Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2015, Vol. 8 Issue (3) : 329-340    https://doi.org/10.1007/s12200-015-0476-0
RESEARCH ARTICLE
Analysis and modeling of ridge waveguide quarterly wavelength shifted distributed feedback laser with three rate equations
Abbas GHADIMI(),Alireza AHADPOUR SHAL()
Department of Electrical Engineering, Lahijan Branch, Islamic Azad University, Lahijan, Iran
 Download: PDF(333 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, ridge waveguide quarterly wavelength shifted distributed feedback (RW-QWS-DFB) laser was modeled and analyzed. In this behavioral model, some characteristics of the device, such as threshold current, line width, power of output wave, spectrum of output wave, and laser stability in high powers, were investigated in accordance with different physical and geographical parameters such as sizes and structures of the layers. Considering a new proposed algorithm, the analysis of the mentioned structures was performed using transfer matrix method (TMM), the solution of coupled waves and carrier rate equations. The results showed the advantages of some parameters in this structure.

Keywords distributed feedback laser      transfer matrix method (TMM)      transversal and lateral mode     
Corresponding Author(s): Abbas GHADIMI   
Just Accepted Date: 02 February 2015   Issue Date: 18 September 2015
 Cite this article:   
Abbas GHADIMI,Alireza AHADPOUR SHAL. Analysis and modeling of ridge waveguide quarterly wavelength shifted distributed feedback laser with three rate equations[J]. Front. Optoelectron., 2015, 8(3): 329-340.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-015-0476-0
https://academic.hep.com.cn/foe/EN/Y2015/V8/I3/329
Fig.1  Simple illustration of DFB 5-layered semiconductor laser
Fig.2  Lateral confinement factor changes versus ridge width
Fig.3  Coupling coefficient changes versus ridge width in different thickness of active layers and waveguides
Fig.4  Threshold current density changes versus ridge width in different thickness of active layers and waveguides
Fig.5  Threshold current changes versus ridge width in different thickness of active layers and waveguides
Fig.6  Line width changes of RW-QWS-DFB laser versus different ridge widths
Fig.7  Spectrum of ASE of RW-QWS-DFB laser in threshold condition for three different line widths w = 1, 3, 5 μm
Fig.8  Output power versus normalized current density for RW-QWS-DFB laser for two different value of w
Fig.9  Line width changes versus J/Jth for the proposed RW-QWS-DFB structure in w = 1 and 3 μm
Fig.10  Photons density distribution along the cavity of RW-QWS-DFB structure for w = 1 and 3 μm in above threshold condition
Fig.11  Charge carrier density distribution of RW-QWS-DFB structure for w=1 and 3 μm in above threshold condition
Fig.12  (a) Average changes of the normalized threshold gain αL; (b) deviation from the Bragg normalized condition δL (J/Jth for two different ridge widths of w = 1 and 3 μm)
Fig.13  Output wave spectrum for RW-QWS-DFB for J/Jth = 1.02, 1.5 and 3. (a) w = 1 μm; (b) w = 3 μm
Fig.14  Output wave spectrum of RW-QWS-DFB laser in two different ridge widths for J/Jth = 3
Fig.15  SMSR changes versus input current for two widths of w = 1 and 3 μm in RW-QWS-DFB laser
Fig.16  Uniformity parameter dependence to RW-QWS-DFB ridge width. Curved lines represent RW-QWS-DFB structure and straight lines represent QWS-DFB structure
Fig.17  Optical field intensity curve along cavity in RW-QWS-DFB structure in three different ridge widths
1 Dumke W P. Interband transitions and maser action. Physical Review, 1962, 127(5): 1559–1563
https://doi.org/10.1103/PhysRev.127.1559
2 Hall R N, Fenner G E, Kingsley J D, Soltys T J, Carlson R O. Coherent light emission from GaAs junctions. Physical Review Letters, 1962, 9(9): 366–368
https://doi.org/10.1103/PhysRevLett.9.366
3 Nathan M I, Dumk W P, Burns G, Dill F H, Lasher G. Stimulated emission of radiation from GaAs p-n junctions. Applied Physics Letters, 1962, 1(3): 62–64
https://doi.org/10.1063/1.1777371
4 Quist T M, Rediker R H, Keyes R J, Krag W E, Lax B, Mcwhorter A L, Zeigler H J. Semiconductor maser of GaAs. Applied Physics Letters, 1962, 1(4): 91–92
https://doi.org/10.1063/1.1753710
5 Holonyak N, Bevacqua S F. Coherent (visible) light emission from Ga(As1-xPx) junctions. Applied Physics Letters, 1962, 1(4): 82–84
https://doi.org/10.1063/1.1753706
6 Born M, Wolf E. Principle of Optics. 6th ed. Oxford: Pergamon Press, 1985, Section 7.6.2
7 Hayashi I, Panish M, Foy F. A low-threshold room-temperature injection laser. IEEE Journal of Quantum Electronics, 1969, 5(4): 211–212
https://doi.org/10.1109/JQE.1969.1075759
8 Kressel H, Nelson H. Close confinement gallium arsenide p-n junction laser with reduced optical loss at room temperature. RCA Review, 1969, 30: 106–113
9 Hayashi I, Panish M B. GaAs-GaxAl1-x As heterostructure injection lasers which exhibit low thresholds at room temperature. Journal of Applied Physics, 1970, 41(1): 150–163
https://doi.org/10.1063/1.1658314
10 Alferov Z I, Andreev V M, Korolkov V I, Portnoi E L, Tretyako D N. Injection properties of n-AlxGa1-x As p-GaAs heterojunctions. Soviet Physics Semiconductors, 1969, 2(7): 843–845
11 Hayashi I, Panish M B, Foy P W, Sumski S. Junction lasers which operate continuously at room temperature. Applied Physics Letters, 1970, 17(3): 109–111
https://doi.org/10.1063/1.1653326
12 Alferov Z I, Andreev V M, Garbuzov D Z, Zhilyaev Y V, Morozov E P, Portnoi E L, Triofim V G. Investigation of the influence of the AlAs-GaAs heterostructure parameters on the laser threshold current and the realization of continuous emission at room temperature. Soviet Physics Semiconductors, 1971, 4(9): 1573–1575
13 Ripper J E, Dyment J C, D’Asaro L A, Paoli T L. Stripe-geometry double heterostructure junction lasers: mode structure and CW operation above room temperature. Applied Physics Letters, 1971, 18(4): 155–157
https://doi.org/10.1063/1.1653606
14 Burnham R D, Scifres D R. Etched buried heterostructure GaAs/GaAlAs injection lasers. Applied Physics Letters, 1975, 27(9): 510–512
https://doi.org/10.1063/1.88538
15 Kaminow I P, Stulz L W, Ko J S, Miller B I, Feldman R D, Dewinter J C, Pollack M A. Low threshold ridge waveguide laser at 1.55 μm. Electronics Letters, 1983, 19(21): 877–879
https://doi.org/10.1049/el:19830598
16 Lee T P, Burrus C A, Miller B I, Logan R A. AlxGa1-x As double-heterostructure rib-waveguide injection laser. IEEE Journal of Quantum Electronics, 1975, 11(7): 432–435
https://doi.org/10.1109/JQE.1975.1068671
17 Hill D R. 140 Mbit/s optical fiber field demonstration systems. In: Sandbank C P, ed. Optical Fiber Communication Systems. Chichester: John Wiley & Sons, 1980
18 Zah C E, Pathk B, Favire F J, Pathak B, Bhat R, Caneau C, Lin P S D, Gozdz A S, Andreadakis N C, Koza M A, Lee T P. Monolithic integration of multiwavelength compressive-strained multiquantum-well distributed-feedback laser array with star coupler and optical amplifiers. Electronics Letters, 1992, 28(25): 2361–2362
19 Young M G, Koren U, Miller B I, Chien M, Koch T L, Tennant D M, Feder K, Dreyer K, Raybon G. Six wavelength laser array with integrated amplifier and modulator. Electronics Letters, 1995, 31(21): 1835–1836
https://doi.org/10.1049/el:19951262
20 Katoh Y, Kunii T, Matsui Y, Kamijoh T. Four-wavelength DBR laser array with waveguide couplers fabricated using selective MOVPE growth. Optical and Quantum Electronics, 1996, 28(5): 533–540
https://doi.org/10.1007/BF00943622
21 Ghafouri-Shiraz H, Lo B S K. Distributed feedback laser diodes. Chichester: John-Wiley & Sons, 1996, chapter 1
22 Lang R, Kobayashi K. External optical feedback effects on semiconductor injection laser properties. IEEE Journal of Quantum Electronics, 1980, 16(3): 347–355
https://doi.org/10.1109/JQE.1980.1070479
23 Matthews M R, Cameron K H, Wyatt R, Devlin W J. Packaged frequency-stable tunable 20 kHz linewidth 1.5 μm InGaAsP external cavity laser. Electronics Letters, 1985, 21(3): 113–115
https://doi.org/10.1049/el:19850079
24 Tsang W T. The cleaved coupled cavity (C3) laser. In: Semiconductors and semimetals. New York: Academic Press, 1985, 22(B), chapter 5
25 Coldren L A, Koch T L. Analysis and design of coupled-cavity lasers-Parts 1: threshold gain analysis and design guidelines. IEEE Journal of Quantum Electronics, 1984, 20(6): 659–670
https://doi.org/10.1109/JQE.1984.1072438
26 Tsang W T, Olsson N A, Linke R A, Logan R A. 1.5 μm wavelength GaInAsP C3 lasers: single frequency operation and wideband frequency tuning. Electronics Letters, 1983, 19(11): 415–417
https://doi.org/10.1049/el:19830285
27 Nakamura M, Yariv A, Yen H W, Somekh S, Garvin H L. Optically pumped GaAs surface laser with corrugation feedback. Applied Physics Letters, 1973, 22(10): 515–516
https://doi.org/10.1063/1.1654490
28 Kogelnik H, Shank C V. Coupled-wave theory of distributed feedback lasers. Journal of Applied Physics, 1972, 43(5): 2327–2335
https://doi.org/10.1063/1.1661499
29 Nakamura M, Yariv A, Yen H W, Garmire E, Somekh S, Garvin H L. Laser oscillation in epitaxial GaAs waveguides with corrugation feedback. Applied Physics Letters, 1973, 23(5): 224–225
https://doi.org/10.1063/1.1654867
30 Scifres D, Burnham R, Streifer W. A distributed feedback single heterojunction diode laser. IEEE Journal of Quantum Electronics, 1974, 10(9): 790–791
https://doi.org/10.1109/JQE.1974.1068463
31 Casey H C, Somekh S, Ilegems M. Room-temperature operation of low-threshold separate-confinement heterostructure injection laser with distributed feedback. Applied Physics Letters, 1975, 27(3): 142–144
https://doi.org/10.1063/1.88385
32 Utaka K, Akiba S, Sakai K, Matsushima Y. Room-temperature CW operation of distributed-feedback buried heterostructure InGaAsP-InP laser emitting at 1.57 μm. Electronics Letters, 1981, 17(25–26): 961–963
https://doi.org/10.1049/el:19810672
33 Uematsu Y, Okuda H, Kinoshita J. Room temperature CW operation of 1.3 μm distributed feedback GaInAsP/InP lasers. Electronics Letters, 1982, 18(20): 857–858
https://doi.org/10.1049/el:19820581
34 Streifer W, Burnham R, Scifres D R. Effect of external reflectors on longitudinal modes of distributed feedback lasers. IEEE Journal of Quantum Electronics, 1975, 11(4): 154–161
https://doi.org/10.1109/JQE.1975.1068581
35 Zhou P, Lee G S. Chirped grating λ/4-shifted distributed feedback laser with uniform longitudinal field distribution. Electronics Letters, 1990, 26(20): 1660–1661
https://doi.org/10.1049/el:19901063
36 Utaka K, Akiba S, Sakai K, Matsushima Y. λ/4-shifted InGaAsP DFB laser by simultaneous holographic exposure of positive and negative photoresists. Electronics Letters, 1984, 20(24): 1008–1010
37 Agrawal G P, Geusic J E, Anthony P J. Distributed feedback lasers with multiple phase-shift regions. Applied Physics Letters, 1988, 53(3): 178–179
https://doi.org/10.1063/1.100166
38 Thijs P J A, Tiemeijer L F, Binsma J J M, Van D T. Progress in long-wavelength strained-layer InGaAs(P) quantum-well semiconductor lasers and amplifiers. IEEE Journal of Quantum Electronics, 1994, 30(2): 477–499
https://doi.org/10.1109/3.283797
39 Morthier G, Vankwikelberge P, David K, Baets R. Improved performance of AR-coated DFB lasers for the introduction of gain coupling. IEEE Photonics Technology Letters, 1990, 2(3): 170–172
https://doi.org/10.1109/68.50879
40 Alam M F, Karim M A, Islam S. Effects of structural parameters on the external optical feedback sensitivity in DFB semiconductor lasers. IEEE Journal of Quantum Electronics, 1997, 33(3): 424–433
https://doi.org/10.1109/3.556012
41 Yu S F. Dynamic behavior of double-tapered-waveguide distributed feedback lasers. IEEE Journal of Quantum Electronics, 1997, 33(8): 1260–1267
https://doi.org/10.1109/3.605545
42 Fessant T. Multisection distributed feedback lasers with a phase-adjustment region and a nonuniform coupling coefficient for high immunity against spatial hole burning. Optics Communications, 1998, 148(1–3): 171–179
https://doi.org/10.1016/S0030-4018(97)00650-0
43 Kinoshita J. Analysis of radiation mode effects on oscillating properties of DFB lasers. IEEE Journal of Quantum Electronics, 1999, 35(11): 1569–1583
https://doi.org/10.1109/3.798078
44 Winick K A. Longitudinal mode competition in chirped grating distributed feedback lasers. IEEE Journal of Quantum Electronics, 1999, 35(10): 1402–1411
https://doi.org/10.1109a/3.792552
45 Peral E, Yariv A. Measurement and characterization of laser chirp of multiquantum-well distributed-feedback lasers. IEEE Photonics Technology Letters, 1999, 11(3): 307–309
https://doi.org/10.1109/68.748217
46 Hsu A, Chuang S, Fang W, Adams L, Nykolak G, Tanbun-Ek T. A wavelength-tunable curved waveguide DFB laser with an integrated modulator. IEEE Journal of Quantum Electronics, 1999, 35(6): 961–969
https://doi.org/10.1109/3.766840
47 Shams-Zadeh-Amiri A M, Li X, Huan W. Above-threshold analysis of second-order circular-grating DFB lasers. IEEE Journal of Quantum Electronics, 2000, 36(3): 259–267
https://doi.org/10.1109/3.825871
48 Fernandes C F. Hole-burning corrections in the stationary analysis of DFB laser diodes. Materials Science and Engineering B, 2000, 74(1–3): 75–79
https://doi.org/10.1016/S0921-5107(99)00538-3
49 Wang J Y, Cada M. Analysis and optimum design of distributed feedback lasers using coupled-power theory. IEEE Journal of Quantum Electronics, 2000, 36(1): 52–58
https://doi.org/10.1109/3.817638
50 Morrison G B, Cassidy D T, Bruce D M. Facet phases and sub-threshold spectra of DFB lasers: spectral extraction, features, explanations and verification. IEEE Journal of Quantum Electronics, 2001, 37(6): 762–769
https://doi.org/10.1109/3.922773
51 Agrawal G P, Dutta N K. Semiconductor Lasers. 2nd ed. New York: Van Nostrand Reinhold, 1993
52 Adams M J, Wyatt R. An Introduction to Optical Waveguide. London: John Wiley & Sons, 1981
53 Nakano Y, Luo Y, Tada K. Facet reflection independent, single longitudinal mode oscillation in a GaAlAs/GaAs distributed feedback laser equipped with a gain-coupling mechanism. Applied Physics Letters, 1989, 55(16): 1606–1608
https://doi.org/10.1063/1.102254
54 Morthier G, Baets R. Modelling of distributed feedback lasers. In: Compound Semiconductor Device Modelling. London: Springer-Verlag, 1993, chapter 7, 119–148
55 Vankwikelberge P, Morthier G, Baets R. CLADISS-a longitudinal multimode model for the analysis of the static, dynamic, and stochastic behavior of diode lasers with distributed feedback. IEEE Journal of Quantum Electronics, 1990, 26(10): 1728–1741
https://doi.org/10.1109/3.60897
56 Morthier G. An accurate rate-equation description for DFB lasers and some interesting solutions. IEEE Journal of Quantum Electronics, 1997, 33(2): 231–237
https://doi.org/10.1109/3.552263
57 Henry C H. Theory of the linewidth of semiconductor lasers. IEEE Journal of Quantum Electronics, 1982, 18(2): 259–264
https://doi.org/10.1109/JQE.1982.1071522
58 Pan X, Olesen H, Tromborg B. Spectral linewidth of DFB lasers including the effects of spatial holeburning and nonuniform current injection. IEEE Photonics Technology Letters, 1990, 2(5): 312–315
https://doi.org/10.1109/68.54690
59 Henry C H. Theory of spontaneous emission noise in open resonators and its application to lasers and optical amplifiers. Journal of Lightwave Technology, 1986, 4(3): 288–297
https://doi.org/10.1109/JLT.1986.1074715
60 Sugimura A, Patzak E, Meissner P. Homogenous linewidth and linewidth enhancement factor for a GaAs semiconductor laser. Journal of Physics D: Applied Physics, 1986, 19(1): 7–16
https://doi.org/10.1088/0022-3727/19/1/006
61 Kikuchi K, Okoshi T. Measurement of FM noise, AM noise, and field spectra of 1.3 μm InGaAsP DFB lasers and determination of the linewidth enhancement factor. IEEE Journal of Quantum Electronics, 1985, 21(11): 1814–1818
https://doi.org/10.1109/JQE.1985.1072575
62 Vahala K, Chiu L C, Margalit S, Yariv A. On the linewidth enhancement factor α in semiconductor injection lasers. Applied Physics Letters, 1983, 42(8): 631–633
https://doi.org/10.1063/1.94054
63 Fujise M. Spectral linewidth estimation of a 1.5 μm range InGaAsP/InP distributed feedback laser. IEEE Journal of Quantum Electronics, 1986, 22(3): 458–462
https://doi.org/10.1109/JQE.1986.1072974
64 Kojima K, Kyuma K, Nakayama T. Analysis of spectral linewidth of distributed feedback laser diodes. Journal of Lightwave Technology, 1985, 3(5): 1048–1055
https://doi.org/10.1109/JLT.1985.1074295
65 Tromborg B, Olesen H, Pan X, Saito S. Transmission line description of optical feedback and injection locking for Fabry-Perot and DFB lasers. IEEE Journal of Quantum Electronics, 1987, 23(11): 1875–1889
https://doi.org/10.1109/JQE.1987.1073251
66 Makino T. Transfer-matrix formulation of spontaneous emission noise of DFB semiconductor lasers. Journal of Lightwave Technology, 1991, 9(1): 84–91
https://doi.org/10.1109/50.64926
67 Makino T, Glinski J. Transfer matrix analysis of the amplified spontaneous emission of DFB semiconductor laser amplifiers. IEEE Journal of Quantum Electronics, 1988, 24(8): 1507–1518
https://doi.org/10.1109/3.7077
68 Agrawal G P, Bobeck A. Modeling of distributed feedback semiconductor lasers with axially-varying parameters. IEEE Journal of Quantum Electronics, 1988, 24(12): 2407–2414
https://doi.org/10.1109/3.14370
69 Shahshahani F, Ahmadi V. Analysis of relative intensity noise in tapered grating QWS-DFB laser diodes by using three rate equations model. Solid-State Electronics, 2008, 52(6): 857–862
70 Osinsky M, Polish M, Adams M J. Gain spectra of quarternary semiconductor. In: Proceedings of the IEEE I (Solid-State and Electron Devices). 1982, 129(6): 229–236
71 Rabinovich W S, Feldman B J. Spatial hole burning effects in distributed feedback lasers. IEEE Journal of Quantum Electronics, 1989, 25(1): 20–30
https://doi.org/10.1109/3.16236
[1] Saeed OLYAEE, Mohammad SOROOSH, Mahdieh IZADPANAH. Transfer matrix modeling of avalanche photodiode[J]. Front Optoelec, 2012, 5(3): 317-321.
[2] Guodong WANG, Yunjian WANG, Na LI. Axial strain sensitivity analysis of long period fiber grating by new transfer matrix method[J]. Front Optoelec Chin, 2011, 4(4): 430-433.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed