Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2013, Vol. 6 Issue (4) : 386-412    https://doi.org/10.1007/s12200-013-0357-3
REVIEW ARTICLE
Review on one-dimensional ZnO nanostructures for electron field emitters
Meirong SUI1, Ping GONG1, Xiuquan GU2()
1. School of Medical Image, Xuzhou Medical College, Xuzhou 221004, China; 2. School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou 221116, China
 Download: PDF(2196 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The emission of electrons from the surface of a solid caused by a high electric field is called field emission (FE). Electron sources based on FE are used today in a wide range of applications, such as microwave traveling wave tubes, e-beam evaporators, mass spectrometers, flat panel of field emission displays (FEDs), and highly efficient lamps. Since the discovery of carbon nanotubes (CNTs) in 1991, much attention has been paid to explore the usage of these ideal one-dimensional (1D) nanomaterials as field emitters achieving high FE current density at a low electric field because of their high aspect ratio and “whisker-like” shape for optimum geometrical field enhancement. 1D metal oxide semiconductors, such as ZnO and WO3 possess high melting point and chemical stability, thereby allowing a higher oxygen partial pressure and poorer vacuum in FE applications. In addition, unlike CNTs, in which both semiconductor and metallic CNTs can co-exist in the as-synthesized products, it is possible to prepare 1D semiconductor nanostructures with a unique electronic property. Moreover, 1D semiconductor nanostructures generally have the advantage of a lower surface potential barrier than that of CNTs due to lower electron affinity and the conductivity could be enhanced by doping with certain elements. As a consequence, there has been increasing interest in the investigation of 1D metal oxide nanostructure as an appropriate alternative FE electron source to CNT for FE devices in the past few years. This paper provides a comprehensive review of the state-of-the-art research activities in the field. It mainly focuses on FE properties and applications of the most widely studied 1D ZnO nanostructures, such as nanowires (NWs), nanobelts, nanoneedles and nanotubes (NTs). We begin with the growth mechanism, and then systematically discuss the recent progresses on several kinds of important nano-structures and their FE characteristics and applications in details. Finally, it is concluded with the outlook and future research tendency in the area.

Keywords field emission (FE)      nanostructure      metal oxide     
Corresponding Author(s): GU Xiuquan,Email:xqgu@cumt.edu.cn   
Issue Date: 05 December 2013
 Cite this article:   
Meirong SUI,Ping GONG,Xiuquan GU. Review on one-dimensional ZnO nanostructures for electron field emitters[J]. Front Optoelec, 2013, 6(4): 386-412.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-013-0357-3
https://academic.hep.com.cn/foe/EN/Y2013/V6/I4/386
Fig.1  Schematic diagram of typical chemical vapor deposition (CVD) system
Fig.2  Schematic illustration of vapor- liquid-solid (VLS) NW growth mechanism. (a) Metal deposition; (b) metal NPs formation; (c) absorption and nucleation; (d) epitaxial growth. Adapted from: Li et al. (2004) []
Fig.3  Schematic representation of basic steps of the growth modes of wires with Au at the roots (a) and at the tips (b). Adapted from: Kim et al. (2008) []
Fig.4  Field emission scanning electron microscope (FESEM) photographs for (a) Au and (b) Cu catalyzed ZnO NW arrays synthesized on p-type Si (100) substrate. Adapted from: Li et al. (2004) []
Fig.5  Perpendicular growth of NRs on plane of ZnO microrods by a simple thermal evaporation process using Sn as catalyst. (a) 500 nm; (b) 200 nm; (c) 100 nm; (d) 30 nm. Adapted from: Gao et al. (2003) []
Fig.6  Variation of density (left-hand vertical axis) and width (right-hand vertical axis) of aligned ZnO NWs with the thickness of Au catalyst layer. Inset: Top-view SEM image of aligned ZnO NWs used for calculation, the sale bar represents 200 nm. Adapted from: Wang et al. (2007) []
Fig.7  (a) Cross-sectional FESEM image of the well aligned ZnO nanoneedle arrays; (b) FESEM image of the obvious growth steps observed in the experiments; (c) schematic plane of the growth model. Adapted from: Zhang et al. (2006) []
Fig.8  FE-SEM images of ZnO NTs. (a) Low-magnification top view; (b) one ZnO NT with single-wall; and (c) double-walls. Adapted from: Xu et al. (2005) []
Fig.9  RT PL spectra of ZnMgO NRs with varying in the range of 0-0.32. Inset shows the UV luminescence energy as a function of Mg contents. Adapted from: Lu et al. (2007) []
Fig.10  Schematic showing PLD synthesis apparatus. Laser energy is directed through a treated glass window to a pressed target. Vapors are released and re-condensed as 1D nanostructures nucleated on Au catalyst []
Fig.11  Wire length against diameter with (circles) and without (triangle) PEI added to the growth bath. Lines are least-square fits to the data, and the error bars represent one standard deviation. Adapted from: Law et al. (2005) []
Fig.12  ZnO NW array on a four-inch silicon wafer. At the center is a photograph of a coated wafer, surrounded by SEM images of the array at different location and magnifications. These images are representative of the entire surface. Scale bars, clockwise from the upper left: 2 μm, 1 μm, 500 nm and 200 nm. Adapted from: Greene et al. (2003) []
Fig.13  Schematic model of ZnO NW dye-sensitized cells. Light is incident through bottom electrode. Adapted from: Law et al. (2005) []
Fig.14  Transmission electron microscope (TEM) images of ZnO NRs synthesized via hydrothermal methods at 180°C. Adapted from: Yang et al. (2002) []
Fig.15  Schematic illustration of evolving morphologies of Zn- and O-terminated Zn-polar (0001) surfaces under the present hydrothermal growth conditions. Adapted from: Liu and Zeng (2003) []
Fig.16  SEM (a) and TEM (b) and HRTEM (c) images of ZnO NT arrays. The inset of (c) shows the corresponding electron diffraction patterns. Adapted from: Sun et al. (2006) []
Fig.17  Typical SEM images of ZnO NR arrays on Zn foil (a, b) and Ti substrate (c) as well as the corresponding energy dispersive spectroscopy (EDS) pattern (d). Adapted from: Wang et al. (2008) []
Fig.18  (a) TEM images of self-assembled 2 nm diameter ZnO NRs (inset: higher resolution image showing the oriented stacking); (b) selected area electron diffraction pattern of NRs. Adapted from: Yin et al. (2004) []
Fig.19  (a) SEM and (b) HRTEM characterization of cobalt-doped ZnO NWs. Cobalt content is about 11.34 atom. %. Adapted from: Yuhas et al. (2006) []
Fig.20  SEM images of (a, b) ZnO nanopillars and (c, d) nanowalls electro- deposited on InO-coated PET substrates. The insets in (a, c) show the corresponding photographs of the as-deposited samples, and the inset in (b) shows a magnified image depicting the hexagonal shape of the nanopillars. Adapted from: Pradhan et al. (2008) []
Fig.21  Schematic drawing of electrospinning apparatus. Adapted from: Wu and Pan (2006) []
Fig.22  SEM images of ZnO nanofibers. (a) Zinc acetate/ polyvinyl alcohol composite fibers with 50 wt% of zinc acetate; (b) calcined at 500°C for 6 h; (c) calcined at 500°C for 8 h; (d) calcined at 500°C for 10 h. Adapted from: Wu and Pan (2006) []
Fig.23  (a) FE-SEM image of the precursor fibers collected in random orientation; (b) ZnO nanofibers prepared by calcination of the precursor fibers at 500°C; (c) TEM image of a single ZnO nanofiber. Inset: the selected area electron diffraction pattern; (d) HRTEM image of the sample, indicating the polycrystalline structure of the calcined fiber. Adapted from: Wu et al. (2008) []
Fig.24  (a) Low-magnification image of aligned ZnO NTs; (b) tilted view of ZnO NT arrays. Adapted from: Shen et al. []
Fig.25  SEM images of In-doped ZnO NRs grown on p-GaN substrates with various magnifications and tilting angles. (a) 5 μm; (b) 1 μm; (c) 300 nm; (d) 200 nm. Adapted from: Zhou et al. (2008) []
Fig.26  Schematic sketch for the field emission measurements. Adapted from: Yang et al. (2005) []
Fig.27  Typical Fowler-Nordheim plot of the field emission current density. Adapted from: Jo et al. (2004) []
Fig.28  Experimental (plot) and exponential simulated (line) relationship between the emission current density and applied electric field in and plots. Adapted from: Liu et al. (2007) []
Fig.29  Field emission - curves from ZnO nanoneedle arrays at different anode-cathode distances: = 520 μm, and = 560 μm. Adapted from: Zhang et al. (2004) []
Fig.30  Characteristic of emission current via change of vacuum chamber. Adapted from: Zhang et al. (2004) []
Fig.31  (a) Patterned growth of high density ZnO NRs; (b) medium patterned density formed from each 0.2 μm via hole. Adapted from: Chang et al. (2005) []
Fig.32  (a) Representive SEM image of aligned ZnO NWs; insert: an SEM image of the FE testing condition; (b) TEM image of typical ZnO NWs; (c) corresponding electron diffraction pattern; (d) SEM image of the highest density ZnO NWs after FE testing; inset: an enlarged SEM image of NW bundles. Adapted from: Wang et al. (2007) []
Fig.33  SEM images of ZnO NR arrays (a) and nanocones (b). The inset in (a) and (b) exhibit the enlarged view of the NRs and nanocones. Adapted from: Ye et al. (2007) []
Fig.34  Typical SEM images of three different ZnO NR arrays. (a) Nanoneedle; (b) nanocavities; (c) bottle shaped. Adapted from: Zhao et al. (2005) []
Fig.35  Measured field emission current density of ZnO NWs grown on carbon cloth as function of macroscopic electric field. Adapted from: Banerjee et al. (2004) []
Fig.36  Field emission characteristic curves of as-grown and plasma-treated ZnO nanoneedle arrays at hydrogen flow rate of 200 sccm. Adapted from: Yoo et al. (2005) []
Fig.37  - plot of field emission from ZnO NRs: (A) as-grown; (B) annealing in O; (C) annealing in air and (D) annealing in NH Inset: the corresponding F-N plots. Adapted from: Zhao et al. (2006) []
Fig.38  Stability of emission current. Voltage was increased from 0 V to 1.18 kV within 84 s and then fixed at 1.18 kV. The inset showed the fluctuations of emission current. Adapted from: Li et al. (2004) []
ZnO emittersynthesis methodturn-on field/(V?μm-1)on field/(V?μm-1)βstabilitytesting timeand fluctuationRef.
NRsthermal evaporation3.611.230 min,<10%[148]
nanoscrewsthermal evaporation3.611.2 at 1.2 mA103930 min,<10%[149]
tetrapod-likethermal evaporation1.8 at 1 μA3.99108 h,<3%[147]
NTshydrothermal method7.0 at 0.1 μA17.841724 h,<10%[127]
microtubesmicrowave heating5.6 at 1 μA6.4 at 11 mA24 h,<10%[150]
Tab.1  Key performance parameters of some 1D ZnO nanostructures field emitters reported in the literature. Turn-on field and on field were obtained at current densities of 10 μA/cm and 10 mA/cm, respectively, unless otherwise stated
Fig.39  Illustration of field electron emission from a tip. Adapted from: Xu and Huq (2005) []
Fig.40  (a) SEM image of single ZnO NW grown on sharp Pt tip; (b) HRTEM image of a single ZnO NW. Inset shows the selective area electronic diffraction (SAED) pattern at the base of the NW. Zone axis of the diffraction pattern is deduced to be [02 ]. Adapted from: Yeong et al. (2007) []
morphologysubstrates(methods)turn-on field/(V?μm-1)on field/(V?μm-1)βRef.
nanosheets/ nanocombs/ nanowires/ nanobelts3.98.91600
Brass foils(thermal evaporation)3.87.64208[85]
3.06.94611
2.05.36720
[66]
ultralong nanobelts2.9 at 1 mA/cm2104-105
NWs[138]
Au sheets
(molten-assisted CVD)
nanoneedles/[150]
NRs/ nanopencilsPt tips
(electrochemical deposition)4.27.22350[127]
NTs6.48.2790
Fe-Co-Ni alloy7.511.31140[101]
(hydrothermal method)
nanoneedles7.0 at 0.1 mA/cm217.0 at 1 mA/cm2910151]
Cu plates[152]
NWs(hydrothermal method)3.0 at 0.1 mA/cm219.0 at 1 mA/cm28504 (L)
1581 (H)[105]
Zinc foils (self-source)
NRs(hydrothermal method)
Tungsten plates/ tips
NRs9.0 at 0.061 mA/ cm22.081 × 103
Aluminum sheets
(thermal evaporation)5.3850-1044
Zinc foils
(self-source)
Tab.2  Key performance parameters of 1D ZnO nanostructures prepared on various substrates reported in the literature. The turn-on field and on field were obtained at current densities of 10 μA/cm and 10 mA/cm, respectively
1 Ryu Y, Lee T S, Lubguban J A, White H W, Kim B J, Kim B J, Park Y S, Youn C J. Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes. Applied Physics Letters , 2006, 88(24): 241108-1–241108-3
doi: 10.1063/1.2210452
2 K?nenkamp R, Word R C, Godinez M. Ultraviolet electroluminescence from ZnO/polymer heterojunction light- emitting diodes . Nano Letters , 2005, 5(10): 2005–2008
pmid:16218727
3 Lim J H, Kang C K, Kim K K, Park I K, Hwang D K, Park S J. UV electroluminescence emission from ZnO light-emitting diodes grown by high-temperature radiofrequency sputtering. Advanced Materials , 2006, 18(20): 2720–2724
doi: 10.1002/adma.200502633
4 Zhu H, Shan C X, Li B H, Zhang J Y, Yao B, Zhang Z Z, Zhao D X, Shen D Z, Fan X W. Ultraviolet electroluminescence from MgZnO-based heterojunction light-emitting diodes. Journal of Physical Chemistry C , 2009, 113(7): 2980–2982
doi: 10.1021/jp8098768
5 Ryu Y R, Lubguban J A, Lee T S, White H W, Jeong T S, Youn C J, Kim B J. Excitonic ultraviolet lasing in ZnO-based light emitting devices. Applied Physics Letters , 2007, 90(13): 131115-1–131115-3
doi: 10.1063/1.2718516
6 Zhu H, Shan C X, Yao B, Li B H, Zhang J Y, Zhang Z Z, Zhao D X, Shen D Z, Fan X W, Lu Y M, Tang Z K. Ultralow-threshold laser realized in zinc oxide. Advanced Materials , 2009, 21(16): 1613–1617
7 Tang Z K, Wong G K L, Yu P, Kawasaki M, Ohtomo A, Koinuma H, Segawa Y. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films. Applied Physics Letters , 1998, 72(25): 3270–3272
doi: 10.1063/1.121620
8 Chu S, Olmedo M, Yang Z, Kong J, Liu J L. Electrically pumped ultraviolet ZnO diode lasers on Si. Applied Physics Letters , 2008, 93(18): 181106-1–181106-3
doi: 10.1063/1.3012579
9 Liu K W, Shen D Z, Shan C X, Zhang J Y, Yao B, Zhao D X, Lu Y M, Fan X W. Zn0.76Mg0.24O homojunction photodiode for ultraviolet detection. Applied Physics Letters , 2007, 91(20): 201106-1–201106-3
doi: 10.1063/1.2805816
10 Liao L, Lu H B, Shuai M, Li J C, Liu Y L, Liu C, Shen Z X, Yu T. A novel gas sensor based on field ionization from ZnO nanowires: moderate working voltage and high stability. Nanotechnology , 2008, 19(17): 175501–175505
doi: 10.1088/0957-4484/19/17/175501 pmid:21825672
11 Zhang D, Liu Z, Li C, Tang T, Liu X, Han S, Lei B, Zhou C. Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Letters , 2004, 4(10): 1919–1924
doi: 10.1021/nl0489283
12 Huang H, Tan O K, Lee Y C, Tran T D, Tse M S, Yao X. Semiconductor gas sensor based on tin oxide nanorods prepared by plasma-enhanced chemical vapor deposition with postplasma treatment. Applied Physics Letters , 2005, 87(16): 163123-1–163123-3
doi: 10.1063/1.2106006
13 Park J Y, Song D E, Kim S S. An approach to fabricating chemical sensors based on ZnO nanorod arrays. Nanotechnology , 2008, 19(10): 105503–105507
doi: 10.1088/0957-4484/19/10/105503 pmid:21817701
14 Chang S J, Hsueh T J, Chen I C, Huang B R. Highly sensitive ZnO nanowire CO sensors with the adsorption of Au nanoparticles. Nanotechnology , 2008, 19(17): 175502–175506
doi: 10.1088/0957-4484/19/17/175502 pmid:21825673
15 Niu S, Hu β Y, Wen β X, Zhou Y, Zhang β F, Lin β L, Wang β S, Wang β Z L, Enhanced performance of flexible ZnO nanowire based room-temperature oxygen sensors by piezotronic effect. Advanced Materials , 2013, 25(27): 3701–3706
doi: 10.1002/ adma. 201301262
16 Law J B K, Thong J T L. Improving the NH3 gas sensitivity of ZnO nanowire sensors by reducing the carrier concentration. Nanotechnology , 2008, 19(20): 205502–205506
doi: 10.1088/0957-4484/19/20/205502 pmid:21825738
17 Law M, Greene L E, Johnson J C, Saykally R, Yang P. Nanowire dye-sensitized solar cells. Nature , 2005, 4(6): 455–459
doi: 10.1038/nmat1387
18 Seow Z L S, Wong A S W, Thavasi V, Jose R, Ramakrishna S, Ho G W. Controlled synthesis and application of ZnO nanoparticles, nanorods and nanospheres in dye-sensitized solar cells. Nanotechnology , 2009, 20(4): 045604–045609
doi: 10.1088/0957-4484/20/4/045604 pmid:19417324
19 Jiang C Y, Sun X W, Tan K W, Lo G Q, Kyaw A K K, Kwong D L. High-bendability flexible dye-sensitized solar cell with a nanoparticle-modified ZnO-nanowire electrode. Applied Physics Letters , 2008, 92(14): 143101-1–143101-3
doi: 10.1063/1.2905271
20 Hsu Y F, Xi Y Y, Djuri?i? A B, Chan W K. ZnO nanorods for solar cells: hydrothermal growth versus vapor deposition. Applied Physics Letters , 2008, 92(13): 133507-1–133507-3
doi: 10.1063/1.2906370
21 Tsukazaki A, Ohtomo A, Onuma T, Ohtani M, Makino T, Sumiya M, Ohtani K, Chichibu S F, Fuke S, Segawa Y, Ohno H, Koinuma H, Kawasaki M. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nature Materials , 2005, 4(1): 42–46
doi: 10.1038/nmat1284
22 Xu W Z, Ye Z Z, Zeng Y J, Zhu L P, Zhao B H, Jiang L, Lu J G, He H P, Zhang S B. ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition. Applied Physics Letters , 2006, 88(17): 173506-1–173506-3
doi: 10.1063/1.2199588
23 Bian J M, Liu W F, Liang H W, Hu L Z, Sun J C, Luo Y M, Du G T. Room temperature electroluminescence from the n-ZnMgO/ZnO/p-ZnMgO heterojunction device grown by ultrasonic spray pyrolysis. Chemical Physics Letters , 2006, 430(1–3): 183–187
doi: 10.1016/j.cplett.2006.08.103
24 Zhang J Y, Li P J, Sun H, Shen X, Deng T S, Zhu K T, Zhang Q F, Wu J L. Ultraviolet electroluminescence from controlled arsenic-doped ZnO nanowire homojunctions. Applied Physics Letters , 2008, 93(2): 021116-1–021116-3
doi: 10.1063/1.2958230
25 Hsu Y F, Xi Y Y, Tam K H, Djuri?i? A B, Luo J M, Ling C C, Cheung C K, Ng A M C, Chan W K, Deng X, Beling C D, Fung S, Cheah K W, Fong P W K, Surya C C. Undoped p-type ZnO nanorods synthesized by a hydrothermal method. Advanced Functional Materials , 2008, 18(7): 1020–1030
26 Goldberger J, He R, Zhang Y F, Lee S K, Yan H Q, Choi H J, Yang P D. Single-crystal gallium nitride nanotubes. Nature , 2003, 422(6932): 599–602
doi: 10.1038/nature01551 pmid:12686996
27 Wang X D, Gao P X, Li J, Summers C J, Wang Z L. Rectangular porous ZnO-ZnS nanocables and ZnS nanotubes. Advanced Materials , 2002, 14(23 ): 1732–1735
28 Shoulders K R. Microelectronics using electron-beam-activated machining techniques. Advances in Computers , 1961, 2: 135–293
doi: 10.1016/S0065-2458(08)60142-4
29 Spindt C A. A thin-film field-emission cathode. Journal of Applied Physics , 1968, 39(7): 3504–3505
doi: 10.1063/1.1656810
30 Spindt C A, Brodie I, Humphrey L, Westerberg E R. Physical properties of thin-film field emission cathodes with molybdenum cones. Journal of Applied Physics , 1976, 47(12): 5248–5263
doi: 10.1063/1.322600
31 Spindt C A, Shoulders K R, Heynick L N. US Patents, 3755704, 1973
32 Xu N S, Huq S E. Novel cold cathode materials and applications. Materials Science and Engineering: R: Reports , 2005, 48(2–5): 47–189
doi: 10.1016/j.mser.2004.12.001
33 Iijima S. Helical microtubules of graphitic carbon. Nature , 1991, 354(6348): 56–58
doi: 10.1038/354056a0
34 Xu N S, Deng S Z, Chen J. Nanomaterials for field electron emission: preparation, characterization and application. Ultramicroscopy , 2003, 95(1–4): 19–28
doi: 10.1016/S0304-3991(02)00294-2 pmid:12535542
35 Fan S S, Chapline M G, Franklin N R, Tombler T W, Cassell A M, Dai H J. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science , 1999, 283(5401): 512–514
doi: 10.1126/science.283.5401.512 pmid:9915692
36 Heer W A D, Chatelain A, Ugarte D. A carbon nanotube field-emission electron source .Science , 1995, 270(5239 ): 1179–1180
doi: 10.1126/science.270.5239.1179
37 Rinzler A G, Hafner J H, Nikolaev P, Nordlander P, Colbert D T, Smalley R E, Lou L, Kim S G, Tománek D. Unraveling nanotubes: field emission from an atomic wire. Science , 1995, 269(5230): 1550–1553
doi: 10.1126/science.269.5230.1550 pmid:17789445
38 Saito Y, Uemura S. Field emission from carbon nanotubes and its application to electron sources. Carbon , 2000, 38(2): 169–182
doi: 10.1016/S0008-6223(99)00139-6
39 Saito Y, Uemura S, Hamaguchi K. Cathode ray tube lighting elements with carbon nanotube field emitters. Japanese Journal of Applied Physics , 1998, 37(Part 2, No. 3B ): L346–L348
doi: 10.1143/JJAP.37.L346
40 Pradhan D, Kumar M, Ando Y, Leung K T. One-dimensional and two-dimensional ZnO nanostructured materials on a plastic substrate and their field emission properties. Journal of Physical Chemistry C , 2008, 112(18): 7093–7096
doi: 10.1021/jp800799b
41 Greene L E, Law M, Goldberger J, Kim F, Johnson J C, Zhang Y F, Saykally R J, Yang P D. Low-temperature wafer-scale production of ZnO nanowire arrays. Angewandte Chemie International Edition , 2003, 42(26): 3031–3034
doi: 10.1002/anie.200351461
42 Kumar R T R, McGlynn E, Biswas M, Saunders R, Trolliard G, Soulestin B, Duclere J R, Mosnier J P, Henry M O. Growth of ZnO nanostructures on Au-coated Si: influence of growth temperature on growth mechanism and morphology. Journal of Applied Physics , 2008, 104(8): 084309–084319
doi: 10.1063/1.2996279
43 Kim D S, Scholz R, G?sele U, Zacharias M. Gold at the root or at the tip of ZnO nanowires: a model. Small , 2008, 4(10): 1615–1619
doi: 10.1002/smll.200800060 pmid:18770505
44 Chiu S P, Lin Y H, Lin J J. Electrical conduction mechanisms in natively doped ZnO nanowires. Nanotechnology , 2009, 20(1): 015203–015210
doi: 10.1088/0957-4484/20/1/015203 pmid:19417245
45 Hochbaum A I, Fan R, He R G, Yang P D. Controlled growth of Si nanowire arrays for device integration. Nano Letters , 2005, 5(3): 457–460
doi: 10.1021/nl047990x pmid:15755094
46 Zhou H J, Fallert J, Sartor J, Dietz R J B, Klingshirn C, Kalt H, Weissenberger D, Gerthsen D, Zeng H B, Cai W P. Ordered n-type ZnO nanorod arrays. Applied Physics Letters , 2008, 92(13): 132112-1–132112-3
doi: 10.1063/1.2907197
47 Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides. Science , 2001, 291(5510): 1947–1949
doi: 10.1126/science.1058120 pmid:11239151
48 Gao P X, Wang Z L. Self-assembled nanowire–nanoribbon junction arrays of ZnO. Journal of Physical Chemistry B , 2002, 106(49): 12653–12658
doi: 10.1021/jp0265485
49 Li S Y, Lin P, Lee C Y, Tseng T Y. Field emission and photofluorescent characteristics of zinc oxide nanowires synthesized by a metal catalyzed vapor-liquid-solid process. Journal of Applied Physics , 2004, 95(7): 3711–3716
doi: 10.1063/1.1655685
50 Levin I, Davydov A, Nikoobakht B, Sanford N, Mogilevsky P. Growth habits and defects in ZnO nanowires grown on GaN/sapphire substrates. Applied Physics Letters , 2005, 87(10): 103110-1–103110-3
doi: 10.1063/1.2041832
51 Kim D S, Ji R, Fan H J, Bertram F, Scholz R, Dadgar A, Nielsch K, Krost A, Christen J, G?sele U, Zacharias M. Laser-interference lithography tailored for highly symmetrically arranged ZnO nanowire arrays. Small , 2007, 3(1): 76–80
doi: 10.1002/smll.200600307 pmid:17294473
52 Gao P X, Ding Y, Wang Z L. Crystallographic orientation-aligned ZnO nanorods grown by a tin catalyst. Nano Letters , 2003, 3(9): 1315–1320
doi: 10.1021/nl034548q
53 Wang X D, Song J H, Summers C J, Ryou J H, Li P, Dupuis R D, Wang Z L. Density-controlled growth of aligned ZnO nanowires sharing a common contact: a simple, low-cost, and mask-free technique for large-scale applications. Journal of Physical Chemistry B , 2006, 110(15): 7720–7724
doi: 10.1021/jp060346h
54 Wang X D, Zhou J, Lao C S, Song J H, Xu N S, Wang Z L. In situ field emission of density-controlled ZnO nanowire arrays. Advanced Materials , 2007, 19(12): 1627–1631
doi: 10.1002/adma.200602467
55 Shen G Z, Bando Y, Liu B D, Golberg D, Lee C J. Characterization and field-emission properties of vertically aligned ZnO nanonails and nanopencils fabricated by a modified thermal-evaporation process. Advanced Functional Materials , 2006, 16(3): 410–416
doi: 10.1002/adfm.200500571
56 Fang F, Zhao D X, Shen D Z, Zhang J Y, Li B H. Synthesis of ordered ultrathin ZnO nanowire bundles on an indium-tin oxide substrate. Inorganic Chemistry , 2008, 47(2): 398–400
doi: 10.1021/ic7019236 pmid:18095676
57 Liao X, Zhang X, Li S. The effect of residual stresses in the ZnOβbuffer layer on the density of a ZnOβnanowire array. Nanotechnology , 2008, 19(22): 225313-1–225313-7
58 Hong J I, Bae, Wang Z L, Snyder R L. Room-temperature, texture-controlled growth of ZnO thin films and their application for growing aligned ZnOβnanowire arrays. Nanotechnology , 2009, 20(8): 085609-1–085609-5
pmid:19417457
59 Tseng Y K, Huang C J, Cheng H M, Lin I N, Liu K S, Chen I C. Characterization and field-emission properties of needle-like zinc oxide nanowires grown vertically on conductive zinc oxide films. Advanced Functional Materials , 2003, 13(10): 811–814
doi: 10.1002/adfm.200304434
60 Zhu Y W, Zhang H Z, Sun X C, Feng S Q, Xu J, Zhao Q, Xiang B, Wang R M, Yu D P. Efficient field emission from ZnO nanoneedle arrays. Applied Physics Letters , 2003, 83(1): 144–146
doi: 10.1063/1.1589166
61 Zhang Z X, Yuan H J, Zhou J J, Liu D F, Luo S D, Miao Y M, Gao Y, Wang J X, Liu L F, Song L, Xiang Y J, Zhao X W, Zhou W Y, Xie S S. Growth mechanism, photoluminescence, and field-emission properties of ZnO nanoneedle arrays. Journal of Physical Chemistry B , 2006, 110(17): 8566–8569
doi: 10.1021/jp0568632
62 Xu C X, Sun X W. Field emission from zinc oxide nanopins. Applied Physics Letters , 2003, 83(18): 3806–3808
doi: 10.1063/1.1625774
63 Liao L, Li J C, Liu D H, Liu C, Wang D F, Song W Z, Fu Q. Self-assembly of aligned ZnO nanoscrews: growth, configuration, and field emission. Applied Physics Letters , 2005, 86(8): 083106-1–083106-3
doi: 10.1063/1.1866504
64 Wang R C, Liu C P, Huang J L, Chen S J. Growth and field-emission properties of single-crystalline conic ZnO nanotubes. Nanotechnology , 2006, 17(3): 753–757
doi: 10.1088/0957-4484/17/3/023
65 Xu W Z, Ye Z Z, Ma D W, Lu H M, Zhu L P, Zhao B H, Yang X D, Xu Z Y. Quasi-aligned ZnO nanotubes grown on Si substrates. Applied Physics Letters , 2005, 87(9): 093110-1–093110-3
doi: 10.1063/1.2035868
66 Wang W Z, Zeng B Q, Yang J, Poudel B, Huang J Y, Naughton M J, Ren Z F. Aligned ultralong ZnO nanobelts and their enhanced field emission. Advanced Materials , 2006, 18(24): 3275–3278
doi: 10.1002/adma.200601274
67 He H P, Tang H P, Ye Z Z, Zhu L P, Zhao B H, Wang L, Li X H. Temperature-dependent photoluminescence of quasialigned Al-doped ZnO nanorods. Applied Physics Letters , 2007, 90(2): 023104-1–023104-3
doi: 10.1063/1.2429906
68 Lin S S, He H P, Ye Z Z, Zhao B H, Huang J Y. Temperature-dependent photoluminescence and photoluminescence excitation of aluminum monodoped and aluminum-indium dual-doped ZnO nanorods. Journal of Applied Physics , 2008, 104(11): 114307-1–114307-7
doi: 10.1063/1.3033560
69 He H P, Ye Z Z, Lin S S, Tang H P, Zhang Y Z, Zhu L P, Huang J Y, Zhao B H. Determination of the free exciton energy in ZnO nanorods from photoluminescence excitation spectroscopy. Journal of Applied Physics , 2007, 102(1): 013511-1–013511-4
doi: 10.1063/1.2752783
70 Lin S S, Tang H P, Ye Z Z, He H P, Zeng Y J, Zhao B H, Zhu L P. Synthesis of vertically aligned Al-doped ZnO nanorods array with controllable Al concentration. Materials Letters , 2008, 62(4): 603–606
doi: 10.1016/j.matlet.2007.06.012
71 Zhu L P, Li J S, Ye Z Z, He H P, Chen X J, Zhao B H. Photoluminescence of Ga-doped ZnO nanorods prepared by chemical vapor deposition. Optical Materials , 2008, 31(2): 237–240
doi: 10.1016/j.optmat.2008.03.015
72 Ahn C H, Han W S, Kong B H, Cho H K. Ga-doped ZnO nanorod arrays grown by thermal evaporation and their electrical behavior. Nanotechnology , 2009, 20(1): 015601-1–015601-7
doi: 10.1088/0957-4484/20/1/015601 pmid:19417255
73 Yuan G D, Zhang W J, Jie J S, Fan X, Tang J X, Shafiq I, Ye Z Z, Lee C S, Lee S T. Tunable n-type conductivity and transport properties of Ga-doped ZnO nanowire arrays. Advanced Materials , 2008, 20(1): 168–173
doi: 10.1002/adma.200701377
74 Xiang B, Wang P W, Zhang X Z, Dayeh S A, Aplin D P R, Soci C, Yu D P, Wang D L. Rational synthesis of p-type zinc oxide nanowire arrays using simple chemical vapor deposition. Nano Letters , 2007, 7(2): 323–328
doi: 10.1021/nl062410c pmid:17297995
75 Yuan G D, Zhang W J, Jie J S, Fan X, Zapien J A, Leung Y H, Luo L B, Wang P F, Lee C S, Lee S T. p-type ZnO nanowire arrays. Nano Letters , 2008, 8(8): 2591–2597
doi: 10.1021/nl073022t pmid:18624388
76 Lu J G, Zhang Y Z, Ye Z Z, Zeng Y J, Huang J Y, Wang L. Rational synthesis and tunable optical properties of quasialigned Zn1-xMgxO nanorods. Applied Physics Letters , 2007, 91(19): 193108-1–193108-3
doi: 10.1063/1.2806939
77 Zhi M, Zhu L, Ye Z, Wang F, Zhao B, Preparation and properties of ternary ZnMgO nanowires. The Journal of Physical Chemistry B , 2005, 109 (50): 23930–23934
doi: 10.1021/jp0552426
78 Wang F Z, Ye Z Z, Ma D W, Zhu L P, Zhuge F, He H P. Synthesis and characterization of quasi-aligned ZnCdO nanorods. Applied Physics Letters , 2005, 87(14): 143101-1–143101-3
doi: 10.1063/1.2076434
79 Liao L, Lu H B, Zhang L, Shuai M, Li J C, Liu C, Fu D J, Ren F. Effect of ferromagnetic properties in Al-doped Zn1–xCoxO nanowires synthesized by water-assistance reactive vapor deposition. Journal of Applied Physics , 2007, 102(11): 114307-1–114307-5
doi: 10.1063/1.2815629
80 Zhang X M, Zhang Y, Wang Z L, Mai W J, Gu Y D, Chu W S, Wu Z Y. Synthesis and characterization of Zn1-xMnxO nanowires. Applied Physics Letters , 2008, 92(16): 162102-1–162102-3
doi: 10.1063/1.2905274
81 Zhang X M, Mai W, Zhang Y, Ding Y, Wang Z L. Co-doped Y-shape ZnO nanostructures: synthesis, structure and properties. Solid State Communications , 2009, 149(7–8): 293–296
doi: 10.1016/j.ssc.2008.11.039
82 He J H, Lao C S, Chen L J, Davidovic D, Wang Z L. Large-scale Ni-doped ZnO nanowire arrays and electrical and optical properties. Journal of the American Chemical Society , 2005, 127(47): 16376–16377
doi: 10.1021/ja0559193 pmid:16305207
83 Xing G Z, Yi J B, Tao J G, Liu T, Wong L M, Zhang Z, Li G P, Wang S J, Ding J, Sum T C, Huan C H A, Wu T. Comparative study of room-temperature ferromagnetism in Cu-doped ZnO nanowires enhanced by structural inhomogeneity. Advanced Materials , 2008, 20(18): 3521–3527
doi: 10.1002/adma.200703149
84 Zha M Z, Calestani D, Zappettini A, Mosca R, Mazzera M, Lazzarini L, Zanotti L. Large-area self-catalyzed and selective growth of ZnO nanowires. Nanotechnology , 2008, 19(32): 325603-1–325603-6
doi: 10.1088/0957-4484/19/32/325603 pmid:21828816
85 Huo K F, Hu Y M, Fu J J, Wang X B, Chu P K, Hu Z, Chen Y. Direct and large-area growth of one-dimensional ZnO nanostructures from and on a brass substrate. Journal of Physical Chemistry C , 2007, 111(16): 5876–5881
doi: 10.1021/jp070135s
86 Gu X G, Huo K F, Qian G X, Fu J J, Chu P K. Temperature dependent photoluminescence from ZnO nanowires and nanosheets on brass substrate. Applied Physics Letters , 2008, 93(20): 203117-1–203117-3
doi: 10.1063/1.3033823
87 Morber J R, Ding Y, Haluska M S, Li Y, Liu J P, Wang Z L, Snyder R L. PLD-Assisted VLS growth of aligned ferrite nanorods, nanowires, and nanobelts-synthesis, and properties. Journal of Physical Chemistry B , 2006, 110(43): 21672–21679
doi: 10.1021/jp064484i
88 Lin S S, Hong J I, Song J H, Zhu Y, He H P, Xu Z, Wei Y G, Ding Y, Snyder R L, Wang Z L. Phosphorus doped Zn1-xMgxO nanowire arrays. Nano Letters , 2009, 9(11): 3877–3882
doi: 10.1021/nl902067a pmid:19757858
89 Vayssieres L, Keis K, Lindquist S E, Hagfeldt A. Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO. Journal of Physical Chemistry B , 2001, 105(17): 3350–3352
doi: 10.1021/jp010026s
90 Vayssieres L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Advanced Materials , 2003, 15(5): 464–466
doi: 10.1002/adma.200390108
91 Greene L E, Law M, Tan D H, Montano M, Goldberger J, Somorjai G, Yang P D. General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Letters , 2005, 5(7): 1231–1236
doi: 10.1021/nl050788p pmid:16178216
92 Greene L E, Yuhas B D, Law M, Zitoun D, Yang P D. Solution-grown zinc oxide nanowires. Inorganic Chemistry , 2006, 45(19): 7535–7543
doi: 10.1021/ic0601900 pmid:16961338
93 Choy J H, Jang E S, Won J H, Chung J H, Jang D J, King Y W. Soft solution route to directionally grown ZnO nanorod arrays on Si wafer; room-temperature ultraviolet laser. Advanced Materials , 2003, 15(22): 1911–1914
doi: 10.1002/adma.200305327
94 Govender K, Boyle D S, O’Brien P, Binks D, West D, Coleman D. Room-temperature lasing observed from ZnO nanocolumns grown by aqueous solution deposition. Advanced Materials , 2002, 14(17): 1221–1224
doi: 10.1002/1521-4095(20020903)14:17<1221::AID-ADMA1221>3.0.CO;2-1
95 Yang P, Yan H, Mao S, Russo R, Johnson J, Saykally R, Morris N, Pham J, He R, Choi H J. Controlled growth of ZnO nanowires and their optical properties. Advanced Materials , 2002, 12(5): 323–331
96 Liu B, Zeng H C. Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. Journal of the American Chemical Society , 2003, 125: 4403–4431
97 Sun Y, Riley D J, Ashfold M N R. Mechanism of ZnO nanotube growth by hydrothermal methods on ZnO film-coated Si substrates. Journal of Physical Chemistry B , 2006, 110(31): 15186–15192
doi: 10.1021/jp062299z
98 Sun Y, Fuge G M, Fox N A, Riley D J, Ashfold M N R. Synthesis of aligned arrays of ultrathin ZnO nanotubes on a Si wafer coated with a thin ZnO Film. Advanced Materials , 2005, 17(20): 2477–2481
doi: 10.1002/adma.200500726
99 Sun Y, Ndifor-Angwafora N G, Rileya D J, Ashfold M N R. Synthesis and photoluminescence of ultra-thin ZnO nanowire/nanotube arrays formed by hydrothermal growth. Chemical Physics Letters , 2006, 431(4–6): 352–357
doi: 10.1016/j.cplett.2006.09.100
100 She G W, Zhang X H, Shi W S, Fan X, Chang J C, Lee C S, Lee S T, Liu C H. Controlled synthesis of oriented single-crystal ZnO nanotube arrays on transparent conductive substrates. Applied Physics Letters , 2008, 92(5): 053111-1–053111-3
doi: 10.1063/1.2842386
101 Liu J P, Xu C X, Zhu G P, Li X, Cui Y P, Yang Y, Sun X W. Hydrothermally grown ZnO nanorods on self-source substrate and their field emission. Journal of Physics D, Applied Physics , 2007, 40(7): 1906–1909
102 Wang Y X, Li X Y, Lu G, Quan X, Chen G H. Highly oriented 1-D ZnO nanorod arrays on zinc foil: Direct growth from substrate, optical properties and photocatalytic activities. Journal of Physical Chemistry C , 2008, 112(19): 7332–7336
doi: 10.1021/jp7113175
103 Lu C H, Qi L M, Yang J H, Tang L, Zhang D Y, Ma J M. Hydrothermal growth of large-scale micropatterned arrays of ultralong ZnO nanowires and nanobelts on zinc substrate. Chemical Communications (Cambridge) , 2006, (33): 3551–3553
doi: 10.1039/b608151g
104 Yang H Q, Song Y Z, Li L, Ma J H, Chen D C, Mai S L, Zhao H. Large-scale growth of highly oriented ZnO nanorod arrays in the Zn-NH3·H2O hydrothermal system. Crystal Growth & Design , 2008, 8(3): 1039–1043
doi: 10.1021/cg060890f
105 Dev A, Kar S, Chakrabarti S, Chaudhuri S. Optical and field emission properties of ZnO nanorod arrays synthesized on zinc foils by the solvothermal route. Nanotechnology , 2006, 17(5): 1533–1540
doi: 10.1088/0957-4484/17/5/061
106 Yin M, Wu C K, Lou Y B, Burda C, Koberstein J T, Zhu Y, O’Brien S. Copper oxide nanocrystals. Journal of the American Chemical Society , 2005, 127(26): 9506–9511
doi: 10.1021/ja050006u pmid:15984877
107 Yahus B D, Yang P D. Nanowire-based all-oxide solar cells . Journal of the American Chemical Society , 2009, 131(10): 3756–3761
doi: 10.1021/ja8095575 pmid:19275263
108 Yin M, O’Brien S. Synthesis of monodisperse nanocrystals of manganese oxides. Journal of the American Chemical Society , 2003, 125(34): 10180–10181
doi: 10.1021/ja0362656 pmid:12926934
109 Yin M, Gu Y, Kuskovsky I L, Andelman T, Zhu Y, Neumark G F, O’Brien S. Zinc oxide quantum rods. Journal of the American Chemical Society , 2004, 126(20): 6206–6207
doi: 10.1021/ja031696+ pmid:15149198
110 Yuhas B D, Zitoun D O, Pauzauskie P J, He R, Yang P D. Transition-metal doped zinc oxide nanowires. Angewandte Chemie International Edition , 2006, 45(3): 420–423
doi: 10.1002/anie.200503172
111 Liang W J, Yuhas B D, Yang P D. Magnetotransport in Co-doped ZnO nanowires. Nano Letters , 2009, 9(2): 892–896
doi: 10.1021/nl8038184 pmid:19170557
112 Wu H, Pan W. Preparation of zinc oxide nanofibers by electrospinning. Journal of the American Ceramic Society , 2006, 89(2): 699–701
doi: 10.1111/j.1551-2916.2005.00735.x
113 Pradhan D, Leung K T. Vertical growth of two-dimensional zinc oxide nanostructures on ITO-coated glass: effects of deposition temperature and deposition time. Journal of Physical Chemistry C , 2008, 112(5): 1357–1364
doi: 10.1021/jp076890n
114 Inamdar A I, Mujawar S H, Ganesan V, Patil P S. Surfactant-mediated growth of nanostructured zinc oxide thin films via electrodeposition and their photoelectrochemical performance. Nanotechnology , 2008, 19(32): 325706-1–325706-7
doi: 10.1088/0957-4484/19/32/325706 pmid:21828828
115 Rakhshani A E. Optical and electrical characterization of well-aligned ZnO rods electrodeposited on stainless steel foil. Applied Physics A, Materials Science & Processing , 2008, 92(2): 303–308
doi: 10.1007/s00339-008-4526-y
116 Chen J, Aé L, Aichele C, Lux-Steiner M C. High internal quantum efficiency ZnO nanorods prepared at low temperature. Applied Physics Letters , 2008, 92(16): 161906-1–161906-3
doi: 10.1063/1.2910769-3
117 Elias J, Tena-Zaera R, Wang G Y, Lévy-Clément C. Conversion of ZnO nanowires into nanotubes with tailored dimensions. Chemistry of Materials , 2008, 20(21): 6633–6637
doi: 10.1021/cm801131t
118 Xu L F, Liao Q, Zhang J P, Ai X C, Xu D S. Single-crystalline ZnO nanotube arrays on conductive glass substrates by selective disolution of electrodeposited ZnO nanorods. Journal of Physical Chemistry C , 2007, 111(12): 4539–4552
119 Siddheswaran R, Sankar R, Babu M R, Rathnakumari M, Jayavel R, Murugakoothan P, Sureshkumar P. Preparation and characterization of ZnO nanofibers by electrospinning. Crystal Research and Technology , 2006, 41(5): 446–449
doi: 10.1002/crat.200510603
120 Liu H Q, Yang J X, Liang J H, Huang Y X, Tang C Y. ZnO nanofiber and nanoparticle synthesized through electrospinning and their photocatalytic activity under visible light. Journal of the American Ceramic Society , 2008, 91(4): 1287–1291
doi: 10.1111/j.1551-2916.2008.02299.x
121 Wu H, Lin D D, Zhang R, Pan W. ZnO nanofiber field-effect transistor assembled by electrospinning. Journal of the American Ceramic Society , 2008, 91(2): 656–659
doi: 10.1111/j.1551-2916.2007.02162.x
122 Wang W, Huang H M, Li Z Y, Zhang H N, Wang Y, Zheng W, Wang C. Zinc oxide nanofiber gas sensors via electrospinning. Journal of the American Ceramic Society , 2008, 91(11): 3817–3819
doi: 10.1111/j.1551-2916.2008.02765.x
123 Viswanathamurthi P, Bhattarai N, Kim H Y, Lee D R. The photoluminescence properties of zinc oxide nanofibres prepared by electrospinning. Nanotechnology , 2004, 15(3): 320–323
doi: 10.1088/0957-4484/15/3/015
124 Keller F, Hunter M S, Robinson D L. Structural features of oxide coatings on aluminum. Journal of the Electrochemical Society , 1953, 100(9): 411–419
doi: 10.1149/1.2781142
125 Martinson A B F, Elam J W, Hupp J T, Pellin M J. ZnO nanotube based dye-sensitized solar cells. Nano Letters , 2007, 7(8): 2183–2187
doi: 10.1021/nl070160+ pmid:17602535
126 Shen X P, Yuan A H, Hu Y M, Jiang Y, Xu Z, Hu Z. Fabrication, characterization and field emission properties of large-scale uniform ZnO nanotube arrays. Nanotechnology , 2005, 16(10): 2039–2043
doi: 10.1088/0957-4484/16/10/009 pmid:20817967
127 Wei A, Sun X W, Xu C X, Dong Z L, Yu M B, Huang W. Stable field emission from hydrothermally grown ZnO nanotubes. Applied Physics Letters , 2006, 88(21): 213102-1–213102-3
doi: 10.1063/1.2206249
128 Unalan H E, Hiralal P, Rupesinghe N, Dalal S, Milne W I, Amaratunga G A J. Rapid synthesis of aligned zinc oxide nanowires. Nanotechnology , 2008, 19(25): 255608-1–255608-5
doi: 10.1088/0957-4484/19/25/255608 pmid:21828660
129 Lommens P, Thourhout D V, Smet P F, Poelman D, Hens Z. Electrophoretic deposition of ZnO nanoparticles, from micropatterns to substrate coverage. Nanotechnology , 2008, 19(24): 245301-1–245301-6
doi: 10.1088/0957-4484/19/24/245301 pmid:21825806
130 Yang H Y, Lau S P, Yu S F, Huang L, Tanemura M, Tanaka J, Okita T, Hng H H. Field emission from zinc oxide nanoneedles on plastic substrates. Nanotechnology , 2005, 16(8): 1300–1303
doi: 10.1088/0957-4484/16/8/053
131 Zhang H Z, Wang R M, Zhu Y W. Effect of adsorbates on field-electron emission from ZnO nanoneedle arrays. Journal of Applied Physics , 2004, 96(1): 624–628
doi: 10.1063/1.1757653
132 Jo S H, Banerjee D, Ren Z F. Field emission of zinc oxide nanowires grown on carbon cloth. Applied Physics Letters , 2004, 85(8): 1407–1409
doi: 10.1063/1.1784543
133 Ham H, Shen G Z, Cho J H, Lee T J, Seo S H, Lee C J. Vertically aligned ZnO nanowires produced by a catalyst-free thermal evaporation method and their field emission properties. Chemical Physics Letters , 2005, 404(1–3): 69–73
doi: 10.1016/j.cplett.2005.01.084
135 Xu C X, Sun X W, Fang S N, Yang X H, Yu M B, Zhu G P, Cui Y P. Electrochemically deposited zinc oxide arrays for field emission. Applied Physics Letters , 2006, 88(16): 161921-1–161921-3
doi: 10.1063/1.2198095
136 Minami T, Miyata T, Yamamoto T. Work function of transparent conducting multicomponent oxide thin films prepared by magnetron sputtering. Surface and Coatings Technology , 1998, 108–109: 583–587
doi: 10.1016/S0257-8972(98)00592-1
137 Xu C X, Sun X W, Chen B J. Field emission from gallium-doped zinc oxide nanofiber array. Applied Physics Letters , 2004, 84(9): 1540–1542
doi: 10.1063/1.1651328
138 Yeong K S, Maung K H, Thong J T L. The effects of gas exposure and UV illumination on field emission from individual ZnO nanowires. Nanotechnology , 2007, 18(18): 185608-1–185608-4
doi: 10.1088/0957-4484/18/18/185608
139 Ye C H, Bando Y, Fang X S, Shen G Z, Golberg D. Enhanced field emission performance of ZnO nanorods by two alternative approaches. Journal of Physical Chemistry C , 2007, 111(34): 12673–12676
doi: 10.1021/jp073928n
140 Chang C C, Chang C S. Site-specific growth to control ZnO nanorods density and related field emission properties. Solid State Communications , 2005, 135(11–12): 765–768
doi: 10.1016/j.ssc.2005.04.009
141 Liu J, She J C, Deng S Z, Chen J, Xu N S. Ultrathin seed-layer for tuning density of ZnO nanowire arrays and their field emission characteristics. Journal of Physical Chemistry C , 2008, 112(31): 11685–11690
doi: 10.1021/jp8015563
142 Zhao Q, Zhang H Z, Zhu Y W, Feng S Q, Sun X C, Xu J, Yu D P. Morphological effects on the field emission of ZnO nanorod arrays. Applied Physics Letters , 2005, 86(20): 203115-1–203115-3
doi: 10.1063/1.1931831
143 Banerjee D, Jo S H, Ren Z F. Enhanced field emission of ZnO nanowires. Advanced Materials , 2004, 16(22): 2028–2032
doi: 10.1002/adma.200400629
144 Yoo J, Park W I, Yi G C. Electrical and optical characteristics of hydrogen-plasma treated ZnO nanoneedles. Journal of Vacuum Science & Technology B Microelectronics and Nanometer Structures , 2005, 23(5): 1970–1974
doi: 10.1116/1.2037667
145 Li C, Fang G J, Yuan L Y, Liu N S, Li J, Li D J, Zhao X Z. Field electron emission improvement of ZnO nanorod arrays after Ar plasma treatment. Applied Surface Science , 2007, 253(20): 8748–8482
146 Zhao Q, Xu X Y, Song X F, Zhang X Z, Yu D P, Li C P, Guo L. Enhanced field emission from ZnO nanorods via thermal annealing in oxygen. Applied Physics Letters , 2006, 88(3): 033102-1–033102-3
doi: 10.1063/1.2166483
147 Li Q H, Wan Q, Chen Y J, Wang T H, Jia H B, Yu D P. Stable field emission from tetrapod-like ZnO nanostructures. Applied Physics Letters , 2004, 85(4): 636–638
doi: 10.1063/1.1773613
148 Liao L, Li J C, Wang D F, Liu C, Fu Q. Electron field emission studies on ZnO nanowires. Materials Letters , 2005, 59(19–20): 2465–2467
doi: 10.1016/j.matlet.2005.03.014
149 Cheng J P, Zhang Y J, Guo R Y. Field emission properties of ZnO single crystal microtubes. Journal of Applied Physics , 2009, 105(3): 0234103-1–0234103-4
150 Liu J P, Huang X T, Li Y Y, Ji X X, Li Z K, He X, Sun F L. Vertically aligned 1D ZnO nanostructures on bulk alloy substrates: direct solution synthesis, photoluminescence, and field emission. Journal of Physical Chemistry C , 2007, 111(13): 4990–4997
doi: 10.1021/jp067782o
151 Dong L F, Jiao J, Tuggle D W, Petty J M, Elliff S A, Coulter M. ZnO nanowires formed on tungsten substrates and their electron field emission properties. Applied Physics Letters , 2003, 82(7): 1096–1098
doi: 10.1063/1.1554477
152 Umar A, Kim S H, Lee H, Lee N, Hahn Y B. Optical and field emission properties of single-crystalline aligned ZnO nanorods grown on aluminium substrate. Journal of Physics D, Applied Physics , 2008, 41(6): 065412-1–065412-6
doi: 10.1088/0022-3727/41/6/065412
153 Huang M H, Mao S, Feick H, Yan H, Wu Y Y, Kind H, Weber E, Russo R, Yang P D. Room-temperature ultraviolet nanowire nanolasers. Science , 2001, 292(5523): 1897–1899
doi: 10.1126/science.1060367 pmid:11397941
[1] Zhicheng LIU,Hao SUN,Leijun YIN,Yongzhuo LI,Jianxing ZHANG,Cun-Zheng NING. Single crystal erbium compound nanowires as high gain material for on-chip light source applications[J]. Front. Optoelectron., 2016, 9(2): 312-317.
[2] Jiarui HUANG, Feng TANG, Cuiping GU, Chengcheng SHI, Muheng ZHAI. Flower-like CuO hierarchical nanostructures: synthesis, characterization, and property[J]. Front Optoelec, 2012, 5(4): 429-434.
[3] Chuyan CHEN, Qing LI, Yiying WANG, Yuan LI, Xiaolin ZHONG. Room temperature synthesis of flower-like CuS nanostructures under assistance of ionic liquid[J]. Front Optoelec Chin, 2011, 4(2): 150-155.
[4] Wei CHEN, Shihe YANG. Dye-sensitized solar cells based on ZnO nanotetrapods[J]. Front Optoelec Chin, 2011, 4(1): 24-44.
[5] Shujuan ZHUO, Mingwang SHAO, Liang CHENG, Ronghui QUE, Dorthy Duo Duo MA, Shuit Tong LEE. Surface-enhanced fluorescence from copper nanoparticles on silicon nanowires[J]. Front Optoelec Chin, 2011, 4(1): 114-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed