Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2015, Vol. 8 Issue (4) : 445-450    https://doi.org/10.1007/s12200-014-0451-1
RESEARCH ARTICLE
Simulation study on the active layer thickness and the interface of a-IGZO-TFT with double active layers
Xiaoyue LI,Sheng YIN(),Dong XU
School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(269 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, ATLAS 2D device simulator of SILVACO was used for device simulation of inverted-staggered thin film transistor using amorphous indium gallium zinc oxide as active layer (a-IGZO-TFT) with double active layers, based on the density of states (DOS) model of amorphous material. The change of device performance induced by the thickness variation of each active layer was studied, and the interface between double active layers was analyzed. The best performance was found when the interface was near the edge of the channel, by optimizing the thickness of each active layers, the high performance device of threshold voltage (Vth) = −0.89 V, sub-threshold swing (SS)= 0.27, on/off current ratio (ION/IOFF) = 6.98 × 1014 was obtained.

Keywords amorphous indium gallium zinc oxide (a-IGZO)      double active layers      interface      density of states (DOS)      ATLAS     
Corresponding Author(s): Sheng YIN   
Just Accepted Date: 26 September 2014   Online First Date: 17 November 2014    Issue Date: 24 November 2015
 Cite this article:   
Xiaoyue LI,Sheng YIN,Dong XU. Simulation study on the active layer thickness and the interface of a-IGZO-TFT with double active layers[J]. Front. Optoelectron., 2015, 8(4): 445-450.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-014-0451-1
https://academic.hep.com.cn/foe/EN/Y2015/V8/I4/445
Fig.1  

Proposed density of states (DOS) model for a-IGZO. EC and EV are conduction and valence band edge energies, respectively. Solid curves within the bandgap represent the exponentially distributed band-tail states (gta, gtd), while the dash curve near the conduction band edge represents the Gaussian-distributed donor-like oxygen vacancy (OV) states (ggd)

Fig.2  

Schematic of the TFT structure we adopt in this paper

Fig.3  

Transfer characteristic curves of IGZO-TFT with different x (DL and SL represent double layers and single layer, respectively)

Fig.4  

Carrier distribution of carriers when −5 V gate voltage is applied

Fig.5  

Carrier distribution of carriers when 20 V gate voltage is applied

Tab.1  

Key simulation parameters of a-IGZO (based on Ref. [8])

Tab.2  

Electrical properties of each a-IGZO TFT with different x

1 Liu P T, Chou Y T, Teng L F, Li F H, Fuh C S, Shieh H P D. Ambient stability enhancement of thin-film transistor with InGaZnO capped with InGaZnO:N bilayer stack channel layers. IEEE Electron Device Letters, 2011, 32(10): 1397−1399
https://doi.org/10.1109/LED.2011.2163181
2 Marrs M A, Moyer C D, Bawolek E J, Cordova R J, Trujillo J, Raupp G B, Vogt B D. Control of threshold voltage and saturation mobility using dual-active-layer device based on amorphous mixed metal–oxide–semiconductor on flexible plastic substrates. IEEE Transactions on Electron Devices, 2011, 58(10): 3428−3434
https://doi.org/10.1109/TED.2011.2161764
3 Kim S I, Kim C J. High performance oxide thin film transistors with double active layers. In: Proceedings of IEEE International Electron Devices Meeting, 2008
4 Kim S I, Park J S, Kim C J, Park J C, Song I, Park Y S. High reliable and manufacturable gallium indium zinc oxide thin-film transistors using the double layers as an active layer. In: Journal of the Electrochemical Society, 2009, 156(3): H184−H187
https://doi.org/10.1149/1.3060129
5 Maeng W J, Park J S, Kim H S, Lee K H, Park K B, Son K S, Kim T S, Kim E S, Ham Y N, Ryu M, Lee S Y. Photo and thermal stability enhancement of amorphous Hf-In-Zn-O thin-film transistors by the modulation of back channel composition. Applied Physics Letters, 2011, 98(7): 073503
https://doi.org/10.1063/1.3555446
6 Kim C E, Moon P. Density-of-states modeling of solution-processed InGaZnO thin-film transistors. IEEE Electron Device Letters, 2010, 31(10): 1131−1133
https://doi.org/10.1109/LED.2010.2061832
7 Kim Y, Bae M, Kim W, Kong D, Jung H K, Kim H, Kim S, Kim D M, Kim D H. Amorphous InGaZnO thin-film transistors—part I: complete extraction of density of states over the full subband-gap energy range. IEEE Transactions on Electron Devices, 2012, 59(10): 2689−2698
https://doi.org/10.1109/TED.2012.2208969
8 Fung T C, Chuang C S, Chen C, Abe K, Cottle R, Townsend M, Kumomi H, Kanicki J. Two-dimensional numerical simulation of radio frequency sputter amorphous In-Ga-Zn-O thin-film transistors. Journal of Applied Physics, 2009, 106(8): 084511
https://doi.org/10.1063/1.3234400
9 Bae H, Choi H, Oh S, Kim D H, Bae J, Kim J, Kim Y H, Kim D M. Extraction technique for intrinsic subgap DOS in a-IGZO TFTs by de-embedding the parasitic capacitance through the photonic C–V measurement. IEEE Electron Device Letters, 2013, 34(1): 57−59
https://doi.org/10.1109/LED.2012.2222014
10 Bae M, Lee K M, Cho E S, Kwon H I, Kim D M, Kim D H. Analytical current and capacitance models for amorphous indium-gallium-zinc-oxide thin-film transistors. IEEE Transactions on Electron Devices, 2013, 60(10): 3465−3473
https://doi.org/10.1109/TED.2013.2278033
11 Kim Y, Kim S, Kim W, Bae M, Jeong H K, Kong D, Choi S, Kim D M, Kim D H. Amorphous InGaZnO thin-film transistors—part II: modeling and simulation of negative bias illumination stress-induced instability. IEEE Transactions on Electron Devices, 2012, 59(10): 2699−2706
https://doi.org/10.1109/TED.2012.2208971
12 Bae M, Kim Y, Kong D, Jeong H K, Kim W, Kim J, Hur I, Kim D M, Kim D H. Analytical models for drain current and gate capacitance in amorphous InGaZnO thin-film transistors with effective carrier density. IEEE Electron Device Letters, 2011, 32(11): 1546−1548
https://doi.org/10.1109/LED.2011.2164229
13 Kim H S, Park J S, Jeong H K, Son K S, Kim T S, Seon J B, Lee E, Chung J G, Kim D H, Ryu M, Lee S Y. Density of states-based design of metal oxide thin-film transistors for high mobility and superior photostability. Applied Materials Interfaces, 2012, 4(10): 5416−5421
https://doi.org/10.1021/am301342x pmid: 22957907
14 Oldham W G, Milnes A G. Interface states in abrupt semiconductor heterojunctions. Solid-State Electronics, 1964, 7(2): 153−165
https://doi.org/10.1016/0038-1101(64)90140-6
[1] Jikang LIU, Junli LI, Guoli TU. Ether chain functionalized fullerene derivatives as cathode interface materials for efficient organic solar cells[J]. Front. Optoelectron., 2018, 11(4): 348-359.
[2] Yuqin LIAO, Xianyuan JIANG, Wenjia ZHOU, Zhifang SHI, Binghan LI, Qixi MI, Zhijun NING. Hole-transporting layer-free inverted planar mixed lead-tin perovskite-based solar cells[J]. Front. Optoelectron., 2017, 10(2): 103-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed