Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2017, Vol. 10 Issue (3) : 239-254    https://doi.org/10.1007/s12200-017-0724-6
REVIEW ARTICLE
Research and developments of laser assisted methods for translation into clinical application
Ronald SROKA1,2(), Nikolas DOMINIK1,2, Max EISEL1,2, Anna ESIPOVA3, Christian FREYMÜLLER1,2, Christian HECKL1,2, Georg HENNIG1,2, Christian HOMANN1,2, Nicolas HOEHNE1,2, Robert KAMMERER2,5, Thomas KELLERER1,2, Alexander LANG1,2, Niklas MARKWARDT1,2, Heike POHLA2,4, Thomas PONGRATZ1,2, Claus-Georg SCHMEDT1,3, Herbert STEPP1,2, Stephan STRÖBL1,2, Keerthanan ULAGANATHAN1,2, Wolfgang ZIMMERMANN2,4, Adrian RUEHM1,2
1. Laser-Forschungslabor, LIFE-Center, Hospital of University, Ludwig-Maximilians University Munich, Munich, Germany
2. Department of Urology, Hospital of University, Ludwig-Maximilians University Munich, Munich, Germany
3. Department of Vascular Surgery, Diakonie Klinikum, Schwäbisch Hall, Germany
4. Labor für Tumorimmunologie, LIFE-Center, Hospital of University, Ludwig-Maximilians University Munich, Munich, Germany
5. Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald- Insel Riems, Germany
 Download: PDF(624 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Biophotonics and laser medicine are very dynamic and continuously increasing fields ecologically as well as economically. Direct communication with medical doctors is necessary to identify specific requests and unmet needs. Information on innovative, new or renewed techniques is necessary to design medical devices for introduction into clinical application and finally to become established after positive clinical trials as well as medical approval. The long-term endurance in developing light based innovative clinical concepts and devices are described based on the Munich experience. Fluorescence technologies for laboratory medicine to improve non-invasive diagnosis or for online monitoring are described according with new approaches in improving photodynamic therapeutic aspects related to immunology. Regarding clinically related thermal laser applications, the introduction of new laser wavelengths and laser parameters showed potential in the treatment of varicose veins as well as in lithotripsy. Such directly linked research and development are possible when researchers and medical doctors perform their daily work in immediate vicinity, thus have the possibility to share their ideas in meetings by day.

Keywords translational biophotonics      thermal laser application      fluorescence diagnosis      on-line monitoring      lithotripsy      phlebology      photodynamic therapy (PDT)      laboratory medicine     
Corresponding Author(s): Ronald SROKA   
Just Accepted Date: 04 July 2017   Online First Date: 29 August 2017    Issue Date: 26 September 2017
 Cite this article:   
Ronald SROKA,Nikolas DOMINIK,Max EISEL, et al. Research and developments of laser assisted methods for translation into clinical application[J]. Front. Optoelectron., 2017, 10(3): 239-254.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-017-0724-6
https://academic.hep.com.cn/foe/EN/Y2017/V10/I3/239
Fig.1  Prototype ZnPP fluorometer device is shown (a), with the optical fiber attached to the front side. The applicator tip is brought in contact of the lower lip of a patient (b), while the feedback light indicates a measurement site suitable for a reliable ZnPP measurement
Fig.2  Results of a clinical study on 56 women after childbirth. Shown is the comparison of the non-invasive ZnPP fluorescence measurements with the reference HPLC determination
Fig.3  Fluorescence excitation of coproporphyrin I and uroporphyrin I spectrum at (a) pH= 7 and (b) pH= 1.5 at the same molar concentration. The quotient of coproporphyrin to uroporphyrin excitation spectra reveals the ideal excitation wavelength for selective excitation of either porphyrin (green). For the acidic samples, the ratio yields a much higher difference between uroporphyrin and coproporphyrin excitation, which allows for a more precise differentiation between the two porphyrins
Fig.4  Fluorescence spectra of urine spiked with uroporphyrin and coproporphyrin (a). The picture shows, that 397 nm excitation yields a much higher fluorescence than 409 nm excitation, which is indicative of a sample with a higher amount of coproporphyrin than uroporphyrin. From the calibration curves (b), two equations for each excitation wavelength can be derived. With the intensity measured during the two wavelength excitation, the equations can be solved and return the concentration of each porphyrin
Fig.5  (a) Schematic of a central phantom experiment: The opto-mechanical biopsy needle (here: only with side-view fibers) was immerged in a liquid brain phantom at different distances from a blood-filled glass capillary (drawn in red, orange and green, respectively). After adjusting the fiber-to-capillary distance, the needle was moved inz-direction. The capillary orientation was perpendicular to the drawing plane. (b) Experimental results of the remission ratioI578/I650 for the three fiber-to-capillary distances indicated left
Fig.6  Sketch of an opto-mechanical biopsy needle with three integrated glass fibers for light delivery and collection. One bare-end fiber is used to detect tumor tissue via PpIX fluorescence in front of the needle. Two side-view fibers are placed inside the tissue suction window to assess the sucked tissue regarding the presence of tumor tissue (via PpIX fluorescence) and blood vessels (via remission spectrometry)
Fig.7  Schematic representation of interstitially placed light applicators in the treatment planning software. The active portions along the stereotactic trajectories from which radiation emanates are indicated in yellow, the tumor volume to be irradiated is indicated in purple [19]
Fig.8  Light dose dependent survival and caspase 3/7 activation of U87 and U373 cells. For investigation of the transcriptome, sublethal light doses of 1 J/cm2 (U87) and 0.5 J/cm2 (U373) were applied (black lines in the graphs). Adopted from Ref. [32]
Fig.9  Genes upregulated by non-lethal PDT. Adopted from Ref. [32]
Fig.10  Temperature sensor consisting of ruby sphere (outer diamter, OD= 1 mm) attached to an optical fiber (core diameter 400 µm). (a) Front view; (b) side view
laser mode pulse length/ms energy/J frequency/Hz power/W
1 0.25 1.0 10 10
2 1.0
3 1.6
4 1.2
5 0.25 0.5 5 5
6 0.84
7 1.3
8 1.6
Tab.1  List of laser modes used for preliminary fragmentation efficiency measurements using 5 and 10W laser power at different pulse lengths
Fig.11  Preliminary results using different optical pulse lengths, sorted by stone breaking times. The perpendicular lines illustrate the particular breaking times for each laser mode. The total fragmentation time with its standard deviation is the combination of the green bar (time before stone break) and the red bar (chasing fragments). On the right hand side the dust and fragmentation ratios are displayed in percent for each mode
1 Labbé R F ,  Vreman H J ,  Stevenson D K . Zinc protoporphyrin: ametabolite with a mission. Clinical Chemistry, 1999, 45(12): 2060–2072
pmid: 10585337
2 Hennig G, Gruber  C, Vogeser M ,  Stepp H ,  Dittmar S ,  Sroka R ,  Brittenham G M . Dual-wavelength excitation for fluorescence-based quantification of zinc protoporphyrin IX and protoporphyrin IX in whole blood. Journal of Biophotonics, 2014, 7(7): 514–524
https://doi.org/10.1002/jbio.201200228 pmid: 23450826
3 Hennig G, Homann  C, Teksan I ,  Hasbargen U ,  Hasmüller S ,  Holdt L M ,  Khaled N ,  Sroka R ,  Stauch T ,  Stepp H ,  Vogeser M ,  Brittenham G M . Non-invasive detection of iron deficiency by fluorescence measurement of erythrocyte zinc protoporphyrin in the lip. Nature Communications, 2016, 7: 10776
https://doi.org/10.1038/ncomms10776 pmid: 26883939
4 Balwani M, Desnick  R J. The porphyrias: advances in diagnosis and treatment. Blood, 2012, 120(23): 4496–4504
https://doi.org/10.1182/blood-2012-05-423186 pmid: 22791288
5 Enriquez de Salamanca R ,  Sepulveda P ,  Moran M J ,  Santos J L ,  Fontanellas A ,  Hernández A . Clinical utility of fluorometric scanning of plasma porphyrins for the diagnosis and typing of porphyrias. Clinical and Experimental Dermatology, 1993, 18(2): 128–130
https://doi.org/10.1111/j.1365-2230.1993.tb00992.x pmid: 8481987
6 Bonkovsky H L ,  Maddukuri V C ,  Yazici C ,  Anderson K E ,  Bissell D M ,  Bloomer J R ,  Phillips J D ,  Naik H, Peter  I, Baillargeon G ,  Bossi K ,  Gandolfo L ,  Light C ,  Bishop D ,  Desnick R J . Acute porphyrias in the USA: features of 108 subjects from porphyrias consortium.The American Journal of Medicine, 2014, 127(12): 1233–1241
https://doi.org/10.1016/j.amjmed.2014.06.036 pmid: 25016127
7 Karim Z, Lyoumi  S, Nicolas G ,  Deybach J C ,  Gouya L ,  Puy H. Porphyrias: a 2015 update. Clinics and Research in Hepatology and Gastroenterology, 2015, 39(4): 412–425
https://doi.org/10.1016/j.clinre.2015.05.009 pmid: 26142871
8 Lang A, Stepp  H, Homann C ,  Hennig G ,  Brittenham G M ,  Vogeser M . Rapid screening test for porphyria diagnosis using fluorescence spectroscopy. SPIE Proceedings, 2015, 9537: 953706
9 Rimington C. Spectral-absorption coefficients of some porphyrins in the Soret-band region. The Biochemical Journal, 1960, 75(3): 620–623
https://doi.org/10.1042/bj0750620 pmid: 16748818
10 Westerlund J, Pudek  M, Schreiber W E . A rapid and accurate spectrofluorometric method for quantification and screening of urinary porphyrins. Clinical Chemistry, 1988, 34(2): 345–351
pmid: 3342508
11 Markwardt N A ,  Haj-Hosseini N ,  Hollnburger B ,  Stepp H ,  Zelenkov P ,  Rühm A . 405 nm versus 633 nm for protoporphyrin IX excitation in fluorescence-guided stereotactic biopsy of brain tumors. Journal of Biophotonics, 2016, 9(9): 901–912
https://doi.org/10.1002/jbio.201500195 pmid: 26564058
12 Markwardt N A ,  Stepp H ,  Franz G ,  Sroka R ,  Goetz M ,  Zelenkov P ,  Rühm A . Remission spectrometry for blood vessel detection during stereotactic biopsy of brain tumors. Journal of Biophotonics, 2016
https://doi.org/10.1002/jbio.201600193 pmid: 27714967
13 Gebhart S C, Lin  W C, Mahadevan-Jansen  A. In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling. Physics in Medicine and Biology, 2006, 51(8): 2011–2027
https://doi.org/10.1088/0031-9155/51/8/004 pmid: 16585842
14 Yaroslavsky A N ,  Schulze P C ,  Yaroslavsky I V ,  Schober R ,  Ulrich F ,  Schwarzmaier H J . Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range. Physics in Medicine and Biology, 2002, 47(12): 2059–2073
https://doi.org/10.1088/0031-9155/47/12/305 pmid: 12118601
15 Johansson A, Palte  G, Schnell O ,  Tonn J C ,  Herms J ,  Stepp H . 5-Aminolevulinic acid-induced protoporphyrin IX levels in tissue of human malignant brain tumors. Photochemistry and Photobiology, 2010, 86(6): 1373–1378
https://doi.org/10.1111/j.1751-1097.2010.00799.x pmid: 20854414
16 Prahl S A. Optical Absorption of Hemoglobin, tabulated data compiled from various sources (1999), 
17 Wårdell K, Hemm-Ode  S, Rejmstad P ,  Zsigmond P . High-resolution laser Doppler measurements of microcirculation in the deep brain structures: a method for potential vessel tracking. Stereotactic and Functional Neurosurgery, 2016, 94(1): 1–9
https://doi.org/10.1159/000442894 pmid: 26795207
18 Johansson A, Faber  F, Kniebühler G ,  Stepp H ,  Sroka R ,  Egensperger R ,  Beyer W ,  Kreth F W . Protoporphyrin IX fluorescence and photobleaching during interstitial photodynamic therapy of malignant gliomas for early treatment prognosis. Lasers in Surgery and Medicine, 2013, 45(4): 225–234
https://doi.org/10.1002/lsm.22126 pmid: 23533060
19 Rühm A, Stepp  H, Beyer W ,  Hennig G ,  Pongratz T ,  Sroka R ,  Schnell O ,  Tonn J C ,  Kreth F W . 5-ALA based photodynamic management of glioblastoma. Proceedings of the Society for Photo-Instrumentation Engineers, 2014, 8928: 89280E
https://doi.org/10.1117/12.2040268
20 Wang L V, Wu  H I. Biomedical Optics: Principles and Imaging.New Jersey: Wiley, 2007
21 Beck T J, Kreth  F W, Beyer  W, Mehrkens J H ,  Obermeier A ,  Stepp H ,  Stummer W ,  Baumgartner R . Interstitial photodynamic therapy of nonresectable malignant glioma recurrences using 5-aminolevulinic acid induced protoporphyrin IX. Lasers in Surgery and Medicine, 2007, 39(5): 386–393
https://doi.org/10.1002/lsm.20507 pmid: 17565715
22 Castano A P, Mroz  P, Hamblin M R . Photodynamic therapy and anti-tumour immunity. Nature Reviews. Cancer, 2006, 6(7): 535–545
https://doi.org/10.1038/nrc1894 pmid: 16794636
23 Gollnick S O. Photodynamic therapy and antitumor immunity. Journal of the National Comprehensive Cancer Network: JNCCN, 2012, 10(Suppl 2): S40–S43
pmid: 23055214
24 Korbelik M, Banáth  J, Zhang W . Mreg activity in tumor response to photodynamic therapy and photodynamic therapy-generated cancer vaccines. Cancers (Basel), 2016, 8(10): E94
https://doi.org/10.3390/cancers8100094 pmid: 27754452
25 Korbelik M. Induction of tumor immunity by photodynamic therapy. Journal of Clinical Laser Medicine & Surgery, 1996, 14(5): 329–334
pmid: 9612200
26 Gollnick S O, Vaughan  L, Henderson B W . Generation of effective antitumor vaccines using photodynamic therapy. Cancer Research, 2002, 62(6): 1604–1608
pmid: 11912128
27 Korbelik M, Banáth  J, Saw K M . Immunoregulatory cell depletion improves the efficacy of photodynamic therapy-generated cancer vaccines. International Journal of Molecular Sciences, 2015, 16(11): 27005–27014
https://doi.org/10.3390/ijms161126008 pmid: 26569233
28 Garg A D, Vandenberk  L, Koks C ,  Verschuere T ,  Boon L, Van Gool  S W, Agostinis  P. Dendritic cell vaccines based on immunogenic cell death elicit danger signals and T cell-driven rejection of high-grade glioma. Science Translational Medicine, 2016, 8(328): 328ra27
https://doi.org/10.1126/scitranslmed.aae0105 pmid: 26936504
29 Johansson A, Stepp  H, Beck T ,  Beyer W ,  Pongratz T ,  Sroka R ,  Meinel T ,  Stummer W ,  Kreth F W ,  Tonn J C ,  Baumgartner R . ALA-mediated fluorescence- guided resection (FGR) and PDT of glioma. In: Proceedings of 12th World Congress of the International Photodynamic Association: Photodynamic Therapy: Back to the Future.2009, 7380
30 Schwartz C, Ruehm  A, Tonn J C ,  Kreth S ,  Kreth F W . Interstitial photodynamic therapy of de-novo glioblastoma multiforme WHO IV:a feasibility study. In: Proceedings of 66th Annual Meeting of the Society of Neuro-Oncology. 2015, SURG-25
31 Stummer W, Beck  T, Beyer W ,  Mehrkens J H ,  Obermeier A ,  Etminan N ,  Stepp H ,  Tonn J C ,  Baumgartner R ,  Herms J ,  Kreth F W . Long-sustaining response in a patient with non-resectable, distant recurrence of glioblastoma multiforme treated by interstitial photodynamic therapy using 5-ALA: case report. Journal of Neuro-Oncology, 2008, 87(1): 103–109
https://doi.org/10.1007/s11060-007-9497-x pmid: 18034212
32 Kammerer R, Buchner  A, Palluch P ,  Pongratz T ,  Oboukhovskij K ,  Beyer W ,  Johansson A ,  Stepp H ,  Baumgartner R ,  Zimmermann W . Induction of immune mediators in glioma and prostate cancer cells by non-lethal photodynamic therapy. PLoS One, 2011, 6(6): e21834
https://doi.org/10.1371/journal.pone.0021834 pmid: 21738796
33 Etminan N, Peters  C, Lakbir D ,  Bünemann E ,  Börger V ,  Sabel M C ,  Hänggi D ,  Steiger H J ,  Stummer W ,  Sorg R V . Heat-shock protein 70-dependent dendritic cell activation by 5-aminolevulinic acid-mediated photodynamic treatment of human glioblastoma spheroids in vitro. British Journal of Cancer, 2011, 105(7): 961–969
https://doi.org/10.1038/bjc.2011.327 pmid: 21863026
34 Navarro L, Min  R J, Boné  C. Endovenous laser: a new minimally invasive method of treatment for varicose veins--preliminary observations using an 810 nm diode laser. Dermatol Surgery, 2001, 27(2): 117–122
pmid: 11207682
35 Min R J, Zimmet  S E, Isaacs  M N, Forrestal  M D. Endovenous laser treatment of the incompetent greater saphenous vein. Journal of Vascular and Interventional Radiology: JVIR, 2001, 12(10): 1167–1171
https://doi.org/10.1016/S1051-0443(07)61674-1 pmid: 11585882
36 Mordon S R, Wassmer  B, Zemmouri J . Mathematical modeling of endovenous laser treatment (ELT). Biomedical Engineering Online, 2006, 5(1): 26
https://doi.org/10.1186/1475-925X-5-26 pmid: 16638133
37 Minaev V P, Sokolov  A L, Lyadov  K V, Lutsenko  M M, Zhilin  K M. Endovenous laser treatment (EVLT) of safernous vein reflux with 1.56  mm laser. Proceedings of the Society for Photo-Instrumentation Engineers, 2009, 7373: 73731D
https://doi.org/10.1117/12.831890
38 Schmedt C G, Sroka  R, Steckmeier S ,  Meissner O A ,  Babaryka G ,  Hunger K ,  Ruppert V ,  Sadeghi-Azandaryani M ,  Steckmeier B M . Investigation on radiofrequency and laser (980 nm) effects after endoluminal treatment of saphenous vein insufficiency in an ex-vivo model. European Journal of Vascular and Endovascular Surgery, 2006, 32(3): 318–325
https://doi.org/10.1016/j.ejvs.2006.04.013 pmid: 16781172
39 Sroka R, Weick  K, Steckmaier S ,  Steckmaier B ,  Blagova R ,  Sroka I ,  Sadeghi-Azandaryani M ,  Maier J ,  Schmedt C G . The ox-foot-model for investigating endoluminal thermal treatment modalities of varicosis vein diseases. ALTEX, 2012, 29(4): 403–410
https://doi.org/10.14573/altex.2012.4.403 pmid: 23138510
40 Sroka R, Weick  K, Sadeghi-Azandaryani M, Steckmeier B ,  Schmedt C G . Endovenous laser therapy--application studies and latest investigations. Journal of Biophotonics, 2010, 3(5-6): 269–276
https://doi.org/10.1002/jbio.200900097 pmid: 20151443
41 Sroka R, Pongratz  T, Siegrist K ,  Burgmeier C ,  Barth H D ,  Schmedt C G . Endovenous laser application. Strategies to improve endoluminal energy application. Phlebologie, 2013, 42(3): 121–129
https://doi.org/10.12687/phleb2134-3-2013
42 Sroka R, Schmedt  C G, Steckmeier  S, Meissner O A ,  Beyer W ,  Babaryka G ,  Steckmeier B . Ex-vivo investigation of endoluminal vein treatment by means of radiofrequency and laser irradiation. Medical Laser Application, 2006, 21(1): 15–22
https://doi.org/10.1016/j.mla.2005.11.003
43 Gloviczki P, Comerota  A J, Dalsing  M C, Eklof  B G, Gillespie  D L, Gloviczki  M L, Lohr  J M, McLafferty  R B, Meissner  M H, Murad  M H, Padberg  F T, Pappas  P J, Passman  M A, Raffetto  J D, Vasquez  M A, Wakefield  T W. The care of patients with varicose veins and associated chronic venous diseases: clinical practice guidelines of the Society for Vascular Surgery and the American Venous Forum. Journal of Vascular Surgery, 2011, 53(5Suppl): 2S–48S
https://doi.org/10.1016/j.jvs.2011.01.079 pmid: 21536172
44 National Guideline. Varicose veins in the legs. The diagnosis and management of varicose veins. Agency for Healthcare Research and Quality (AHRQ), Rockville MD
45 Davidson S R H ,  Vitkin I A ,  Sherar M D ,  Whelan W M . Characterization of measurement artefacts in fluoroptic temperature sensors: implications for laser thermal therapy at 810 nm. Lasers in Surgery and Medicine, 2005, 36(4): 297–306
https://doi.org/10.1002/lsm.20155 pmid: 15786482
46 Klingenberg M, Bohris  C, Niemz M H ,  Bille J F ,  Kurek R ,  Wallwiener D . Multifibre application in laser-induced interstitial thermotherapy under on-line MR control. Lasers in Medical Science, 2000, 15(1): 6–14
https://doi.org/10.1007/s101030050041 pmid: 24590193
47 Grattan K T V ,  Selli R K ,  Palmer A W . Ruby fluorescence wavelength division fiber-optic temperature sensor. Review of Scientific Instruments, 1987, 58(7): 1231–1234
https://doi.org/10.1063/1.1139443
48 Sroka R, Hemmerich  M, Pongratz T ,  Siegrist K ,  Brons J ,  Linden S ,  Meier R ,  Schmedt C G . Endovenous laser application. Possibilities of online monitoring. Phlebologie, 2013, 42(3): 131–138
https://doi.org/10.12687/phleb2135-3-2013
49 Bader M J, Pongratz  T, Khoder W ,  Stief C G ,  Herrmann T ,  Nagele U ,  Sroka R . Impact of pulse duration on Ho:YAG laser lithotripsy: fragmentation and dusting performance. World Journal of Urology, 2015, 33(4): 471–477
https://doi.org/10.1007/s00345-014-1429-8 pmid: 25366882
50 Simmons W N, Cocks  F H, Zhong  P, Preminger G . A composite kidney stone phantom with mehanical properties controllable over the range of properties of human kidney stones. Journal of the Mechanical Behavior of Biomedical Materials, 2010, 3(1): 130–133
https://doi.org/10.1016/j.jmbbm.2009.08.004 pmid: 19878912
51 Esch E, Simmons  W N, Sankin  G, Cocks H F ,  Preminger G M ,  Zhong P . A simple method for fabricating artificial kidney stones of different physical properties. Urological Research, 2010, 38(4): 315–319
https://doi.org/10.1007/s00240-010-0298-x pmid: 20652562
52 Sea J, Jonat  L M, Chew  B H, Qiu  J, Wang B ,  Hoopman J ,  Milner T ,  Teichman J M . Optimal power settings for Holmium:YAG lithotripsy. The Journal of urology, 2012, 187(3): 914–919
https://doi.org/10.1016/j.juro.2011.10.147 pmid: 22264464
53 Kang H W, Lee  H, Teichman J M H ,  Oh J, Kim  J, Welch A J . Dependence of calculus retropulsion on pulse duration during Ho:YAG laser lithotripsy. Lasers in Surgery and Medicine, 2006, 38(8): 762–772
https://doi.org/10.1002/lsm.20376 pmid: 16868932
54 Sroka R, Stepp  H, Hennig G ,  Brittenham G M ,  Rühm A ,  Lilge L . Medical laser application: translation into the clinics. Journal of Biomedical Optics, 2015, 20(6): 061110
https://doi.org/10.1117/1.JBO.20.6.061110 pmid: 26079966
[1] Dmitry V. YAKOVLEV, Dina S. FARRAKHOVA, Artem A. SHIRYAEV, Kanamat T. EFENDIEV, Maxim V. LOSCHENOV, Liana M. AMIRKHANOVA, Dmitry O. KORNEV, Vladimir V. LEVKIN, Igor V. RESHETOV, Victor B. LOSCHENOV. New approaches to diagnostics and treatment of cholangiocellular cancer based on photonics methods[J]. Front. Optoelectron., 2020, 13(4): 352-359.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed