Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2016, Vol. 9 Issue (2) : 249-258    https://doi.org/10.1007/s12200-016-0611-6
REVIEW ARTICLE
Vertical-cavity surface-emitting lasers with nanostructures for optical interconnects
Anjin LIU1,2,*(),Dieter BIMBERG2,3
1. Laboratory of Solid-State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2. Institute of Solid State Physics, Technische Universit?t Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
3. King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia (KSA)
 Download: PDF(1732 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Optical interconnects (OIs) are the only solution to fulfil both the requirements on large bandwidth and minimum power consumption of data centers and high-performance computers (HPCs). Vertical-cavity surface-emitting lasers (VCSELs) are the ideal light sources for OIs and have been widely deployed. This paper will summarize the progress made on modulation speed, energy efficiency, and temperature stability of VCSELs. Especially VCSELs with surface nanostructures will be reviewed in depth. Such lasers will provide new opportunities to further boost the performance of VCSELs and open a new door for energy-efficient OIs.

Keywords optical interconnects (OIs)      vertical-cavity surface-emitting laser (VCSEL)      subwavelength grating      modulation speed      energy efficiency     
Corresponding Author(s): Anjin LIU   
Just Accepted Date: 18 February 2016   Online First Date: 29 March 2016    Issue Date: 05 April 2016
 Cite this article:   
Anjin LIU,Dieter BIMBERG. Vertical-cavity surface-emitting lasers with nanostructures for optical interconnects[J]. Front. Optoelectron., 2016, 9(2): 249-258.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-016-0611-6
https://academic.hep.com.cn/foe/EN/Y2016/V9/I2/249
Fig.1  Global data center IP traffic growth at a compound annual growth rate (CAGR) of 25% from 2014 to 2019 [1]
Fig.2  Exponential growth of supercomputing power as recorded by the TOP500 list [2]
Fig.3  (a) Output optical power versus current density for 11-μm oxide aperture VCSELs with different etch depths at 25°C. Inset: close-up of the threshold region; (b) measured small-signal modulation response at currents for maximum bandwidth for 11-μm oxide aperture VCSELs with different etch depths at 25°C [36]
Fig.4  Comparison of the refractive index and simulated optical field intensity distribution inside the previous VCSEL structure with a 3l/2 cavity (a) and inside the new VCSEL structure with a l/2 cavity (b) [37]
Fig.5  BER against received optical power of VCSELs with oxide-aperture diameters of 3.5, 4, and 5 μm operating at 25 Gbit/s at bias currents yielding maximum energy efficiency [28]. BER: bit error ratio; EDR: energy-to-data ratio; HBR: heat-to-bit rate ratio
Fig.6  (a) Peak gain wavelength of a single In0.21Ga0.79As/GaAs0.88P0.12 QW/barrier active region and the etalon resonance wavelength of our 980 nm VCSEL versus temperature for gain-to-etalon wavelength offsets fixed at 300 K at 0, - 15, and - 25 nm relative to the peak QW gain [39]; (b) large-signal modulation measurements of multimode oxide-confined 980 nm VCSEL at 50 and 46 Gbit/s at 25°C and 85°C, respectively [31]. OM2: optical mode 2; MMF: multimode fiber; NZR: non-return-to-zero; PBRS: pseudo random binary sequence
Fig.7  (a) Schematic of the HCG; (b) double-mode solution exhibiting perfect cancellation at the HCG output plane leading to 100% reflectivity [48]. Λ: grating period; S: width of the grating bar; a: width of the air gap; TE: transverse electric; TM: transverse magnetic
Fig.8  (a) Reflectivity spectra for different HCG sizes with a fixed-size (4 mm, 1/e width of the Gaussian source) Gaussian source under normal incidence [60]; (b) mode field in finite-size HCG with a 4-mm Gaussian incident wave [61]; (c) guided mode with even symmetry with a 4-mm Gaussian incident wave [61]
Fig.9  Energy penetration depths for HCG, 2D photonic crystal slab, and DBR [63]
Fig.10  Schematic of a HCG-VCSEL; (b) power-current-voltage curve of a HCG-VCSEL. The inset shows the polarization-resolved output power plotted in dB scale [52]
Fig.11  (a) Scanning electronic microscopy (SEM) image of GaAs-based HCG; (b) reflectivity spectra of HCG-based filter array [69]
Fig.12  (a) Schematic of the Si-VCSEL; (b) fundamental mode profile of the Si-VCSEL; (c) SEM image of the Si-VCSEL sample seen from the top [78]
1 Cisco. Cisco Global Cloud Index: Forecast and Methodology, 2014–2019 White Paper,
2 TOP500 supercomputer list of November 2015,
3 Savage N. Linking with light. IEEE Spectrum, 2002, 39(8): 32–36
https://doi.org/10.1109/MSPEC.2002.1021941
4 Benner A F, Ignatowski M, Kash J A, Kuchta D M, Ritter M B. Exploitation of optical interconnects in future server architectures. IBM Journal of Research and Development, 2005, 49(4/5): 755–775
https://doi.org/10.1147/rd.494.0755
5 Coteus P W, Knickerbocker J U, Lam C H, Vlasov Y A. Technologies for exascale systems. IBM Journal of Research and Development, 2011, 55(5): 14-1–14-12
6 Lam C F, Liu H, Koley B, Zhao X, Kamalov V, Gill V. Fiber optic communication technologies: what’s needed for datacenter network operations. IEEE Communications Magazine, 2010, 48(7): 32–39
https://doi.org/10.1109/MCOM.2010.5496876
7 Borkar S. Role of interconnects in the future of computing. Journal of Lightwave Technology, 2013, 31(24): 3927–3933
https://doi.org/10.1109/JLT.2013.2283277
8 Taubenblatt M A. Optical interconnects for high-performance computing. Journal of Lightwave Technology, 2012, 30(4): 448–457
https://doi.org/10.1109/JLT.2011.2172989
9 Miller D A B. Device requirements for optical interconnects to silicon chips. Proceedings of the IEEE, 2009, 97(7): 1166–1185
https://doi.org/10.1109/JPROC.2009.2014298
10 Miller D A B. Rationale and challenges for optical interconnects to electronic chips. Proceedings of the IEEE, 2000, 88(6): 728–749
https://doi.org/10.1109/5.867687
11 Bimberg D. Ultrafast VCSELs for Datacom. IEEE Photonics Journal, 2010, 2(2): 273–275
https://doi.org/10.1109/JPHOT.2010.2047386
12 Larsson A. Advances in VCSELs for communication and sensing. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(6): 1552–1567
https://doi.org/10.1109/JSTQE.2011.2119469
13 Tatum J A, Gazula D, Graham L A, Guenter J K, Johnson R H, King J, Kocot C, Landry G D, Lyubomirsky I, MacInnes A N, Shaw E M, Balemarthy K, Shubochkin R, Vaidya D, Yan M, Tang F. VCSEL-based interconnects for current and future data centers. Journal of Lightwave Technology, 2015, 33(4): 727–732
https://doi.org/10.1109/JLT.2014.2370633
14 Grabherr M, Intemann S, King R, Wabra S, Jäger R, Riedl M. VCSEL arrays for high aggregate bandwidth of up to 1.34 Tbps. Proceedings of the Society for Photo-Instrumentation Engineers, 2014, 9001: 900105-1–900105-10
15 Michalzik R. VCSELs-Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers. Berlin: Springer, 2013, 166
16 Blokhin S A, Lott J A, Mutig A, Fiol G, Ledentsov N N, Maximov M V, Nadtochiy A M, Shchukin V A, Bimberg D. Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s. Electronics Letters, 2009, 45(10): 501–503
https://doi.org/10.1049/el.2009.0552
17 Kuchta D, Rylyakov A, Doany F E, Schow C, Proesel J, Baks C, Westbergh P, Gustavsson J, Larsson A A. 71 Gb/s NRZ modulated 850 nm VCSEL-based optical link. IEEE Photonics Technology Letters, 2015, 27(6): 577–580
https://doi.org/10.1109/LPT.2014.2385671
18 Shi J W, Wei Z R, Chi K L, Jiang J W, Wun J M, Lu I C, Chen J, Yang Y J. Single-mode, high-speed, and high-power vertical-cavity surface-emitting lasers at 850 nm for short to medium reach (2 km) optical interconnects. Journal of Lightwave Technology, 2013, 31(24): 4037–4044
https://doi.org/10.1109/JLT.2013.2281235
19 Hanson D. Case for using 980 nm (rather than 850 nm) VCSELs for serial 10 Gb/s links with new higher-bandwidth 50 MMF.1999 [Online].
20 Chang Y C, Coldren L A. Efficient, high-data-rate, tapered oxide-aperture vertical-cavity surface-emitting lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(3): 704–715
https://doi.org/10.1109/JSTQE.2008.2010955
21 Mutig A, Lott J A, Blokhin S A, Wolf P, Moser P, Hofmann W, Nadtochiy A M, Payusov A, Bimberg D. Highly temperature-stable modulation characteristics of multioxide-aperture high-speed 980 nm vertical cavity surface emitting lasers. Applied Physics Letters, 2010, 97(15): 151101
https://doi.org/10.1063/1.3499361
22 Wolf P, Moser P, Larisch G, Hofmann W, Bimberg D. High-speed and temperature-stable, oxide-confined 980 nm VCSELs for optical interconnects. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(4): 1701207
https://doi.org/10.1109/JSTQE.2013.2246773
23 Héroux J B, Kise T, Funabashi M, Aoki T, Schow C L, Rylyakov A V, Nakagawa S. Energy-efficient 1060-nm optical link operating up to 28 Gb/s. Journal of Lightwave Technology, 2015, 33(4): 733–740
https://doi.org/10.1109/JLT.2015.2393888
24 Hatakeyama H, Anan T, Akagawa T, Fukatsu K, Suzuki N, Tokutome K, Tsuji M. Highly reliable high-speed 1.1-mm-range VCSELs with InGaAs/GaAsP-MQWs. IEEE Journal of Quantum Electronics, 2010, 46(6): 890–897
https://doi.org/10.1109/JQE.2010.2040583
25 Müller M, Wolf P, Gründl T, Grasse C, Rosskopf J, Hofmann W, Bimberg D, Amann M C. Energy-efficient 1.3 m short-cavity VCSELs for 30 Gb/s error-free optical links. In: Proceedings of 23rd Semiconductor Laser Conference (ISLC), 2012, 1–2
26 Müller M, Hofmann W, Gründl T, Horn M, Wolf P, Nagel R D, Rönneberg E, Böhm G, Bimberg D, Amann M C. 1550-nm high-speed short-cavity VCSELs. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(5): 1158–1166
https://doi.org/10.1109/JSTQE.2011.2109700
27 Moser P, Hofmann W, Wolf P, Lott J A, Larisch G, Payusov A S, Ledentsov N N, Bimberg D. 81 fJ/bit energy-to-data ratio of 850 nm vertical-cavity surface-emitting lasers for optical interconnects. Applied Physics Letters, 2011, 98(23): 231106
https://doi.org/10.1063/1.3597799
28 Moser P, Lott J A, Wolf P, Larisch G, Li H, Ledentsov N N, Bimberg D. 56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s. Electronics Letters, 2012, 48(20): 1292–1294
https://doi.org/10.1049/el.2012.2944
29 Haglund E, Westbergh P, Gustavsson J S, Haglund E P, Larsson A, Geen M, Joel A. 30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25–50 Gbit/s. Electronics Letters, 2015, 51(14): 1096–1098
https://doi.org/10.1049/el.2015.0785
30 Li H, Wolf P, Moser P, Larisch G, Mutig A, Lott J A, Bimberg D. Energy-efficient and temperature-stable oxide-confined 980 nm VCSELs operating error-free at 38 Gbit/s at 85°C. Electronics Letters, 2014, 50(2): 103–105
https://doi.org/10.1049/el.2013.3941
31 Moser P, Lott J A, Wolf P, Larisch G, Li H, Bimberg D. Error-free 46 Gbit/s operation of oxide-confined 980 nm VCSELs at 85°C. Electronics Letters, 2014, 50(19): 1369–1371
https://doi.org/10.1049/el.2014.1703
32 Kuchta D M, Rylyakov A V, Schow C L, Proesel J E, Baks C W, Westbergh P, Gustavsson J S, Larsson A A. 50 Gb/s NRZ modulated 850 nm VCSEL transmitter operating error free to 90°C. Journal of Lightwave Technology, 2015, 33(4): 802–810
https://doi.org/10.1109/JLT.2014.2363848
33 Tan F, Wu C H, Feng M, Holonyak N Jr. Energy efficient microcavity lasers with 20 and 40 Gb/s data transmission. Applied Physics Letters, 2011, 98(19): 191107
https://doi.org/10.1063/1.3589363
34 Wu C H, Tan F, Feng M, Holonyak N Jr. The effect of mode spacing on the speed of quantum-well microcavity lasers. Applied Physics Letters, 2010, 97(9): 091103
https://doi.org/10.1063/1.3485048
35 Coldren L A, Corzine S W. Diode Lasers and Photonic Integrated Circuits. New York: Wiley, 1995
36 Westbergh P, Gustavsson J S, Kögel B, Haglund Å, Larsson A. Impact of photon lifetime on high-speed VCSEL performance. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(6): 1603–1613
https://doi.org/10.1109/JSTQE.2011.2114642
37 Mutig A, Bimberg D. Progress on high-speed 980nm VCSELs for short-reach optical interconnects. Advances in Optical Technologies, 2011, 2011: 290508
https://doi.org/10.1155/2011/290508
38 Moser P, Wolf P, Mutig A, Larisch G, Unrau W, Hofmann W, Bimberg D. 85°C error-free operation at 38 Gb/s of oxide-confined 980-nm vertical-cavity surface-emitting lasers. Applied Physics Letters, 2012, 100(8): 081103
https://doi.org/10.1063/1.3688040
39 Li H, Wolf P, Moser P, Larisch G, Mutig A, Lott A, Bimberg D H. Impact of the quantum well gain-to-cavity etalon wavelength offset on the high temperature performance of high bit rate 980-nm VCSELs. IEEE Journal of Quantum Electronics, 2014, 50(8): 613–621
https://doi.org/10.1109/JQE.2014.2330255
40 Zhou W, Zhao D, Shuai Y C, Yang H, Chuwongin S, Chadha A, Seo J H, Wang K X, Liu V, Ma Z, Fan S. Progress in 2D photonic crystal Fano resonance photonics. Progress in Quantum Electronics, 2014, 38(1): 1–74
https://doi.org/10.1016/j.pquantelec.2014.01.001
41 Mateus C F R, Huang M C Y, Deng Y, Neureuther A R, Chang-Hasnain C J. Ultrabroadband mirror using low-index cladded subwavelength grating. IEEE Photonics Technology Letters, 2004, 16(2): 518–520
https://doi.org/10.1109/LPT.2003.821258
42 Mateus C F R, Huang M C Y, Chen L, Chang-Hasnain C J, Suzuki Y. Broad-band mirror (1.12–1.62 mm) using a subwavelength grating. IEEE Photonics Technology Letters, 2004, 16(7): 1676–1678
https://doi.org/10.1109/LPT.2004.828514
43 Boutami S, Ben Bakir B, Leclercq J L, Letartre X, Rojo-Romeo P, Garrigues M, Viktorovitch P, Sagnes I, Legratiet L, Strassner M. Highly selective and compact tunable MOEMS photonic crystal Fabry-Perot filter. Optics Express, 2006, 14(8): 3129–3137
https://doi.org/10.1364/OE.14.003129 pmid: 19516454
44 Sciancalepore C, Bakir B B, Letartre X, Fedeli J M, Olivier N, Bordel D, Seassal C, Rojo-Romeo P, Regreny P, Viktorovitch P. Quasi-3D light confinement in double photonic crystal reflectors VCSELs for CMOS-compatible integration. Journal of Lightwave Technology, 2011, 29(13): 2015–2024
https://doi.org/10.1109/JLT.2011.2157303
45 Viktorovitch P, Bakir B B, Boutami S, Leclercq J L, Letartre X, Rojo-Romeo P, Seassal C, Zussy M, Cioccio L D, Fedeli J M. 3D harnessing of light with 2.5D photonic crystals. Laser & Photonics Reviews, 2010, 4(3): 401–413
https://doi.org/10.1002/lpor.200910009
46 Magnusson R, Shokooh-Saremi M. Physical basis for wideband resonant reflectors. Optics Express, 2008, 16(5): 3456–3462
https://doi.org/10.1364/OE.16.003456 pmid: 18542437
47 Shokooh-Saremi M, Magnusson R. Wideband leaky-mode resonance reflectors: influence of grating profile and sublayers. Optics Express, 2008, 16(22): 18249–18263
https://doi.org/10.1364/OE.16.018249 pmid: 18958102
48 Karagodsky V, Sedgwick F G, Chang-Hasnain C J. Theoretical analysis of subwavelength high contrast grating reflectors. Optics Express, 2010, 18(16): 16973–16988
https://doi.org/10.1364/OE.18.016973 pmid: 20721086
49 Liu A, Fu F, Wang Y, Jiang B, Zheng W. Polarization-insensitive subwavelength grating reflector based on a semiconductor-insulator-metal structure. Optics Express, 2012, 20(14): 14991–15000
https://doi.org/10.1364/OE.20.014991 pmid: 22772194
50 Debernardi P, Orta R, Gründl T, Amann M C. 3-D vectorial optical model for high-contrast grating vertical-cavity surface-emitting lasers. IEEE Journal of Quantum Electronics, 2013, 49(2): 137–145
https://doi.org/10.1109/JQE.2012.2227953
51 Gębski M, Kuzior O, Dems M, Wasiak M, Xie Y Y, Xu Z J, Wang Q J, Zhang D H, Czyszanowski T. Transverse mode control in high-contrast grating VCSELs. Optics Express, 2014, 22(17): 20954–20963
https://doi.org/10.1364/OE.22.020954 pmid: 25321296
52 Huang M C Y, Zhou Y, Chang-Hasnain C J. A surface-emitting laser incorporating a high-indexcontrast subwavelength grating. Nature Photonics, 2007, 1(2): 119–122
https://doi.org/10.1038/nphoton.2006.80
53 Huang M C Y, Zhou Y, Chang-Hasnain C J. A nanoelectromechanical tunable laser. Nature Photonics, 2008, 2(3): 180–184
https://doi.org/10.1038/nphoton.2008.3
54 Boutami S, Benbakir B, Leclercq J L, Viktorovitch P. Compact and polarization controlled 1.55 mm vertical-cavity surface emitting laser using single-layer photonic crystal mirror. Applied Physics Letters, 2007, 91(7): 071105
https://doi.org/10.1063/1.2771085
55 Hofmann W, Chase C, Müller M, Rao Y, Grasse C, Böhm G, Amann M C, Chang-Hasnain C J. Long-wavelength high-contrast grating vertical-cavity surface-emitting laser. IEEE Photonics Journal, 2010, 2(3): 415–422
https://doi.org/10.1109/JPHOT.2010.2049009
56 Ansbæk T, Chung I S, Semenova E S, Yvind K. 1060-nm tunable monolithic high index contrast subwavelength grating VCSEL. IEEE Photonics Technology Letters, 2013, 25(4): 365–367
https://doi.org/10.1109/LPT.2012.2236087
57 Inoue S, Kashino J, Matsutani A, Ohtsuki H, Miyashita T, Koyama F. Highly angular dependent high-contrast grating mirror and its application for transverse-mode control of VCSELs. Japanese Journal of Applied Physics, 2014, 53(9): 090306
https://doi.org/10.7567/JJAP.53.090306
58 Moharam M G, Gaylord T K. Rigorous coupled-wave analysis of planar grating diffraction. Journal of the Optical Society of America, 1981, 71(7): 811–818
https://doi.org/10.1364/JOSA.71.000811
59 Huang M C Y, Zhou Y, Chang-Hasnain C J. Single mode high-contrast subwavelength grating vertical cavity surface emitting lasers. Applied Physics Letters, 2008, 92(17): 171108
https://doi.org/10.1063/1.2917447
60 Liu A, Hofmann W, Bimberg D. Two dimensional analysis of finite size high-contrast gratings for applications in VCSELs. Optics Express, 2014, 22(10): 11804–11811
https://doi.org/10.1364/OE.22.011804 pmid: 24921302
61 Liu A, Hofmann W, Bimberg D. Integrated high-contrast-grating optical sensor using guided mode. IEEE Journal of Quantum Electronics, 2015, 51(1): 1–8
https://doi.org/10.1109/JQE.2014.2374601
62 Liu A, Hofmann W, Bimberg D. VCSELs with surface nanostructures. In: Proceedings of Asia Communications and Photonics Conference, 2014, ATh2B. 4
63 Zhao D, Ma Z, Zhou W. Field penetrations in photonic crystal Fano reflectors. Optics Express, 2010, 18(13): 14152–14158
https://doi.org/10.1364/OE.18.014152 pmid: 20588548
64 Babic D I, Corzine S W. Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors. IEEE Journal of Quantum Electronics, 1992, 28(2): 514–524
https://doi.org/10.1109/3.123281
65 Chung I S, Mørk J. Speed enhancement in VCSELs employing grating mirrors. Proceedings of the Society for Photo-Instrumentation Engineers, 2013, 8633: 863308
https://doi.org/10.1117/12.2005362
66 Rao Y, Yang W, Chase C, Huang M C Y, Worland D P, Khaleghi S, Chitgarha M R, Ziyadi M, Willner A E, Chang-Hasnain C J. Long-Wavelength VCSEL using high-contrast grating. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(4): 1701311
https://doi.org/10.1109/JSTQE.2013.2246780
67 Karagodsky V, Pesala B, Chase C, Hofmann W, Koyama F, Chang-Hasnain C J. Monolithically integrated multi-wavelength VCSEL arrays using high-contrast gratings. Optics Express, 2010, 18(2): 694–699
https://doi.org/10.1364/OE.18.000694 pmid: 20173889
68 Sciancalepore C, Bakir B B, Menezo S, Letartre X, Bordel D, Viktorovitch P. III–V-on-Si photonic crystal vertical-cavity surface-emitting laser arrays for wavelength division multiplexing. IEEE Photonics Technology Letters, 2013, 25(12): 1111–1113
https://doi.org/10.1109/LPT.2013.2260140
69 Liu A, Wolf P, Schulze J H, Bimberg D. Fabrication and characterization of integrable GaAs-based high-contrast grating reflector and Fabry-Pérot filter array with GaInP sacrificial layer. IEEE Photonics Journal, 2016, 8(1): 2700509
70 Kumari S, Gustavsson J S, Wang R, Haglund E P, Westbergh P, Sanchez D, Haglund E, Haglund Å, Bengtsson J, Thomas N L, Roelkens G, Larsson A, Baets R. Integration of GaAs-based VCSEL array on SiN platform with HCG. Proceedings of the Society for Photo-Instrumentation Engineers, 2015, 9372: 93720U-1–93720U-7
71 Schares L, Kash J A, Doany F E, Schow C L, Schuster C, Kuchta D M, Pepeljugoski P K, Trewhella J M, Baks C W, John R A, Shan L, Kwark Y H, Budd R A, Chiniwalla P, Libsch F R, Rosner J, Tsang C K, Patel C S, Schaub J D, Dangel R, Horst F, Offrein B J, Kucharski D, Guckenberger D, Hegde S, Nyikal H, Lin C K, Tandon A, Trott G R, Nystrom M, Bour D P, Tan M R T, Dolfi D W. Terabus: terabit/second-class card-level optical interconnect technologies. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(5): 1032–1044
https://doi.org/10.1109/JSTQE.2006.881906
72 Kaur K S, Subramanian A Z, Cardile P, Verplancke R, Van Kerrebrouck J, Spiga S, Meyer R, Bauwelinck J, Baets R, Van Steenberge G. Flip-chip assembly of VCSELs to silicon grating couplers via laser fabricated SU8 prisms. Optics Express, 2015, 23(22): 28264–28270
https://doi.org/10.1364/OE.23.028264 pmid: 26561097
73 Louderback D A, Pickrell G W, Lin H C, Fish M A, Hindi J J, Guilfoyle P S. VCSELs with monolithic coupling to internal horizontal waveguides using integrated diffraction gratings. Electronics Letters, 2004, 40(17): 1064–1065
https://doi.org/10.1049/el:20045585
74 Haglund E P, Kumari S, Westbergh P, Gustavsson J S, Roelkens G, Baets R, Larsson A. Silicon-integrated short-wavelength hybrid-cavity VCSEL. Optics Express, 2015, 23(26): 33634–33640
https://doi.org/10.1364/OE.23.033634
75 Ferrier L, Romeo P R, Letartre X, Drouard E, Viktorovitch P. 3D integration of photonic crystal devices: vertical coupling with a silicon waveguide. Optics Express, 2010, 18(15): 16162–16174
https://doi.org/10.1364/OE.18.016162 pmid: 20721002
76 Ferrara J, Yang W, Zhu L, Qiao P, Chang-Hasnain C J. Heterogeneously integrated long-wavelength VCSEL using silicon high contrast grating on an SOI substrate. Optics Express, 2015, 23(3): 2512–2523
https://doi.org/10.1364/OE.23.002512 pmid: 25836117
77 Chung I S, Mørk J. Silicon-photonics light source realized by III–V/Si-grating-mirror laser. Applied Physics Letters, 2010, 97(15): 151113
https://doi.org/10.1063/1.3503966
78 Park G C, Xue W, Taghizadeh A, Semenova E, Yvind K, Mørk J, Chung I S. Hybrid vertical-cavity laser with lateral emission into a silicon waveguide. Laser & Photonics Reviews, 2015, 9(3): L11–L15
https://doi.org/10.1002/lpor.201400418
[1] Changkui HU, Deming LIU. Polarization characteristics of subwavelength aluminum wire grating in near infrared[J]. Front Optoelec Chin, 2009, 2(2): 187-191.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed