Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    0, Vol. Issue () : 318-326    https://doi.org/10.1007/s12200-013-0337-7
RESEARCH ARTICLE
Design and implementation of super-heterodyne nano-metrology circuits
Saeed OLYAEE(), Zahra DASHTBAN, Muhammad Hussein DASHTBAN
Nano-photonics and Optoelectronics Research Laboratory, Faculty of Electrical and Computer Engineering, Shahid Rajaee Teacher Training University, Lavizan, 16788-15811, Tehran, Iran
 Download: PDF(328 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The most important aim of nanotechnology development is to construct atomic-scale devices, and those atomic-scale devices are required to use some measurements that have ability to control and build in the range of these dimensions. A method based on super-heterodyne interferometers can be used to access the measurements in nano-scale. One of the most important limitations to increase the resolution of the displacement measurement is nonlinearity error. According to the base and measurement signals received by optical section of super-heterodyne interferometer, it is necessary for circuits to reconstruct and detect corresponding phase with target displacement. In this paper, we designed, simulated, and implemented the circuits required for electronic part of interferometer by complementary metal-oxide-semiconductor (CMOS) 0.5 μm technology. These circuits included cascade low-noise amplifiers (LNA) with 19.1 dB gain and 2.5 dB noise figure (NF) at 500 MHz frequency, band-pass filters with 500 MHz central frequency and 400 kHz bandwidth, double-balanced mixers with 233/0.6 μm ratio for metal-oxide-semiconductor field-effect transistors (MOSFETs), and low-pass filters with 300 kHz cutoff frequency. The experimental results show that the amplifiers have 19.41 dB gain and 2.7 dB noise factor, mixers have the ratio of radio frequency to local oscillator (RF/LO) range between 80 and 2500 MHz with intermediate frequency (IF) range between DC to 1000 MHz, and the digital phase measurement circuit based on the time-to-digital converter (TDC) has a nanosecond resolution.

Keywords super-heterodyne interferometer      nano-metrology      low-noise amplifier (LNA)      double-balanced mixer      phase measurement     
Corresponding Author(s): OLYAEE Saeed,Email:s_olyaee@srttu.edu   
Issue Date: 05 September 2013
 Cite this article:   
Saeed OLYAEE,Zahra DASHTBAN,Muhammad Hussein DASHTBAN. Design and implementation of super-heterodyne nano-metrology circuits[J]. Front Optoelec, 0, (): 318-326.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-013-0337-7
https://academic.hep.com.cn/foe/EN/Y0/V/I/318
Fig.1  Block diagram of nanometric displacement measurement electronic sections based on super-heterodyne method
Fig.2  Schematic of cascade LNA with source inductive degeneration
Fig.3  (a) Voltage gain versus frequency of cascade LNA; (b) minimum NF (NFmin) and NF with ohm (nf(2))
parameternoise factor (NF)/dBreverse transmission (S12) /dBgain (S21) /dB
predicted2.5-2820
simulated2.8-26.02119.1
ADL55362.7-22.6119.41
ADL55210.8-23.820.3
ADL56023.3-23.0820.25
Tab.1  Comparison between simulation results and characteristics of available chips in the frequency of 500 MHz
Fig.4  Third order band-pass Bessel-type filter
Fig.5  Schematic of designed Gilbert cell
Parameterunitcharacteristic
FrequencyMHZ300-700
noise figure (DSB)dB<10
voltage gaindB>8
power consumptionmW<100
source impedance?50
load impedance?500
IIP3dBm>20
voltage sourceV±2.5
Tab.2  Expected characteristics of suitable mixer
parametervalue
tail current6 mA
source degeneration impedance10 ?
mosfet gate width233 μm
mosfet gate length0.6 μm
load impedance500 ?
power supply2.5 V
Tab.3  Designing parameters used for simulation of Gilbert cell mixer
Fig.6  Frequency spectrum of mixer output and computing IIP3
1 dB compression pointIIP3RF to IF isolationLO to RF isolationLO to IF isolationconversion gain (at 500 MHz)
simulation24 dBm100.2 dB87.9 dB48.3 dB7.511 dB
ADL580113.3 dBm28.5 dBm-35 dBc-30 dBm-27 dBm7.5 dB
Tab.4  Comparison between simulation and practical results of mixer section
Fig.7  Third-order Bessel type low-pass filter
Fig.8  Output signal of mixer after passing through low-pass filter
Fig.9  (a) Schematic diagram; (b) TDC-GP1 connections in phase-meter section [26]
1 Schattenburg M L, Smith H I. The critical role of metrology in nanotechnology. SPIE Proceedings , 2001, 4608: 116–124
2 Burggraaf P. Optical lithography to 2000 and beyond. Solid State Technology , 1999, 42(2): 31-41
3 Lawall J, Kessler E. Michelson interferometry with 10 pm accuracy. Review of Scientific Instruments , 2000, 71(7): 2669-2676
doi: 10.1063/1.1150715
4 Olyaee S, Nejad M. Nonlinearity and frequency-path modelling of three-longitudinal-mode nanometric displacement measurement system. IET Optoelectronics , 2007, 1(5): 211-220
doi: 10.1049/iet-opt:20060107
5 Yokoyama T, Araki T, Yokoyama S, Suzuki N. A subnanometer heterodyne interferometric system with improved phase sensitivity using a three-longitudinal-mode He-Ne laser. Measurement Science and Technology , 2001, 12(2): 157-162
doi: 10.1088/0957-0233/12/2/305
6 Olyaee S, Hamedi S. A low-nonlinearity laser heterodyne interferometer with quadrupled resolution in the displacement measurement. Arabian Journal for Science and Engineering , 2011, 36(2): 279-286
doi: 10.1007/s13369-010-0017-5
7 Guo J H, Zhang Y, Shen S. Compensation of nonlinearity in a new optical heterodyne interferometer with doubled measurement resolution. Optics Communications , 2000, 184(1-4): 49-55
doi: 10.1016/S0030-4018(00)00934-2
8 Olyaee S, Nejad S M. Error analysis, design and modeling of an improved heterodyne nano-displacement interferometer. Iranian Journal of Electrical and Electronic Engineering , 2007, 3(3-4): 53-63
9 Quenelle R C. Nonlinearity in interferometric measurements. Hewlett-Parkard Journal , 1983, 34(10): 3-13
10 Sutton C M. Non-linearity in the length measurement using hetrodyne laser Michelson interferometery. Journal of Physics E, Scientific Instruments , 1987, 20(10): 1290-1292
doi: 10.1088/0022-3735/20/10/034
11 Cosijns S J A G, Haitjema H, Schellekens P H J. Modeling and verifying non-linearities in heterodyne displacement interferometry. Precision Engineering , 2002, 26(4): 448-455
doi: 10.1016/S0141-6359(02)00150-2
12 Badami V G, Patterson S R. A frequency domain method for the measurement of nonlinearity in heterodyne interferometry. Precision Engineering , 2000, 24(1): 41-49
doi: 10.1016/S0141-6359(99)00026-4
13 Olyaee S, Yoon T H, Hamedi S. Jones matrix analysis of frequency mixing error in three-longitudinal-mode laser heterodyne interferometer. IET Optoelectronics , 2009, 3(5): 215-224
doi: 10.1049/iet-opt.2009.0015
14 Li Z, Herrmann K, Pohlenz F. A neural network approach to correcting nonlinearity in optical interferometers. Measurement Science and Technology , 2003, 14(3): 376-381
doi: 10.1088/0957-0233/14/3/317
15 Heo G, Lee W, Choi S, Lee J, You K. Adaptive neural network approach for nonlinearity compensation in laser interferometer. Knowledge-Based Intelligent Information and Engineering Systems , 2007, 4694: 251-258
16 Olyaee S, Ebrahimpour R, Hamedi S. Modeling and compensation of periodic nonlinearity in two-mode interferometer using neural networks. Journal of the Institution of Electronics and Telecommunication Engineers , 2010, 56(2): 102-110
doi: 10.4103/0377-2063.63090
17 Baird K M. A new method in optical interferometry. Journal of the Optical Society of America , 1954, 44(1): 11-13
doi: 10.1364/JOSA.44.000011
18 Bruce C F, Hill R M. Wavelengths of krypton 86, mercury 198, and cadmium 114. Australian Journal of Physics , 1961, 14(1): 64-88
doi: 10.1071/PH610064
19 Peck E R, Obetz S W. Wavelength or length measurement by reversible fringe counting. Journal of the Optical Society of America , 1953, 43(6): 505-509
doi: 10.1364/JOSA.43.000505 pmid:13070113
20 Polster H D, Pastor J, Scott R M, Crane R, Langenbeck P H, Pilston R, Steinberg G. New developments in interferometry . Applied Optics , 1969, 8(3): 521-556
21 Lavan M J, Cadwallender W K, Deyoung T F. Heterodyne interferometer to determine relative optical phase changes. Review of Scientific Instruments , 1975, 46(5): 525-527
doi: 10.1063/1.1134264
22 Hariharan P. Optical Interferometry. 2nd ed. San Diego: Academic Press, 2003
23 Lee T H. The Design of CMOS Radio-Frequency Integrated Circuits. 2nd ed. Cambridge: Cambridge University Press, 2004
24 Demarest F C. High-resolution, high speed, low data age uncertainty, heterodyne displacement measuring interferometer electronics. Measurement Science and Technology , 1998, 9(7): 1024-1030
doi: 10.1088/0957-0233/9/7/003
25 Olyaee S, Hamedi S, Dashtban Z. Design of electronic sections for nano-displacement measuring system. Frontiers of Optoelectronics in China , 2010, 3(4): 376-381
doi: 10.1007/s12200-010-0112-y
26 TDC-GP1 manual, time-to-digital converter, http://www.acam.de
[1] Saeed OLYAEE, Samaneh HAMEDI, Zahra DASHTBAN. Design of electronic sections for nano-displacement measuring system[J]. Front Optoelec Chin, 2010, 3(4): 376-381.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed