|
|
Cross-cascaded AWG-based wavelength selective switching integrated module using polymer optical waveguide circuits |
Changming CHEN,Daming ZHANG( ) |
State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China |
|
|
Abstract 100-GHz cross-cascaded arrayed waveguide gratings (AWGs)-based wavelength selective optical switching optical cross-connects (OXCs) modules with Mach-Zehnder interferometer (MZI) thermo-optic (TO) variable optical attenuator (VOA) arrays and optical true-time-delay (TTD) line arrays is successfully designed and fabricated using polymer photonic lightwave circuit. Highly fluorinated photopolymer and grafting modified organic-inorganic hybrid material were synthesized as the waveguide core and cladding, respectively. The one-chip transmission loss is ~6 dB and the crosstalk is less than ~30 dB for the transverse-magnetic (TM) mode. The actual maximum modulation depths of different thermo-optic switches are similar, ~15.5 dB with 1.9 V bias. The maximum power consumption of a single switch is less than 10 mW. The delay time basic increments are measured from 140 to 20 ps. Proposed novel module is flexible and scalable for the dense wavelength division multiplexing network.
|
Keywords
polymer waveguides
photosensitive materials
integrated optics devices
photonics integrated circuits
|
Corresponding Author(s):
Daming ZHANG
|
Just Accepted Date: 19 August 2016
Online First Date: 07 September 2016
Issue Date: 28 September 2016
|
|
1 |
Zami T. Current and future flexible wavelength routing cross-connects. Bell Labs Technical Journal, 2013, 18(3): 22–38
https://doi.org/10.1002/bltj.21626
|
2 |
Iwai Y, Hasegawa H, Sato K. A large-scale photonic node architecture that utilizes interconnected OXC subsystems. Optics Express, 2013, 21(1): 478–487
https://doi.org/10.1364/OE.21.000478
pmid: 23388942
|
3 |
Sato K, Hasegawa H. Optical networking technologies that will create future bandwidth-abundant networks. Journal of Optical Communications and Networking, 2009, 1(2): A81–A93
https://doi.org/10.1364/JOCN.1.000A81
|
4 |
Le H C, Hasegawa H, Sato K. Performance evaluation of large-scale multi-stage hetero-granular optical cross-connects. Optics Express, 2014, 22(3): 3157–3168
https://doi.org/10.1364/OE.22.003157
pmid: 24663607
|
5 |
Li Z, Claver H. Compact wavelength-selective optical switch based on digital optical phase conjugation. Optics Letters, 2013, 38(22): 4789–4792
https://doi.org/10.1364/OL.38.004789
pmid: 24322133
|
6 |
Rohit A, Bolk J, Leijtens X J M, Williams K A. Monolithic nanosecond-reconfigurable 4×4 space and wavelength selective cross-connect. IEEE Journal of Lightwave Technology, 2012, 30(17): 2913–2921
https://doi.org/10.1109/JLT.2012.2208939
|
7 |
Stabile R, Rohit A, Williams K A. Monolithically integrated 8×8 space and wavelength selective cross-connect. IEEE Journal of Lightwave Technology, 2014, 32(2): 201–207
https://doi.org/10.1109/JLT.2013.2290322
|
8 |
Tran V, Zhong W D, Tucker R S, Song K. Reconfigurable multichannel optical add–drop multiplexers incorporating eight-port optical circulators and fibre Bragg gratings. IEEE Photonics Technology Letters, 2001, 13(13): 1100–1102
https://doi.org/10.1109/68.950748
|
9 |
Han Y T, Shin J U, Park S H, Seo J K, Lee H J, Hwang W Y, Park H H, Baek Y. 2×2 polymer thermo-optic digital optical switch using total-internal-reflection in bend-free waveguides. IEEE Photonics Technology Letters, 2012, 24(19): 1757–1760
https://doi.org/10.1109/LPT.2012.2210280
|
10 |
Claes T, Bogaerts W, Bienstman P. Vernier-cascade label-free biosensor with integrated arrayed waveguide grating for wavelength interrogation with low-cost broadband source. Optics Letters, 2011, 36(17): 3320–3322
https://doi.org/10.1364/OL.36.003320
pmid: 21886197
|
11 |
Han Y, Shin J, Park S, Han S, Baek Y, Lee C, Noh Y, Lee H, Park H. Fabrication of 10-channel polymer thermo-optic digital optical switch array. IEEE Photonics Technology Letters, 2009, 21(20): 1556–1558
https://doi.org/10.1109/LPT.2009.2029870
|
12 |
Segawa T, Matsuo S, Kakitsuka T, Shibata Y, Sato T, Kawaguchi Y, Kondo Y, Takahashi R. All-optical wavelength-routing switch with monolithically integrated filter-free tunable wavelength converters and an AWG. Optics Express, 2010, 18(5): 4340–4345
https://doi.org/10.1364/OE.18.004340
pmid: 20389445
|
13 |
Fang Q, Song J, Zhang G. Monolithic integration of a multiplexer/demultiplexer with a thermo-optic VOA array on an SOI platform. IEEE Photonics Technology Letters, 2009, 21(5): 319–321
https://doi.org/10.1109/LPT.2008.2011142
|
14 |
Yeniay A, Gao R. True time delay photonic circuit based on perfluorpolymer waveguides. IEEE Photonics Technology Letters, 2010, 22(21): 1565–1567
https://doi.org/10.1109/LPT.2010.2069558
|
15 |
Oguma M, Kamei S, Kitoh T, Hashimoto T, Sakamaki Y, Itoh M, Takahashi H. Wide passband tandem MZI-synchronized AWG empolying mode converter and multimode waveguide. IEICE Electronics Express, 2010, 7(11): 823–826
https://doi.org/10.1587/elex.7.823
|
16 |
Segawa T, Matsuo S, Kakitsuka T, Shibata Y, Sato T, Kawaguchi Y, Kondo Y, Takahashi R. All-optical wavelength-routing switch with monolithically integrated filter-free tunable wavelength converters and an AWG. Optics Express, 2010, 18(5): 4340–4345
https://doi.org/10.1364/OE.18.004340
pmid: 20389445
|
17 |
Dai D, Bauter. J, Bowers J E. Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-re1ciprocity and loss reduction. Light, Science & Applications, 2012, 1: e1
https://doi.org/10.1038/lsa.2012.1
|
18 |
Bontempi F, Faralli S, Contestabile G. An InP monolithically integrated unicast and multicast wavelength converter. IEEE Photonics Technology Letters, 2013, 25(22): 2178–2181
https://doi.org/10.1109/LPT.2013.2281509
|
19 |
Andriolli N, Faralli S, Bontempi F, Contestabile G. A wavelength-preserving photonic integrated regenerator for NRZ and RZ signals. Optics Express, 2013, 21(18): 20649–20655
https://doi.org/10.1364/OE.21.020649
pmid: 24103938
|
20 |
Andriolli, N, Faralli, S, and Leijtens, XJM. Monolithically integrated all-optical regenerator for constant envelope WDM signals. IEEE Journal of Lightwave Technology, 2013 31(2): 322–327
|
21 |
Francesca B, Sergio P, Nicola A. Multifunctional current-controlled InP photonic integrated delay interferometer. IEEE Journal of Quantum Electronics, 2012, 48(11): 1453–1461
https://doi.org/10.1109/JQE.2012.2219038
|
22 |
Nicholes S C, Masanovic M L, Jevremovic B, Lively E, Coldren L A. An 8×8 InP monolithic tunable optical router (motor) packet forwarding chip. IEEE Journal of Lightwave Technology, 2010, 28: 641–650
https://doi.org/10.1109/JLT.2009.2030145
|
23 |
Welch D F, Kish F A, Melle S, Nagarajan R, Kato M, Joyner C H, Pleumeekers J L, Schneider R P, Back J, Dentai A G, Dominic V G, Evans P W, Kauffman M, Lambert D J H, Hurtt S K, Mathur A, Mitchell M L, Missey M, Murthy S, Nilsson A C, Salvatore R A, Van Leeuwen M F, Webjorn J, Ziari M, Grubb S G, Perkins D, Reffle M, Mehuys D G. Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(1): 22–31
https://doi.org/10.1109/JSTQE.2006.890068
|
24 |
Wang J, Kroh M, Richter T, Theurer A, Matiss A, Zawadzki C, Zhang Z, Schubert C, Steffan A, Grote N, Keil N, Kroh M, Richter T. Hybrid-integrated polarization diverse coherent receiver based on polymer PLC. IEEE Photonics Technology Letters, 2012, 24(29): 1718–1721
https://doi.org/10.1109/LPT.2012.2213299
|
25 |
Bamiedakis N, Beals J, Penty R V, White I H, DeGroot J V, Clapp T V. Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects. IEEE Journal of Quantum Electronics, 2009, 45(4): 415–424
https://doi.org/10.1109/JQE.2009.2013111
|
26 |
Gorman T, Haxha S, Ju J J. Ultra-high-speed deeply etched electrooptic polymer modulator with profiled cross section. IEEE Journal of Lightwave Technology, 2009, 27(1): 68–76
https://doi.org/10.1109/JLT.2008.929413
|
27 |
Chen C, Zhang F, Zhang D. UV curable electro-optic polymer switch based on direct photo definition technique. IEEE Journal of Quantum Electronics, 2011, 47(7): 959–964
https://doi.org/10.1109/JQE.2011.2145412
|
28 |
Dalton L R, Sullivan P A, Bale D H. Electric field poled organic electro-optic materials: state of the art and future prospects. Chemical Reviews, 2010, 110(1): 25–55
https://doi.org/10.1021/cr9000429
pmid: 19848381
|
29 |
Hassan K, Weeber J C, Markey L, Dereux A, Pitilakis A, Tsilipakos O, Kriezis E E. Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides. Applied Physics Letters, 2011, 99(24): 241110
https://doi.org/10.1063/1.3670500
|
30 |
Chen C, Cui Z, Zhang D. Electro-optic modulator based on novel organic-inorganic hybrid nonlinear optical materials. IEEE Journal of Quantum Electronics, 2012, 48(1): 61–66
https://doi.org/10.1109/JQE.2011.2179019
|
31 |
Chen C, Niu X, Han C, Shi Z, Wang X, Sun X, Wang F, Cui Z, Zhang D. Reconfigurable optical interleaver modules with tunable wavelength transfer matrix function using polymer photonics lightwave circuits. Optics Express, 2014, 22(17): 19895–19911
https://doi.org/10.1364/OE.22.019895
pmid: 25321200
|
32 |
Chen C, Niu X, Han C, Shi Z, Wang X, Sun X, Wang F, Cui Z, Zhang D. Monolithic multi-functional integration of ROADM modules based on polymer photonic lightwave circuit. Optics Express, 2014, 22(9): 10716–10727
https://doi.org/10.1364/OE.22.010716
pmid: 24921773
|
33 |
Oguchi K. New notations based on the wavelength transfer matrix for functional analysis of wavelength circuits and new WDM networks using AWG-based star coupler with asymmetric characteristics. IEEE Journal of Lightwave Technology, 1996, 14(6): 1255–1263
https://doi.org/10.1109/50.511626
|
34 |
Hu G, Cui Y, Yun B, Lu C, Wang Z. A polymeric optical switch array based on arrayed waveguide grating structure. Optics Communications, 2007, 279(1): 79–82
https://doi.org/10.1016/j.optcom.2007.06.065
|
35 |
Wan Y, Fei X, Shi Z, Hu J, Zhang X, Zhao L, Chen C, Cui Z, Zhang D. Highly fluorinated low-molecular-weight photoresists for optical waveguides. Journal of Polymer Science Part A, Polymer Chemistry, 2011, 49(3): 762–769
https://doi.org/10.1002/pola.24489
|
36 |
Chen C, Han C, Wang L, Zhang H, Sun X, Wang F, Zhang D. 650 nm all-polymer Thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA materials. IEEE Journal of Quantum Electronics, 2013, 49(5): 61–66
https://doi.org/10.1109/JQE.2013.2252147
|
37 |
Kawano K. Introduction to Optical Waveguide Analysis: Solving Maxwell’s Equations and the Schrödinger Equations. New York: Wiley, 2001
|
38 |
Hassan K, Weeber J C, Markey L, Dereux A, Pitilakis A, Tsilipakos O, Kriezis E E. Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides. Applied Physics Letters, 2011, 99(24): 241110
https://doi.org/10.1063/1.3670500
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|