Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2015, Vol. 8 Issue (4) : 379-393    https://doi.org/10.1007/s12200-014-0423-5
REVIEW ARTICLE
Optical approaches in study of nanocatalysis with single-molecule and single-particle resolution
Kun LI,Weiwei QIN,Yan XU,Tianhuan PENG,Di LI()
Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
 Download: PDF(3328 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Studying the activity of individual nanocatalysts, especially with high spatiotemporal resolution of single-molecule and single-turnover scale, is essential for the understanding of catalytic mechanism and the designing of effective catalysts. Several approaches have been developed to monitor the catalytic reaction on single catalysts. In this review, we summarized the updated progresses of several new spectroscopic and microscopic approaches, including single-molecule fluorescence microscopy, surface-enhanced Raman spectroscopy, surface plasmon resonance microscopy and X-ray microscopy, for the study of single-molecule and single-particle catalysis.

Keywords nanocatalysis      single-molecule fluorescence      surface-enhanced Raman      localized surface plasmon resonance      X-ray     
Corresponding Author(s): Di LI   
Online First Date: 11 April 2014    Issue Date: 24 November 2015
 Cite this article:   
Kun LI,Weiwei QIN,Yan XU, et al. Optical approaches in study of nanocatalysis with single-molecule and single-particle resolution[J]. Front. Optoelectron., 2015, 8(4): 379-393.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-014-0423-5
https://academic.hep.com.cn/foe/EN/Y2015/V8/I4/379
Fig.1  

Chemical imaging methods that are available or will become available in the future (in italics), for the investigation of catalysts at the single-particle level. The abbreviations of the included characterization techniques are as follows. Vibrational spectroscopy methods (green): DORS, diagonally offset Raman spectroscopy; IRM, infrared microscopy; CRM, confocal Raman microscopy, CARS, coherent anti-Stokes Raman spectroscopy; SRS, stimulated Raman scattering microscopy; SNIM, scanning near-field infrared microscopy; TERS, tip-enhanced Raman spectroscopy. X-ray spectroscopy methods (blue): μ-XAFS, microbeam X-ray absorption fine structure spectroscopy; XRM, X-ray microscopy; XMT, X-ray microtomography; XAS-SNOM, X-ray absorption spectroscopy/scanning near-field optical microscopy. Electronic spectroscopy methods (red): UV-VIS, ultraviolet–visible microscopy; CFM, confocal fluorescence microscopy; 2PFM, two-photon fluorescence microscopy; CLM, chemiluminescence microscopy; PR-DFM, plasmon resonance dark field microscopy; STED, stimulated emission depletion microscopy; STORM, stochastic optical reconstruction microscopy; FPALM, fluorescence photo-activated localization microscopy; SSIM, saturated structured illumination microscopy. X-ray diffraction methods (black): TEDDI, tomographic energy-dispersive diffraction imaging; XRD-CT, X-ray diffraction-computed tomography; μ-XRD/AFM, microbeam X-ray diffraction/atomic force microscopy. Miscellaneous (orange): MRI, magnetic resonance imaging; IFM, interference microscopy; MSI, mass spectrometry imaging; SHG, second-harmonic generation microscopy; MS-SNOM, mass spectrometry/scanning near-field optical microscopy. Adapted with permission from Ref. [4], copyright 2012 Nature Publishing Group

Fig.2  

Single-molecule detection of fluorogenic catalytic reactions on single Au nanoparticles. (a) Experimental design using fluorogenic catalytic reaction, surface immobilized catalysts, and total internal reflection fluorescence microscopy; (b) schematic of a prism-based TIRFM and a microfluidic reactor cell made between a slide and a coverslip; (c) a typical image (~18 μm× 18 μm) of fluorescent products on 6 nm pseudospherical Au nanoparticles during catalysis taken at 100 ms per frame; (d) a segment of the fluorescence trajectory from the fluorescence spot marked by the arrow in (c); (e) schematic diagram of the kinetic mechanism of catalysis. Aum: Au nanoparticle; S: resazurin; P: resorufin. Aum–Sn represents an Au nanoparticle having n adsorbed substrate molecules. The fluorescence state (on or off) of the nanoparticle is indicated at each reaction stage. Figures 2(a) to 2(d) were reproduced with permission from Ref. [23], copyright 2008 Nature Publishing Group. Figure 2(e) was reproduced with permission from Ref. [29], copyright 2010 American Chemical Society

Fig.3  

Super-resolution imaging of single particle nanocatalysis. (a) Fluorogenic reaction converts a nonfluorescent molecule (Amplex Red) to a fluorescent molecule (resorufin) catalyzed by individual Au@mSiO2 nanorods; (b) fluorescence intensity versus time trajectory for a single Au@mSiO2 nanorod under catalysis, and wide-field fluorescence pattern during one burst (red circled); (c) subparticle distribution of reactivity map obtained for a gold nanorod. Segmentation of the nanorods clearly shows substrate concentration-dependent turnover rate in different regions; (d) spatially resolved activity quantitation on single Au@mSiO2 nanoplates; (e) and (f) spatial distributions of fluorescence spots collected from TiO2 (e) and 14 nm Au/TiO2 particles (f); (g) super-resolution reaction map showing a single needle like ZSM-22 particle; (h) reconstructed fluorescence maps showing the location of the active intergrowth region on a ZSM-5 crystal; (i) turnover mapping on Ti-MCM-41 particles. Figures 3(a), 3(b), and 3(c) were reproduced with permission from Ref. [34], copyright 2012 Nature Publishing Group. Figure 3(d) was reproduced with permission from Ref. [35], Figs. 3(e) and 3(f) were reproduced with permission from Ref. [40], copyright 2013 American Chemical Society. Figures 3(g), 3(h), and 3(i) were reproduced with permission from Refs. [41,42], copyright 2009, 2010 Wiley

Fig.4  

Surface/tip-enhanced Raman spectroscopy for single particle nanocatalysis. (a) Scanning electron microscopy (SEM) image of a single roughened Ag microsphere with nanostructured surface; (b) photo of the gas flow cell for monitoring the surface plasmon assisted catalysis reaction under controlled gas atmosphere; (c) structure schematic of the designed reaction station; (d) time-dependent SERS spectra of 4ATP under continuous 633 nm laser excitation taken every 1 min, and series shown as a color-coded intensity map; (e) schematic overview of the experimental setup for TERS combining confocal Raman and atomic force microscope; (f) time-dependent SERS spectra acquired with the setup for TERS of the photocatalytic reduction of pNTP (top spectrum) to DMAB, and series shown as a color-coded intensity map. Figures 4(a), 4(b), and 4(c) were reproduced with permission from Ref. [54], copyright 2013 Nature Publishing Group. Figures 4(d) and 4(e) were reproduced with permission from Ref. [55], copyright 2012 Nature Publishing Group

Fig.5  

Direct localized surface plasmon resonance monitoring of single plasmonic particle nanocatalysis. (a) Scanning electron microscopy (SEM) image of gold decahedron; (b) scattering spectra of nanoparticle vs. time after electron injection by ascorbate ions; (c) spectral shift as a function of time for the catalysis reaction and for the control experiment; (d) evolution of the scattering spectrum of a gold nanorod (aspect ratio 2.87) after a growth solution is added; (e) spectral shift as a function of time for a growth experiment and for a control experiment; (f) predicted surface plasmon position versus aspect ratio for hemispherically capped rods based on DDA results; (g) scheme for the reduction of 4-nitrophenol, catalyzed by gold nanoparticles with ammonia borane as the reducing agent. AB: ammonia borane; 4-NIP: 4-nitrophenol; 4-AMP: 4-aminophenol; (h) and (i) evolution of the scattering spectrum and surface plasmon band position of a gold nanorod (h) and an elongated tetrahexahedral gold nanoparticle (i) as a function of time after introducing water, 10 mM1)<FootNote>

1 mM= 1 mmol?L–6

</FootNote> AB, and 0.1 mM 4-NIP, sequentially. Figures 5(a) to 5(f) were reproduced with permission from Ref. [67], copyright 2008 Nature Publishing Group. Figures 5(g), 5(h), and 5(i) were reproduced with permission from Ref. [69], copyright 2013 Royal Society of Chemistry

Fig.6  

Indirect localized surface plasmon resonance monitoring of single particle nanocatalysis. (a) Hydrogen adsorption on a Pd nanoparticle induces minimal wavelength shift in its scattering spectrum; (b) hydrogen sensing with a plasmonic Au nanostructure-antenna enhanced single Pd nanoparticle; (c) maximum scattering wavelength from the Au antenna depends on hydrogen partial pressure; (d) surface plasmon resonance electrochemical current density images of a single Pt nanoparticle at different potentials; (e) cyclic voltammogram of the same single nanoparticle obtained by integrating the current density over the images in (d); (f) typical cyclic voltammograms of three different single Pt nanoparticles. Figures 6(a) to 6(c) were reproduced with permission from Ref. [72], Figs. 6(d) to 6(f) were reproduced with permission from Ref. [77], copyright 2011, 2012 Nature Publishing Group

Fig.7  

Indirect localized surface plasmon resonance monitoring of single particle nanocatalysis. (a) Hydrogen adsorption on a Pd nanoparticle induces minimal wavelength shift in its scattering spectrum; (b) hydrogen sensing with a plasmonic Au nanostructure-antenna enhanced single Pd nanoparticle; (c) maximum scattering wavelength from the Au antenna depends on hydrogen partial pressure; (d) surface plasmon resonance electrochemical current density images of a single Pt nanoparticle at different potentials; (e) cyclic voltammogram of the same single nanoparticle obtained by integrating the current density over the images in (d); (f) typical cyclic voltammograms of three different single Pt nanoparticles. Figures 6(a) to 6(c) were reproduced with permission from Ref. [72], Figs. 6(d) to 6(f) were reproduced with permission from Ref. [77], copyright 2011, 2012 Nature Publishing Group

1 Bell  A T. The impact of nanoscience on heterogeneous catalysis. Science, 2003, 299(5613): 1688–1691
https://doi.org/10.1126/science.1083671 pmid: 12637733
2 Weckhuysen  B M. Chemical imaging of spatial heterogeneities in catalytic solids at different length and time scales. Angewandte Chemie International Edition, 2009, 48(27): 4910–4943
https://doi.org/10.1002/anie.200900339 pmid: 19536746
3 Weckhuysen  B M. Preface: recent advances in the in-situ characterization of heterogeneous catalysts. Chemical Society Reviews, 2010, 39(12): 4557–4559
https://doi.org/10.1039/c0cs90031a
4 Buurmans  I L C, Weckhuysen  B M. Heterogeneities of individual catalyst particles in space and time as monitored by spectroscopy. Nature Chemistry, 2012, 4(11): 873–886
https://doi.org/10.1038/nchem.1478 pmid: 23089861
5 Cordes  T, Blum  S A. Opportunities and challenges in single-molecule and single-particle fluorescence microscopy for mechanistic studies of chemical reactions. Nature Chemistry, 2013, 5(12): 993–999
https://doi.org/10.1038/nchem.1800 pmid: 24256861
6 Wang  W, Tao  N. Detection, counting, and imaging of single nanoparticles. Analytical Chemistry, 2014, 86(1): 2–14
https://doi.org/10.1021/ac403890n pmid: 24328222
7 Gellman  A J, Shukla  N. Nanocatalysis: more than speed. Nature Materials, 2009, 8(2): 87–88
https://doi.org/10.1038/nmat2363 pmid: 19165207
8 Murzin  D Y. Nanokinetics for nanocatalysis. Catalysis Science & Technology, 2011, 1(3): 380–384
https://doi.org/10.1039/c0cy00084a
9 Zhang  S, Nguyen  L, Zhu  Y, Zhan  S, Tsung  C K, Tao  F F. In-situ studies of nanocatalysis. Accounts of Chemical Research, 2013, 46(8): 1731–1739
https://doi.org/10.1021/ar300245g pmid: 23618394
10 Tao  A R, Habas  S, Yang  P D. Shape control of colloidal metal nanocrystals. Small, 2008, 4(3): 310–325
https://doi.org/10.1002/smll.200701295
11 Xia  Y, Xiong  Y, Lim  B, Skrabalak  S E. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angewandte Chemie International Edition, 2009, 48(1): 60–103
https://doi.org/10.1002/anie.200802248 pmid: 19053095
12 Langille  M R, Personick  M L, Zhang  J, Mirkin  C A. Defining rules for the shape evolution of gold nanoparticles. Journal of the American Chemical Society, 2012, 134(35): 14542–14554
https://doi.org/10.1021/ja305245g pmid: 22920241
13 Cox  J T, Zhang  B. Nanoelectrodes: recent advances and new directions. Annual Review of Analytical Chemistry, 2012, 5(1): 253–272
https://doi.org/10.1146/annurev-anchem-062011-143124 pmid: 22524228
14 Ebejer  N, Güell  A G, Lai  S C S, McKelvey  K, Snowden  M E, Unwin  P R. Scanning electrochemical cell microscopy: a versatile technique for nanoscale electrochemistry and functional imaging. Annual Review of Analytical Chemistry, 2013, 6(1): 329–351
https://doi.org/10.1146/annurev-anchem-062012-092650 pmid: 23560932
15 Lu  H P, Xun  L, Xie  X S. Single-molecule enzymatic dynamics. Science, 1998, 282(5395): 1877–1882
https://doi.org/10.1126/science.282.5395.1877 pmid: 9836635
16 Edman  L, Foldes-Papp  Z, Wennmalm  S, Rigler  R. The fluctuating enzyme: a single molecule approach. Chemical Physics, 1999, 247(1): 11–22
https://doi.org/10.1016/S0301-0104(99)00098-1
17 Paige  M F, Fromm  D P, Moerner  W E. Biomolecular applications of single-molecule measurements: kinetics and dynamics of a single enzyme reaction. Proceedings-Society of Photo-Optical Instrumentation Engineers, 2002, 4634: 92–103
18 Velonia  K, Flomenbom  O, Loos  D, Masuo  S, Cotlet  M, Engelborghs  Y, Hofkens  J, Rowan  A E, Klafter  J, Nolte  R J M, de Schryver  F C. Single-enzyme kinetics of CALB-catalyzed hydrolysis. Angewandte Chemie International Edition, 2005, 44(4): 560–564
https://doi.org/10.1002/anie.200460625 pmid: 15619259
19 English  B P, Min  W, van Oijen  A M, Lee  K T, Luo  G, Sun  H, Cherayil  B J, Kou  S C, Xie  X S. Ever-fluctuating single enzyme molecules: Michaelis-Menten equation revisited. Nature Chemical Biology, 2006, 2(2): 87–94
https://doi.org/10.1038/nchembio759 pmid: 16415859
20 Smiley  R D, Hammes  G G. Single molecule studies of enzyme mechanisms. Chemical Reviews, 2006, 106(8): 3080–3094
https://doi.org/10.1021/cr0502955 pmid: 16895319
21 Roeffaers  M B J, Sels  B F, Uji-I  H, de Schryver  F C, Jacobs  P A, de Vos  D E, Hofkens  J. Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting. Nature, 2006, 439(7076): 572–575
https://doi.org/10.1038/nature04502 pmid: 16452976
22 Naito  K, Tachikawa  T, Fujitsuka  M, Majima  T. Real-time single-molecule imaging of the spatial and temporal distribution of reactive oxygen species with fluorescent probes: Applications to TiO2 photocatalysts. Journal of Physical Chemistry C, 2008, 112(4): 1048–1059
https://doi.org/10.1021/jp076335l
23 Xu  W, Kong  J S, Yeh  Y T E, Chen  P. Single-molecule nanocatalysis reveals heterogeneous reaction pathways and catalytic dynamics. Nature Materials, 2008, 7(12): 992–996
https://doi.org/10.1038/nmat2319 pmid: 18997774
24 Janssen  K P F, de Cremer  G, Neely  R K, Kubarev  A V, Van Loon  J, Martens  J A, de Vos  D E, Roeffaers  M B J, Hofkens  J. Single molecule methods for the study of catalysis: from enzymes to heterogeneous catalysts. Chemical Society Reviews, 2014, 43(4): 990–1006
https://doi.org/10.1039/c3cs60245a pmid: 24085063
25 Chen  P, Zhou  X, Andoy  N M, Han  K S, Choudhary  E, Zou  N, Chen  G, Shen  H. Spatiotemporal catalytic dynamics within single nanocatalysts revealed by single-molecule microscopy. Chemical Society Reviews, 2014, 43(4): 1107–1117
https://doi.org/10.1039/c3cs60215j pmid: 24045786
26 Tachikawa  T, Majima  T. Single-molecule, single-particle approaches for exploring the structure and kinetics of nanocatalysts. Langmuir, 2012, 28(24): 8933–8943
https://doi.org/10.1021/la300177h pmid: 22324887
27 Chen  P, Xu  W L, Zhou  X C, Panda  D, Kalininskiy  A. Single-nanoparticle catalysis at single-turnover resolution. Chemical Physics Letters, 2009, 470(4–6): 151–157
https://doi.org/10.1016/j.cplett.2009.01.060
28 Xu  W, Kong  J S, Chen  P. Probing the catalytic activity and heterogeneity of Au-nanoparticles at the single-molecule level. Physical Chemistry Chemical Physics, 2009, 11(15): 2767–2778
https://doi.org/10.1039/b820052a pmid: 19421535
29 Zhou  X, Xu  W, Liu  G, Panda  D, Chen  P. Size-dependent catalytic activity and dynamics of gold nanoparticles at the single-molecule level. Journal of the American Chemical Society, 2010, 132(1): 138–146
https://doi.org/10.1021/ja904307n pmid: 19968305
30 Chen  P, Zhou  X, Shen  H, Andoy  N M, Choudhary  E, Han  K S, Liu  G, Meng  W. Single-molecule fluorescence imaging of nanocatalytic processes. Chemical Society Reviews, 2010, 39(12): 4560–4570
https://doi.org/10.1039/b909052p pmid: 20886166
31 Xu  W, Shen  H, Kim  Y J, Zhou  X, Liu  G, Park  J, Chen  P. Single-molecule electrocatalysis by single-walled carbon nanotubes. Nano Letters, 2009, 9(12): 3968–3973
https://doi.org/10.1021/nl900988f pmid: 19366213
32 Han  K S, Liu  G, Zhou  X, Medina  R E, Chen  P. How does a single Pt nanocatalyst behave in two different reactions? A single-molecule study. Nano Letters, 2012, 12(3): 1253–1259
https://doi.org/10.1021/nl203677b pmid: 22276804
33 Xu  W, Jain  P K, Beberwyck  B J, Alivisatos  A P. Probing redox photocatalysis of trapped electrons and holes on single Sb-doped titania nanorod surfaces. Journal of the American Chemical Society, 2012, 134(9): 3946–3949
https://doi.org/10.1021/ja210010k pmid: 22339157
34 Zhou  X, Andoy  N M, Liu  G, Choudhary  E, Han  K S, Shen  H, Chen  P. Quantitative super-resolution imaging uncovers reactivity patterns on single nanocatalysts. Nature Nanotechnology, 2012, 7(4): 237–241
https://doi.org/10.1038/nnano.2012.18 pmid: 22343380
35 Andoy  N M, Zhou  X, Choudhary  E, Shen  H, Liu  G, Chen  P. Single-molecule catalysis mapping quantifies site-specific activity and uncovers radial activity gradient on single 2D nanocrystals. Journal of the American Chemical Society, 2013, 135(5): 1845–1852
https://doi.org/10.1021/ja309948y pmid: 23320465
36 Zhou  X C, Choudhary  E, Andoy  N M, Zou  N M, Chen  P. Scalable parallel screening of catalyst activity at the single-particle level and subdiffraction resolution. Acs Catalysis, 2013, 3(7): 1448–1453
https://doi.org/10.1021/cs400277a
37 Tachikawa  T, Yamashita  S, Majima  T. Evidence for crystal-face-dependent TiO2 photocatalysis from single-molecule imaging and kinetic analysis. Journal of the American Chemical Society, 2011, 133(18): 7197–7204
https://doi.org/10.1021/ja201415j pmid: 21495637
38 Bian  Z F, Tachikawa  T, Kim  W, Choi  W, Majima  T. Superior electron transport and photocatalytic abilities of metal-nanoparticle-loaded TiO2 superstructures. Journal of Physical Chemistry C, 2012, 116(48): 25444–25453
https://doi.org/10.1021/jp309683f
39 Wang  N, Tachikawa  T, Majima  T. Single-molecule, single-particle observation of size-dependent photocatalytic activity in Au/TiO2 nanocomposites. Chemical Science, 2011, 2(5): 891–900
https://doi.org/10.1039/c0sc00648c
40 Tachikawa  T, Yonezawa  T, Majima  T. Super-resolution mapping of reactive sites on titania-based nanoparticles with water-soluble fluorogenic probes. ACS Nano, 2013, 7(1): 263–275
https://doi.org/10.1021/nn303964v pmid: 23215155
41 Roeffaers  M B J, de Cremer  G, Libeert  J, Ameloot  R, Dedecker  P, Bons  A J, Bückins  M, Martens  J A, Sels  B F, de Vos  D E, Hofkens  J. Super-resolution reactivity mapping of nanostructured catalyst particles. Angewandte Chemie International Edition, 2009, 48(49): 9285–9289
https://doi.org/10.1002/anie.200904944 pmid: 19890928
42 de Cremer  G, Roeffaers  M B J, Bartholomeeusen  E, Lin  K, Dedecker  P, Pescarmona  P P, Jacobs  P A, de Vos  D E, Hofkens  J, Sels  B F. High-resolution single-turnover mapping reveals intraparticle diffusion limitation in Ti-MCM-41-catalyzed epoxidation. Angewandte Chemie International Edition, 2010, 49(5): 908–911
https://doi.org/10.1002/anie.200905039 pmid: 20029861
43 Nie  S, Emory  S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 1997, 275(5303): 1102–1106
https://doi.org/10.1126/science.275.5303.1102 pmid: 9027306
44 Kneipp  K, Wang  Y, Kneipp  H, Perelman  L T, Itzkan  I, Dasari  R, Feld  M S. Single molecule detection using surface-enhanced Raman scattering (SERS). Physical Review Letters, 1997, 78(9): 1667–1670
https://doi.org/10.1103/PhysRevLett.78.1667
45 Brus  L. Noble metal nanocrystals: plasmon electron transfer photochemistry and single-molecule Raman spectroscopy. Accounts of Chemical Research, 2008, 41(12): 1742–1749
https://doi.org/10.1021/ar800121r pmid: 18783255
46 Stiles  P L, Dieringer  J A, Shah  N C, Van Duyne  R P. Surface-enhanced Raman spectroscopy. Annual Review of Analytical Chemistry, 2008, 1(1): 601–626
https://doi.org/10.1146/annurev.anchem.1.031207.112814 pmid: 20636091
47 Sonntag  M D, Klingsporn  J M, Zrimsek  A B, Sharma  B, Ruvuna  L K, Van Duyne  R P. Molecular plasmonics for nanoscale spectroscopy. Chemical Society Reviews, 2014, 43(4): 1230–1247
https://doi.org/10.1039/c3cs60187k pmid: 23982428
48 Bailo  E, Deckert  V. Tip-enhanced Raman scattering. Chemical Society Reviews, 2008, 37(5): 921–930
https://doi.org/10.1039/b705967c pmid: 18443677
49 Pettinger  B. Single-molecule surface- and tip-enhanced Raman spectroscopy. Molecular Physics, 2010, 108(16): 2039–2059
https://doi.org/10.1080/00268976.2010.506891
50 Kim  H, Kosuda  K M, Van Duyne  R P, Stair  P C. Resonance Raman and surface- and tip-enhanced Raman spectroscopy methods to study solid catalysts and heterogeneous catalytic reactions. Chemical Society Reviews, 2010, 39(12): 4820–4844
https://doi.org/10.1039/c0cs00044b pmid: 20957272
51 Sonntag  M D, Klingsporn  J M, Garibay  L K, Roberts  J M, Dieringer  J A, Seideman  T, Scheidt  K A, Jensen  L, Schatz  G C, Van Duyne  R P. Single-molecule tip-enhanced Raman spectroscopy. Journal of Physical Chemistry C, 2012, 116(1): 478–483
https://doi.org/10.1021/jp209982h
52 Kang  L, Xu  P, Zhang  B, Tsai  H, Han  X, Wang  H L. Laser wavelength- and power-dependent plasmon-driven chemical reactions monitored using single particle surface enhanced Raman spectroscopy. Chemical Communications, 2013, 49(33): 3389–3391
https://doi.org/10.1039/c3cc40732b pmid: 23440353
53 Kang  L L, Xu  P, Chen  D T, Zhang  B, Du  Y C, Han  X J, Li  Q, Wang  H L. Amino acid-assisted synthesis of hierarchical silver microspheres for single particle surface-enhanced Raman spectroscopy. Journal of Physical Chemistry C, 2013, 117(19): 10007–10012
https://doi.org/10.1021/jp400572z
54 Xu  P, Kang  L, Mack  N H, Schanze  K S, Han  X, Wang  H L. Mechanistic understanding of surface plasmon assisted catalysis on a single particle: cyclic redox of 4-aminothiophenol. Scientific Reports, 2013, 3: 2997
pmid: 24141289
55 van Schrojenstein Lantman  E M, Deckert-Gaudig  T, Mank  A J G, Deckert  V, Weckhuysen  B M. Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. Nature Nanotechnology, 2012, 7(9): 583–586
https://doi.org/10.1038/nnano.2012.131 pmid: 22902959
56 Sun  M, Zhang  Z, Zheng  H, Xu  H. In-situ plasmon-driven chemical reactions revealed by high vacuum tip-enhanced Raman spectroscopy. Scientific Reports, 2012, 2: 647
pmid: 22970339
57 Willets  K A, Van Duyne  R P. Localized surface plasmon resonance spectroscopy and sensing. Annual Review of Physical Chemistry, 2007, 58(1): 267–297
https://doi.org/10.1146/annurev.physchem.58.032806.104607 pmid: 17067281
58 Henry  A I, Bingham  J M, Ringe  E, Marks  L D, Schatz  G C, Van Duyne  R P. Correlated structure and optical property studies of plasmonic nanoparticles. Journal of Physical Chemistry C, 2011, 115(19): 9291–9305
https://doi.org/10.1021/jp2010309
59 Ringe  E, Sharma  B, Henry  A I, Marks  L D, Van Duyne  R P. Single nanoparticle plasmonics. Physical Chemistry Chemical Physics, 2013, 15(12): 4110–4129
https://doi.org/10.1039/c3cp44574g pmid: 23420338
60 Anker  J N, Hall  W P, Lyandres  O, Shah  N C, Zhao  J, Van Duyne  R P. Biosensing with plasmonic nanosensors. Nature Materials, 2008, 7(6): 442–453
https://doi.org/10.1038/nmat2162 pmid: 18497851
61 Stewart  M E, Anderton  C R, Thompson  L B, Maria  J, Gray  S K, Rogers  J A, Nuzzo  R G. Nanostructured plasmonic sensors. Chemical Reviews, 2008, 108(2): 494–521
https://doi.org/10.1021/cr068126n pmid: 18229956
62 Zheng  X, Liu  Q, Jing  C, Li  Y, Li  D, Luo  W, Wen  Y, He  Y, Huang  Q, Long  Y T, Fan  C. Catalytic gold nanoparticles for nanoplasmonic detection of DNA hybridization. Angewandte Chemie International Edition, 2011, 50(50): 11994–11998
https://doi.org/10.1002/anie.201105121 pmid: 21998071
63 Liu  Q, Jing  C, Zheng  X, Gu  Z, Li  D, Li  D W, Huang  Q, Long  Y T, Fan  C. Nanoplasmonic detection of adenosine triphosphate by aptamer regulated self-catalytic growth of single gold nanoparticles. Chemical Communications, 2012, 48(77): 9574–9576
https://doi.org/10.1039/c2cc34632j pmid: 22871726
64 Shi  L, Jing  C, Ma  W, Li  D W, Halls  J E, Marken  F, Long  Y T. Plasmon resonance scattering spectroscopy at the single-nanoparticle level: real-time monitoring of a click reaction. Angewandte Chemie International Edition, 2013, 52(23): 6011–6014
https://doi.org/10.1002/anie.201301930 pmid: 23616358
65 Li  K, Qin  W, Li  F, Zhao  X, Jiang  B, Wang  K, Deng  S, Fan  C, Li  D. Nanoplasmonic imaging of latent fingerprints and identification of cocaine. Angewandte Chemie International Edition, 2013, 52(44): 11542–11545
https://doi.org/10.1002/anie.201305980 pmid: 24038830
66 Langhammer  C, Larsson  E M. Nanoplasmonic in situ spectroscopy for catalysis applications. Acs Catalysis, 2012, 2(9): 2036–2045
https://doi.org/10.1021/cs300423a
67 Novo  C, Funston  A M, Mulvaney  P. Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy. Nature Nanotechnology, 2008, 3(10): 598–602
https://doi.org/10.1038/nnano.2008.246 pmid: 18838998
68 Herrmann  L O, Baumberg  J J. Watching single nanoparticles grow in real time through supercontinuum spectroscopy. Small, 2013, 9(22): 3743–3747
https://doi.org/10.1002/smll.201300958 pmid: 23650155
69 Eo  M, Baek  J, Song  H D, Lee  S, Yi  J. Quantification of electron transfer rates of different facets on single gold nanoparticles during catalytic reactions. Chemical Communications, 2013, 49(45): 5204–5206
https://doi.org/10.1039/c3cc41627e pmid: 23632784
70 Larsson  E M, Langhammer  C, Zorić  I, Kasemo  B. Nanoplasmonic probes of catalytic reactions. Science, 2009, 326(5956): 1091–1094
https://doi.org/10.1126/science.1176593 pmid: 19933104
71 Langhammer  C, Larsson  E M, Kasemo  B, Zorić  I. Indirect nanoplasmonic sensing: ultrasensitive experimental platform for nanomaterials science and optical nanocalorimetry. Nano Letters, 2010, 10(9): 3529–3538
https://doi.org/10.1021/nl101727b pmid: 20718400
72 Liu  N, Tang  M L, Hentschel  M, Giessen  H, Alivisatos  A P. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nature Materials, 2011, 10(8): 631–636
https://doi.org/10.1038/nmat3029 pmid: 21572410
73 Tang  M L, Liu  N, Dionne  J A, Alivisatos  A P. Observations of shape-dependent hydrogen uptake trajectories from single nanocrystals. Journal of the American Chemical Society, 2011, 133(34): 13220–13223
https://doi.org/10.1021/ja203215b pmid: 21793566
74 Seo  D, Park  G, Song  H. Plasmonic monitoring of catalytic hydrogen generation by a single nanoparticle probe. Journal of the American Chemical Society, 2012, 134(2): 1221–1227
https://doi.org/10.1021/ja2093663 pmid: 22176153
75 Tittl  A, Yin  X, Giessen  H, Tian  X D, Tian  Z Q, Kremers  C, Chigrin  D N, Liu  N. Plasmonic smart dust for probing local chemical reactions. Nano Letters, 2013, 13(4): 1816–1821
pmid: 23458121
76 Shan  X, Patel  U, Wang  S, Iglesias  R, Tao  N. Imaging local electrochemical current via surface plasmon resonance. Science, 2010, 327(5971): 1363–1366
https://doi.org/10.1126/science.1186476 pmid: 20223983
77 Shan  X, Díez-Pérez  I, Wang  L, Wiktor  P, Gu  Y, Zhang  L, Wang  W, Lu  J, Wang  S, Gong  Q, Li  J, Tao  N. Imaging the electrocatalytic activity of single nanoparticles. Nature Nanotechnology, 2012, 7(10): 668–672
https://doi.org/10.1038/nnano.2012.134 pmid: 22922540
78 Frenkel  A I, Rodriguez  J A, Chen  J G G. Synchrotron techniques for in situ catalytic studies: capabilities, challenges, and opportunities. Acs Catalysis, 2012, 2(11): 2269–2280
https://doi.org/10.1021/cs3004006
79 Bordiga  S, Groppo  E, Agostini  G, van Bokhoven  J A, Lamberti  C. Reactivity of surface species in heterogeneous catalysts probed by in situ X-ray absorption techniques. Chemical Reviews, 2013, 113(3): 1736–1850
https://doi.org/10.1021/cr2000898 pmid: 23444971
80 Beale  A M, Jacques  S D M, Weckhuysen  B M. Chemical imaging of catalytic solids with synchrotron radiation. Chemical Society Reviews, 2010, 39(12): 4656–4672
https://doi.org/10.1039/c0cs00089b pmid: 20978688
81 de Smit  E, Swart  I, Creemer  J F, Hoveling  G H, Gilles  M K, Tyliszczak  T, Kooyman  P J, Zandbergen  H W, Morin  C, Weckhuysen  B M, de Groot  F M F. Nanoscale chemical imaging of a working catalyst by scanning transmission X-ray microscopy. Nature, 2008, 456(7219): 222–225
https://doi.org/10.1038/nature07516 pmid: 19005551
82 Tada  M, Ishiguro  N, Uruga  T, Tanida  H, Terada  Y, Nagamatsu  S, Iwasawa  Y, Ohkoshi  S. μ-XAFS of a single particle of a practical NiOx/Ce2Zr2Oy catalyst. Physical Chemistry Chemical Physics, 2011, 13(33): 14910–14913
https://doi.org/10.1039/c1cp20895k pmid: 21655569
83 Chao  W, Fischer  P, Tyliszczak  T, Rekawa  S, Anderson  E, Naulleau  P. Real space soft X-ray imaging at 10 nm spatial resolution. Optics Express, 2012, 20(9): 9777–9783
https://doi.org/10.1364/OE.20.009777 pmid: 22535070
84 Hell  S W. Toward fluorescence nanoscopy. Nature Biotechnology, 2003, 21(11): 1347–1355
https://doi.org/10.1038/nbt895 pmid: 14595362
85 Hess  S T, Girirajan  T P K, Mason  M D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophysical Journal, 2006, 91(11): 4258–4272
https://doi.org/10.1529/biophysj.106.091116 pmid: 16980368
86 Huang  B, Wang  W, Bates  M, Zhuang  X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science, 2008, 319(5864): 810–813
https://doi.org/10.1126/science.1153529 pmid: 18174397
87 Chao  W, Harteneck  B D, Liddle  J A, Anderson  E H, Attwood  D T. Soft X-ray microscopy at a spatial resolution better than 15 nm. Nature, 2005, 435(7046): 1210–1213
https://doi.org/10.1038/nature03719 pmid: 15988520
88 Thibault  P, Dierolf  M, Menzel  A, Bunk  O, David  C, Pfeiffer  F. High-resolution scanning X-ray diffraction microscopy. Science, 2008, 321(5887): 379–382
https://doi.org/10.1126/science.1158573 pmid: 18635796
[1] James ARCHER, Enbang LI. Recent advances in photonic dosimeters for medical radiation therapy[J]. Front. Optoelectron., 2018, 11(1): 23-29.
[2] Wei Ting CHEN,Pin Chieh WU,Kuang-Yu YANG,Din Ping TSAI. Manipulation of spectral amplitude and phase with plasmonic nano-structures for information storage[J]. Front. Optoelectron., 2014, 7(4): 437-442.
[3] Yueyin SHAO, Yongqian WEI, Zhenghua WANG. Surface-enhanced Raman scattering of sulfate ion based on Ag/Si nanostructure[J]. Front Optoelec Chin, 2011, 4(4): 378-381.
[4] Zhiyong BAO, Li ZHANG, Yucheng WU. Silver nanoparticles and silver molybdate nanowires complex for surface-enhanced Raman scattering substrate[J]. Front Optoelec Chin, 2011, 4(2): 166-170.
[5] Tongfu SU, Bin YU, Pengyu HAN, Guozhong ZHAO, Changrong GONG. Characterization of spectra of lignin from midribs of tobacco at THz frequencies[J]. Front Optoelec Chin, 2009, 2(3): 244-247.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed