Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2016, Vol. 9 Issue (3) : 428-435    https://doi.org/10.1007/s12200-016-0591-6
RESEARCH ARTICLE
Cross-cascaded AWG-based wavelength selective switching integrated module using polymer optical waveguide circuits
Changming CHEN,Daming ZHANG()
State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
 Download: PDF(497 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

100-GHz cross-cascaded arrayed waveguide gratings (AWGs)-based wavelength selective optical switching optical cross-connects (OXCs) modules with Mach-Zehnder interferometer (MZI) thermo-optic (TO) variable optical attenuator (VOA) arrays and optical true-time-delay (TTD) line arrays is successfully designed and fabricated using polymer photonic lightwave circuit. Highly fluorinated photopolymer and grafting modified organic-inorganic hybrid material were synthesized as the waveguide core and cladding, respectively. The one-chip transmission loss is ~6 dB and the crosstalk is less than ~30 dB for the transverse-magnetic (TM) mode. The actual maximum modulation depths of different thermo-optic switches are similar, ~15.5 dB with 1.9 V bias. The maximum power consumption of a single switch is less than 10 mW. The delay time basic increments are measured from 140 to 20 ps. Proposed novel module is flexible and scalable for the dense wavelength division multiplexing network.

Keywords polymer waveguides      photosensitive materials      integrated optics devices      photonics integrated circuits     
Corresponding Author(s): Daming ZHANG   
Just Accepted Date: 19 August 2016   Online First Date: 07 September 2016    Issue Date: 28 September 2016
 Cite this article:   
Changming CHEN,Daming ZHANG. Cross-cascaded AWG-based wavelength selective switching integrated module using polymer optical waveguide circuits[J]. Front. Optoelectron., 2016, 9(3): 428-435.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-016-0591-6
https://academic.hep.com.cn/foe/EN/Y2016/V9/I3/428
Fig.1  Schematic configuration of integrated OXC module
Fig.2  Relations between the core thickness b and the effective refractive indices nc (green dashed lines) and ns (blue solid lines) with a = b
Fig.3  Output spectra of transmitted signal lights for each channel
Fig.4  Simulated output wavelength-channel-selected characteristics of the integrated module with temperature ranging from 20°C to 65°C
Fig.5  Fabrication process for UV defined waveguide and electrode heater structure
Fig.6  (a) Scanning electron microscope (SEM) photographs of transmission segment patterns of cross-sectional waveguides; the surface profiles of (b) thermo-optic (TO) variable optical attenuator (VOA) arrayed and serpentine electrode heater (c)
Fig.7  (a) Schematic photographs of the proposed polymer integrated optical cross-connects (OXCs) module measured; (b) near-field guide-mode patterns of the device with signal light from a wide-band erbium-doped optical fiber amplifier (EDFA)
Fig.8  Actual output spectral response from the output channels (a) when driven voltage is 0 V for the last-stage AWG-based wavelength selective switches(WSS); (b) when the λ−4~λ−7 were directly multiplexed into 1st to 8th modulation channels
Fig.9  Performances of integrated device. (a) TO switch responses obtained by applying square-wave voltage at frequency of 100 Hz; (b) actual channel output versus power consumption of optical switch at 1550 nm for TM mode
1 Zami T. Current and future flexible wavelength routing cross-connects. Bell Labs Technical Journal, 2013, 18(3): 22–38
https://doi.org/10.1002/bltj.21626
2 Iwai Y, Hasegawa H, Sato K. A large-scale photonic node architecture that utilizes interconnected OXC subsystems. Optics Express, 2013, 21(1): 478–487
https://doi.org/10.1364/OE.21.000478 pmid: 23388942
3 Sato K, Hasegawa H. Optical networking technologies that will create future bandwidth-abundant networks. Journal of Optical Communications and Networking, 2009, 1(2): A81–A93
https://doi.org/10.1364/JOCN.1.000A81
4 Le H C, Hasegawa H, Sato K. Performance evaluation of large-scale multi-stage hetero-granular optical cross-connects. Optics Express, 2014, 22(3): 3157–3168
https://doi.org/10.1364/OE.22.003157 pmid: 24663607
5 Li Z, Claver H. Compact wavelength-selective optical switch based on digital optical phase conjugation. Optics Letters, 2013, 38(22): 4789–4792
https://doi.org/10.1364/OL.38.004789 pmid: 24322133
6 Rohit A, Bolk J, Leijtens X J M, Williams K A. Monolithic nanosecond-reconfigurable 4×4 space and wavelength selective cross-connect. IEEE Journal of Lightwave Technology, 2012, 30(17): 2913–2921
https://doi.org/10.1109/JLT.2012.2208939
7 Stabile R, Rohit A, Williams K A. Monolithically integrated 8×8 space and wavelength selective cross-connect. IEEE Journal of Lightwave Technology, 2014, 32(2): 201–207
https://doi.org/10.1109/JLT.2013.2290322
8 Tran V, Zhong W D, Tucker R S, Song K. Reconfigurable multichannel optical add–drop multiplexers incorporating eight-port optical circulators and fibre Bragg gratings. IEEE Photonics Technology Letters, 2001, 13(13): 1100–1102
https://doi.org/10.1109/68.950748
9 Han Y T, Shin J U, Park S H, Seo J K, Lee H J, Hwang W Y, Park H H, Baek Y. 2×2 polymer thermo-optic digital optical switch using total-internal-reflection in bend-free waveguides. IEEE Photonics Technology Letters, 2012, 24(19): 1757–1760
https://doi.org/10.1109/LPT.2012.2210280
10 Claes T, Bogaerts W, Bienstman P. Vernier-cascade label-free biosensor with integrated arrayed waveguide grating for wavelength interrogation with low-cost broadband source. Optics Letters, 2011, 36(17): 3320–3322
https://doi.org/10.1364/OL.36.003320 pmid: 21886197
11 Han Y, Shin J, Park S, Han S, Baek Y, Lee C, Noh Y, Lee H, Park H. Fabrication of 10-channel polymer thermo-optic digital optical switch array. IEEE Photonics Technology Letters, 2009, 21(20): 1556–1558
https://doi.org/10.1109/LPT.2009.2029870
12 Segawa T, Matsuo S, Kakitsuka T, Shibata Y, Sato T, Kawaguchi Y, Kondo Y, Takahashi R. All-optical wavelength-routing switch with monolithically integrated filter-free tunable wavelength converters and an AWG. Optics Express, 2010, 18(5): 4340–4345
https://doi.org/10.1364/OE.18.004340 pmid: 20389445
13 Fang Q, Song J, Zhang G. Monolithic integration of a multiplexer/demultiplexer with a thermo-optic VOA array on an SOI platform. IEEE Photonics Technology Letters, 2009, 21(5): 319–321
https://doi.org/10.1109/LPT.2008.2011142
14 Yeniay A, Gao R. True time delay photonic circuit based on perfluorpolymer waveguides. IEEE Photonics Technology Letters, 2010, 22(21): 1565–1567
https://doi.org/10.1109/LPT.2010.2069558
15 Oguma M, Kamei S, Kitoh T, Hashimoto T, Sakamaki Y, Itoh M, Takahashi H. Wide passband tandem MZI-synchronized AWG empolying mode converter and multimode waveguide. IEICE Electronics Express, 2010, 7(11): 823–826
https://doi.org/10.1587/elex.7.823
16 Segawa T, Matsuo S, Kakitsuka T, Shibata Y, Sato T, Kawaguchi Y, Kondo Y, Takahashi R. All-optical wavelength-routing switch with monolithically integrated filter-free tunable wavelength converters and an AWG. Optics Express, 2010, 18(5): 4340–4345
https://doi.org/10.1364/OE.18.004340 pmid: 20389445
17 Dai D, Bauter. J, Bowers J E. Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-re1ciprocity and loss reduction. Light, Science & Applications, 2012, 1: e1
https://doi.org/10.1038/lsa.2012.1
18 Bontempi F, Faralli S, Contestabile G. An InP monolithically integrated unicast and multicast wavelength converter. IEEE Photonics Technology Letters, 2013, 25(22): 2178–2181
https://doi.org/10.1109/LPT.2013.2281509
19 Andriolli N, Faralli S, Bontempi F, Contestabile G. A wavelength-preserving photonic integrated regenerator for NRZ and RZ signals. Optics Express, 2013, 21(18): 20649–20655
https://doi.org/10.1364/OE.21.020649 pmid: 24103938
20 Andriolli, N, Faralli, S, and Leijtens, XJM. Monolithically integrated all-optical regenerator for constant envelope WDM signals. IEEE Journal of Lightwave Technology, 2013 31(2): 322–327
21 Francesca B, Sergio P, Nicola A. Multifunctional current-controlled InP photonic integrated delay interferometer. IEEE Journal of Quantum Electronics, 2012, 48(11): 1453–1461
https://doi.org/10.1109/JQE.2012.2219038
22 Nicholes S C, Masanovic M L, Jevremovic B, Lively E, Coldren L A. An 8×8 InP monolithic tunable optical router (motor) packet forwarding chip. IEEE Journal of Lightwave Technology, 2010, 28: 641–650
https://doi.org/10.1109/JLT.2009.2030145
23 Welch D F, Kish F A, Melle S, Nagarajan R, Kato M, Joyner C H, Pleumeekers J L, Schneider R P, Back J, Dentai A G, Dominic V G, Evans P W, Kauffman M, Lambert D J H, Hurtt S K, Mathur A, Mitchell M L, Missey M, Murthy S, Nilsson A C, Salvatore R A, Van Leeuwen M F, Webjorn J, Ziari M, Grubb S G, Perkins D, Reffle M, Mehuys D G. Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(1): 22–31
https://doi.org/10.1109/JSTQE.2006.890068
24 Wang J, Kroh M, Richter T, Theurer A, Matiss A, Zawadzki C, Zhang Z, Schubert C, Steffan A, Grote N, Keil N, Kroh M, Richter T. Hybrid-integrated polarization diverse coherent receiver based on polymer PLC. IEEE Photonics Technology Letters, 2012, 24(29): 1718–1721
https://doi.org/10.1109/LPT.2012.2213299
25 Bamiedakis N, Beals J, Penty R V, White I H, DeGroot J V, Clapp T V. Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects. IEEE Journal of Quantum Electronics, 2009, 45(4): 415–424
https://doi.org/10.1109/JQE.2009.2013111
26 Gorman T, Haxha S, Ju J J. Ultra-high-speed deeply etched electrooptic polymer modulator with profiled cross section. IEEE Journal of Lightwave Technology, 2009, 27(1): 68–76
https://doi.org/10.1109/JLT.2008.929413
27 Chen C, Zhang F, Zhang D. UV curable electro-optic polymer switch based on direct photo definition technique. IEEE Journal of Quantum Electronics, 2011, 47(7): 959–964
https://doi.org/10.1109/JQE.2011.2145412
28 Dalton L R, Sullivan P A, Bale D H. Electric field poled organic electro-optic materials: state of the art and future prospects. Chemical Reviews, 2010, 110(1): 25–55
https://doi.org/10.1021/cr9000429 pmid: 19848381
29 Hassan K, Weeber J C, Markey L, Dereux A, Pitilakis A, Tsilipakos O, Kriezis E E. Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides. Applied Physics Letters, 2011, 99(24): 241110
https://doi.org/10.1063/1.3670500
30 Chen C, Cui Z, Zhang D. Electro-optic modulator based on novel organic-inorganic hybrid nonlinear optical materials. IEEE Journal of Quantum Electronics, 2012, 48(1): 61–66
https://doi.org/10.1109/JQE.2011.2179019
31 Chen C, Niu X, Han C, Shi Z, Wang X, Sun X, Wang F, Cui Z, Zhang D. Reconfigurable optical interleaver modules with tunable wavelength transfer matrix function using polymer photonics lightwave circuits. Optics Express, 2014, 22(17): 19895–19911
https://doi.org/10.1364/OE.22.019895 pmid: 25321200
32 Chen C, Niu X, Han C, Shi Z, Wang X, Sun X, Wang F, Cui Z, Zhang D. Monolithic multi-functional integration of ROADM modules based on polymer photonic lightwave circuit. Optics Express, 2014, 22(9): 10716–10727
https://doi.org/10.1364/OE.22.010716 pmid: 24921773
33 Oguchi K. New notations based on the wavelength transfer matrix for functional analysis of wavelength circuits and new WDM networks using AWG-based star coupler with asymmetric characteristics. IEEE Journal of Lightwave Technology, 1996, 14(6): 1255–1263
https://doi.org/10.1109/50.511626
34 Hu G, Cui Y, Yun B, Lu C, Wang Z. A polymeric optical switch array based on arrayed waveguide grating structure. Optics Communications, 2007, 279(1): 79–82
https://doi.org/10.1016/j.optcom.2007.06.065
35 Wan Y, Fei X, Shi Z, Hu J, Zhang X, Zhao L, Chen C, Cui Z, Zhang D. Highly fluorinated low-molecular-weight photoresists for optical waveguides. Journal of Polymer Science Part A, Polymer Chemistry, 2011, 49(3): 762–769
https://doi.org/10.1002/pola.24489
36 Chen C, Han C, Wang L, Zhang H, Sun X, Wang F, Zhang D. 650 nm all-polymer Thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA materials. IEEE Journal of Quantum Electronics, 2013, 49(5): 61–66
https://doi.org/10.1109/JQE.2013.2252147
37 Kawano K. Introduction to Optical Waveguide Analysis: Solving Maxwell’s Equations and the Schrödinger Equations. New York: Wiley, 2001
38 Hassan K, Weeber J C, Markey L, Dereux A, Pitilakis A, Tsilipakos O, Kriezis E E. Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides. Applied Physics Letters, 2011, 99(24): 241110
https://doi.org/10.1063/1.3670500
[1] Yuhe ZHAO, Xu WANG, Dingshan GAO, Jianji DONG, Xinliang ZHANG. On-chip programmable pulse processor employing cascaded MZI-MRR structure[J]. Front. Optoelectron., 2019, 12(2): 148-156.
[2] Jing DAI,Minming ZHANG,Feiya ZHOU,Deming LIU. Highly efficient tunable optical filter based on liquid crystal micro-ring resonator with large free spectral range[J]. Front. Optoelectron., 2016, 9(1): 112-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed