Communications, 2012, 48(55): 6972–6974
https://doi.org/10.1039/c2cc31998e
pmid: 22673708
|
96 |
Qu S Y, Hua J L, Tian H. New D-p-A dyes for efficient dye-sensitized solar cells. Science China Chemistry, 2012, 55(5): 677–697 doi:10.1007/s11426-012-4517-x
|
97 |
Qu S Y, Wang B, Guo F L, Li J, Wu W J, Kong C, Long Y T, Hua J L. New diketo-pyrrolo-pyrrole (DPP) sensitizer containing a furan moiety for efficient and stable dye-sensitized solar cells. Dyes and Pigments, 2012, 92(3): 1384–1393
https://doi.org/10.1016/j.dyepig.2011.09.009
|
98 |
Holcombe T W, Yum J H, Kim Y, Rakstys K, Grätzel M. Diketopyrrolopyrrole-based sensitizers for dye-sensitized solar cell applications: anchor engineering. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2013, 1(44): 13978–13983
https://doi.org/10.1039/c3ta13643d
|
99 |
Ying W, Guo F, Li J, Zhang Q, Wu W, Tian H, Hua J. Series of new D-A-p-A organic broadly absorbing sensitizers containing isoindigo unit for highly efficient dye-sensitized solar cells. ACS Applied Materials & Interfaces, 2012, 4(8): 4215–4224
https://doi.org/10.1021/am300925e
pmid: 22817332
|
100 |
Li S G, Jiang K J, Huang J H, Yang L M, Song Y L. Molecular engineering of panchromatic isoindigo sensitizers for dye-sensitized solar cell applications. Chemical Communications, 2014, 50(33): 4309–4311
https://doi.org/10.1039/c4cc00783b
pmid: 24637700
|
101 |
Wang D, Ying W J, Zhang X Y, Hu Y, Wu W J, Hua J L. Near-infrared absorbing isoindigo sensitizers: synthesis and performance for dye-sensitized solar cells. Dyes and Pigments, 2015, 112: 327–334
https://doi.org/10.1016/j.dyepig.2014.07.017
|
102 |
Kang X W, Zhang J X, O’Neil D, Rojas A J, Chen W, Szymanski P, Marder S R, El-Sayed M A. Effect of molecular structure perturbations on the performance of the D-A-p-A dye sensitized solar cells. Chemistry of Materials, 2014, 26(15): 4486–4493
https://doi.org/10.1021/cm5016355
|
103 |
Franco S, Garín J, de Baroja N M, Pérez-Tejada R, Orduna J, Yu Y, Lira-Cantú M. New D-p-A-conjugated organic sensitizers based on 4H-pyran-4-ylidene donors for highly efficient dye-sensitized solar cells. Organic Letters, 2012, 14(3): 752–755
https://doi.org/10.1021/ol203298r
pmid: 22264095
|
104 |
Zhang X H, Wang Z S, Cui Y, Koumura N, Furube A, Hara K. Organic sensitizers based on hexylthiophene-functionalized indolo[3,2-b]carbazole for efficient dye-sensitized solar cells. Journal of Physical Chemistry C, 2009, 113(30): 13409–13415
https://doi.org/10.1021/jp808536v
|
105 |
Paramasivam M, Chitumalla R K, Singh S P, Islam A, Han L Y, Rao V J, Bhanuprakash K. Tuning the photovoltaic performance of benzocarbazole-based sensitizers for dye-sensitized solar cells: a joint experimental and theoretical study of the influence of p-spacers. Journal of Physical Chemistry C, 2015, 119(30): 17053–17064
https://doi.org/10.1021/acs.jpcc.5b04629
|
106 |
Wu Z, An Z, Chen X, Chen P. Cyclic thiourea/urea functionalized triphenylamine-based dyes for high-performance dye-sensitized solar cells. Organic Letters, 2013, 15(7): 1456–1459
https://doi.org/10.1021/ol4001685
pmid: 23506212
|
107 |
Delcamp J H, Yella A, Holcombe T W, Nazeeruddin M K, Grätzel M. The molecular engineering of organic sensitizers for solar-cell applications. Angewandte Chemie International Edition, 2013, 52(1): 376–380
https://doi.org/10.1002/anie.201205007
pmid: 22927088
|
108 |
Joly D, Pellejà L, Narbey S, Oswald F, Meyer T, Kervella Y, Maldivi P, Clifford J N, Palomares E, Demadrille R. Metal-free organic sensitizers with narrow absorption in the visible for solar cells exceeding 10% efficiency. Energy & Environmental Science, 2015, 8(7): 2010–2018
https://doi.org/10.1039/C5EE00444F
|
109 |
Hardin B E, Snaith H J, McGehee M D. The renaissance of dye-sensitized solar cells. Nature Photonics, 2012, 6(3): 162–169 doi:10.1038/nphoton.2012.22
|
110 |
Cheng M, Yang X, Chen C, Zhao J, Zhang F, Sun L. Dye-sensitized solar cells based on hydroquinone/benzoquinone as bio-inspired redox couple with different counter electrodes. Physical Chemistry Chemical Physics, 2013, 15(36): 15146–15152
https://doi.org/10.1039/c3cp51980e
pmid: 23925069
|
111 |
Tian H N, Gabrielsson E, Lohse P W, Vlachopoulos N, Kloo L, Hagfeldt A, Sun L C. Development of an organic redox couple and organic dyes for aqueous dye-sensitized solar cells. Energy & Environmental Science, 2012, 5(12): 9752–9755
https://doi.org/10.1039/c2ee23263d
|
112 |
Bai Y, Yu Q, Cai N, Wang Y, Zhang M, Wang P. High-efficiency organic dye-sensitized mesoscopic solar cells with a copper redox shuttle. Chemical Communications, 2011, 47(15): 4376–4378
https://doi.org/10.1039/c1cc10454c
pmid: 21399826
|
113 |
Wang M, Chamberland N, Breau L, Moser J E, Humphry-Baker R, Marsan B, Zakeeruddin S M, Grätzel M. An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells. Nature Chemistry, 2010, 2(5): 385–389
https://doi.org/10.1038/nchem.610
pmid: 20414239
|
114 |
Sun Z, Liang M, Chen J. Kinetics of iodine-free redox shuttles in dye-Sensitized solar cells: interfacial recombination and dye regeneration. Accounts of Chemical Research, 2015, 48(6): 1541–1550
https://doi.org/10.1021/ar500337g
pmid: 26001106
|
115 |
Nusbaumer H, Moser J E, Zakeeruddin S M, Nazeeruddin M K, Grätzel M. CoII(dbbip)22+ Complex rivals tri-iodide/iodide redox mediator in dye-sensitized photovoltaic cells. Journal of Physical Chemistry B, 2001, 105(43): 10461–10464
https://doi.org/10.1021/jp012075a
|
116 |
Yum J H, Baranoff E, Kessler F, Moehl T, Ahmad S, Bessho T, Marchioro A, Ghadiri E, Moser J E, Yi C Y, Nazeeruddin M K, Grätzel M.A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials. Nature Communications, 2012, 3: 631
|
117 |
Kashif M K, Axelson J C, Duffy N W, Forsyth C M, Chang C J, Long J R, Spiccia L, Bach U. A new direction in dye-sensitized solar cells redox mediator development: in situ fine-tuning of the cobalt(II)/(III) redox potential through Lewis base interactions. Journal of the American Chemical Society, 2012, 134(40): 16646–16653
https://doi.org/10.1021/ja305897k
pmid: 22967268
|
118 |
Tsao H N, Comte P, Yi C, Grätzel M. Avoiding diffusion limitations in cobalt(III/II)-tris(2,2′-bipyridine)-based dye-sensitized solar cells by tuning the mesoporous TiO2 film properties. ChemPhysChem, 2012, 13(12): 2976–2981
https://doi.org/10.1002/cphc.201200435
pmid: 22855412
|
119 |
Yang J, Ganesan P, Teuscher J, Moehl T, Kim Y J, Yi C, Comte P, Pei K, Holcombe T W, Nazeeruddin M K, Hua J, Zakeeruddin S M, Tian H, Grätzel M. Influence of the donor size in D-p-A organic dyes for dye-sensitized solar cells. Journal of the American Chemical Society, 2014, 136(15): 5722–5730
https://doi.org/10.1021/ja500280r
pmid: 24655036
|
120 |
Zong X P, Liang M, Fan C R, Tang K, Li G, Sun Z, Xue S. Design of truxene-based organic dyes for high-efficiency dye-sensitized solar cells employing cobalt redox shuttle. Journal of Physical Chemistry C, 2012, 116(20): 11241–11250
https://doi.org/10.1021/jp301406x
|
121 |
Zong X, Liang M, Chen T, Jia J, Wang L, Sun Z, Xue S. Efficient iodine-free dye-sensitized solar cells employing truxene-based organic dyes. Chemical Communications, 2012, 48(53): 6645–6647
https://doi.org/10.1039/c2cc32926c
pmid: 22634582
|
122 |
Xia Q, Liang M, Tan Y L, Gao W X, Ouyang L Y, Ge G Y, Sun Z, Xue S. Engineering of the electron donor of triarylamine sensitizers for high-performance dye-sensitized solar cells. Organic Electronics, 2015, 17: 285–294
https://doi.org/10.1016/j.orgel.2014.12.026
|
123 |
Tsao H N, Yi C, Moehl T, Yum J H, Zakeeruddin S M, Nazeeruddin M K, Grätzel M. Cyclopentadithiophene bridged donor-acceptor dyes achieve high power conversion efficiencies in dye-sensitized solar cells based on the tris-cobalt bipyridine redox couple. ChemSusChem, 2011, 4(5): 591–594
https://doi.org/10.1002/cssc.201100120
pmid: 21557495
|
124 |
Tsao H N, Burschka J, Yi C Y, Kessler F, Nazeeruddin M K, Grätzel M. Influence of the interfacial charge-transfer resistance at the counter electrode in dye-sensitized solar cells employing cobalt redox shuttles. Energy & Environmental Science, 2011, 4(12): 4921–4924
https://doi.org/10.1039/c1ee02389f
|
125 |
Yella A, Humphry-Baker R, Curchod B F E, Astani N A, Teuscher J, Polander L E, Mathew S, Moser J E, Tavernelli I, Rothlisberger U, Grätzel M, Nazeeruddin M K, Frey J. Molecular engineering of a fluorene donor for dye-sensitized solar cells. Chemistry of Materials, 2013, 25(13): 2733–2739
https://doi.org/10.1021/cm401593b
|
126 |
Polander L E, Yella A, Teuscher J, Humphry-Baker R, Curchod B F E, Astani N A, Gao P, Moser J E, Tavernelli I, Rothlisberger U, Grätzel M, Nazeeruddin M K, Frey J. Unravelling the potential for dithienopyrrole sensitizers in dye-sensitized solar cells. Chemistry of Materials, 2013, 25(13): 2642–2648
https://doi.org/10.1021/cm401144j
|
127 |
Zhang X, Mao J, Wang D, Li X, Yang J, Shen Z, Wu W, Li J, Ågren H, Hua J. Comparative study on pyrido[3,4-b]pyrazine-based sensitizers by tuning bulky donors for dye-sensitized solar cells. ACS Applied Materials & Interfaces, 2015, 7(4): 2760–2771
https://doi.org/10.1021/am507824h
pmid: 25580622
|
128 |
Li X, Zhou Y, Chen J, Yang J, Zheng Z, Wu W, Hua J, Tian H. Stacked graphene platelet nanofibers dispersed in the liquid electrolyte of highly efficient cobalt-mediator-based dye-sensitized solar cells. Chemical Communications, 2015, 51(51): 10349–10352
https://doi.org/10.1039/C5CC02504D
pmid: 25998326
|
129 |
Yum J H, Holcombe T W, Kim Y, Rakstys K, Moehl T, Teuscher J, Delcamp J H, Nazeeruddin M K, Grätzel M. Blue-coloured highly efficient dye-sensitized solar cells by implementing the diketopyrrolopyrrole chromophore. Scientific Reports, 2013, 3: 2446
|
130 |
Yao Z, Zhang M, Wu H, Yang L, Li R, Wang P. Donor/acceptor indenoperylene dye for highly efficient organic dye-sensitized solar cells. Journal of the American Chemical Society, 2015, 137(11): 3799–3802
https://doi.org/10.1021/jacs.5b01537
pmid: 25742441
|
131 |
Kakiage K, Aoyama Y, Yano T, Oya K, Kyomen T, Hanaya M. Fabrication of a high-performance dye-sensitized solar cell with 12.8% conversion efficiency using organic silyl-anchor dyes. Chemical Communications, 2015, 51(29): 6315–6317
https://doi.org/10.1039/C5CC00464K
pmid: 25760960
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|